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Abstract e DATA STREAM COMPUTATION: A low-space algo-
rithm for maintaining the second frequency moment of
We investigate the optimality 6f-+¢)-approximation al- the data stream was shown in [4]. The algorithm pro-
gorithms obtained via the dimensionality reduction method. vides a(1+¢€)-approximation to the estimated quantity

We show that: while using onlyO(1/€%) memory words. The prob-

lem has numerous applications, see [31].
e Any data structure for thé€l + ¢)-approximatenearest
stant number of probes to answer each query, mustuse (1 + €)-approximate nearest neighbor problentifh

nQ(1/€) space. were given in [21, 26, 17, 11, 2]. In particular, the data
structure of [26] usex®(1/<") space and guarantees
e Any algorithm for the1 + ¢)-approximateclosest sub- (d+logn + 1/€)°M) query time.

stringproblem must run in time exponential e~ o)
for anyy > 0 (un|ess 3SAT can be solved in sub- e APPROXIMATION ALGORITHMS: Severa.l’nl/6 -

exponential time) time (1 + ¢)-approximate algorithms for various clus-
tering and pattern analysis problems were given,
Both lower bounds are (essentially) tight. e.g., in[32, 27, 23].

These algorithmic developments raise the natural ques-

] tion: how close to optimal are the space/time bounds de-
1. Introduction rived using the dimensionality reduction method ? In addi-
tion to the theoretical importance of this question, resolving

Dimensionality reduction is a powerful method for de- itis of significant practical interest. The difference between
signing efficient approximation algorithms for problems of (say)1/¢"° and1/e* could easily mean the difference be-
a geometric nature. lts main idea is simple: to solve a tween a practical algorithm and an impractical one. This is
problem defined over a high-dimensional geometric spaceespecially the casef the expression appears in the expo-
R, map that space ontd#* wherek is “low”, and solve  nent of the time/space bound.
the problem in the latter space. A prototypical tool used ~ What is known about this issue ? It is known [3] that
for such purpose is the theorem by Johnson and Linden-Somen-point data sets cannot be mapped into a space of di-
strauss [24], which states that there exists a randomizedmensionk = o (10gn/62> without distorting the distances

. log(1/€)
mappmg/(li R — RE k= O(log(1/P)/€?), such for 4 factor larger thanl + ); for thel, norm, a polyno-
anyz € R® we havePra[[|Az|; = (1 +¢)f|z|lo] > 1 - P. mial lower bound for the dimensidnis known [7] for any

This theorem is often instantiated with=1/n°'") where  ¢onstant. However, this does not shed much light on the

n is the size of th‘;" input data set ir'. In that case we  jsque of optimality of bounds fozoncrete applicationsf
havek = O(logn/¢®), which can be much smaller than the 3¢ lemma. On the latter front, we are aware of only two

original dimension. results:
The above theorem (or its variaht$ias led to numerous
algorithmic results for several algorithmic domains: e The aforementioned second frequency moment prob-

lem does requiré)(1/€%) space [22, 35]. Thus, the

1This is arguably a broad statement, since the dimensionality reduction
techniques used in those papers are quite diverse. Nevertheless, all of them 2Even if the bound is polynomial iit/¢, the degree of the polynomial
can be replaced by Johnson-Lindenstrauss lemma (e.g., see [18] and thés of key practical importance. E.g., see [13] for the discussion of this issue
Appendix), which in our opinion justifies this point of view. in the context of streaming algorithms.



dimensionality reduction approach yields the optimal bound, we consider thasymmetric communication com-
bound for this problem. plexityof the problem for dimensioi = (1 1gn)°™). That
is, we consider the setting where two parties, Alice and Bob,
¢ It has been observed in [19] that the techniques of [32] are Communicating in order to answer a queryWe as-
yield a (1 + ¢)-approximation algorithm for the- sume that Alice holdg, while Bob holdsP. We show that
center problenin ¢ under the Euclidean metric, with  to solve the problem, either Alice senfi$% lgn) bits, or
the running time exponential ih/e2. However, itwas  Bob send€)(n'~%) bits, for any constani > 0. By the
later showed that the same problem can be solved instandard relation to cell-probe complexity [29], this implies
time dnk©*/<) [8]. Thus, here the dimensionality re- that the lower bound on space. Therefore, the aforemen-
duction gives a suboptimal bound. tioned algorithms are space-optimal. Our result is obtained
) . . by showing a close relationship between the complexity of
In this paper we consider two problems which belong to the (1 + ¢)-NN problem and the complexity skt disjoint-
the two algorithmic domains (data structures and approxi- ness Lower bounds for the latter problem appeared in [29]
mation algorithms) where the optimality of the dimension- ¢, 16 case of randomized protocols with one-sided error.
ality reduction method is not yet well-understood. Specif- |y give an analogous lower bound for the two-sided error
ically, we focus on the Approximate Near Neighpor (NN) case, solving an open problem posed in that paper.
problem, and the Approximate Closest Subsring (CS.S) There has been a considerable number of results on lower
p.robl'em. For b°”? probllems., we ShO\.N lower bound§ N" hounds for the near and nearest neighbor problems (e.g.
dicating that the dimensionality reduction approach yields see [6, 10, 5, 11, 34] or [20] for a survey). Most ap-
algor_ithms whose time/ space bounds have essentially Opti'ply to ,mor(,a re,:stri(,:tive (i.e, harder) versions of the prob-
mal (i.e., pearly quadrath) dependence1¢. . lem, where either randomization or approximation are dis-
Approximate Near Neighbor. We consider a decision 5 oyed.  For randomized approximation algorithms for
version® of the approximate nearest neighbor problem over the nearesteighbor problem, a tight query time bound of

. ) 4 i
the Hammmg space. Given a setc {0,1} 'of n.pomts O(lglgd/lglglg d) is known [11], for any constant and
and a distance\, build a data structure which given € polynomial space.

d ; i o
10,1} does the following, with probability at least, say, In contrast to that work, our result holds for the approxi-

2/3: matenearneighbor problem, and establisheguantitative
dependence between the approximation factor and the expo-

If there isp € P such that|q — p|| < A, answer YES . )
* P a—rl= nent in the space bound (for the constant query time case).

e If there is nop € P such thatlg — p|| < (1 + €)A, Given that the exponent must be quadratit/is, our results
answer NO indicate a fundamental difficulty in designing practical data
structures which are very accurated very fast.
Here we usé| - || for the Hamming norm. It is standard to Our space lower bound also holds for a closely related

assume cells hav®(d) bits, i.e. a point can be stored in (1 + ¢)-far neighbor problem (defined formally in sec-

one cell. The lower bound holds for the Euclidean space astion 2.3).

well. Approximate Closest Substring.The Closest Substring
This problem is closely related to the approximasar- problem is a fundamental pattern analysis problem in com-

est neighbor problem. In fact, the aforementioned pa- putational biology. Assume we are given a sehditrings

per [26] provides an algorithm for th@ + €)-NN problem, s1...s, of lengthL over some alphabét (in this paper we

usingn®(/<*) space. Moreover, the algorithm has constant focus on the casg = {0,1}). Let D(-,-) be the Hamming

query time (measured by the number of probes to the datametric. The goal is to find € X which is “close” to some

structure ). substring of each input string. More formally, the goal is
In this paper, we complement that result by showing that to minimize

any data structure fafl + ¢)-NN which achieves constant . )

query time must use®(/<*) spacd. To prove the lower C(s) = max s ] D(s,s)

3The definition of the approximate near neighbor problem employed . . . .
here is somewhat weaker than the usual one. Specifically, it does not The closest substrlng prOblem is a combinatorial formal-

require the algorithm to provide a “near” point in the YES case. How- ization of the task of finding motifs in DNA sequences,
ever, this definition is more suitable for the reductions used in this paper. which is of major interest in molecular biology (see [33, 25]
Clearly, the lower bound for this version holds for stronger versions as for hackground and references). The problem is NP-hard,
well. but its (1 + ¢)-approximate version can be solved in polyno-

4In this extended abstract we present a proof of a slightly weaker lower . . . . . .
bound ofn$((1/<*)/ 108(1/)) _ The proof of the optimal bound is deferred mial time. Specifically [27] provided an algorithm for this

to the full version of this paper. problem with running time (roughlyjnZ)°(/<")_ In the



appendix we show that, by combining known techniques, for our reduction, we need that factor to be arbitrarily close
one can reduce the exponentl? - log(1/e). to 1. We resolve this issue by establishing a tighter Johnson-
In this paper we show a result indicating that @hy- ¢)- type bound for random error-correcting codes.
approximate algorithm for the closest substring problem  Other implications. The techniques introduced in this
must have running time that is exponeritim 1/¢2~7, for paper have applications beyond the ones mentioned so far.
any~ > 0. The result is based on a strong assumption Specifically, consider the followinglinimum Enclosing
about hardness of the 3-SAT problem. That is, we assumeBall (MEB) problem (with respect to thg, norm): given
that 3-SAT for formulas withn variables andD(n) con- Q C R?, minimize R = R,(Q) so that there exists € R¢
straints cannot be solved in tin?® (") for any fixed con-  such that|z — ¢||, < Rforall ¢ € Q. A weake-coreset
stantb < 1. Our hardness result is then obtained by show- [9] for an MEB instance is a subsé&t C @ such that
ing the following: if, forany’ ¢ = €¢(n) > 0thereisa  Rp(S) > (1 —€)R,(Q). Weak coresets have numerous ap-
(1 + €)-approximate algorithm for CSS with running time plications for clustering of high-dimensional data (see [1]

polynomial ind, n and2/<* for a fixed constant < 1, for a survey); often, the coreset size appears in the exponent
then there exists an algorithm for 3-SAT with running time ©f the running time bound.
20(n") for a fixed constank < 1. It it known [8] that, in thely norm, any set contains a

weake-coreset of sizd /e. In this paper we show that, in

We note that earlier work [28, 12] investigated the issue ,
thel; norm, a weak-coreset must have sify(1/€?).

of optimality of approximation schemes for substring prob-
lems developed in [27] and their followups. However, they
approached this problem from the fixed-parameter tractabil-2 | ower bounds for the approximate near

ity point of view. That is, they asked if one can obtain a neighbor

running time of the forny (e)n®() for some functionf(-).

In comparison, the premise of our paper is that, in the expo-

nent of running time bound,/e can create as much trouble ~ For proving the lower bound, we analyze the asymmet-
aslog n; therefore, we focus on the dependencd pn ric communication complexity of1 + ¢)-NN via a re-

Our lower bound for the closest substring problem is duction from the set disjointness problem. In the set dis-
shown using the following approach. Firstly, we use the jointness problem, Alice receives a s.‘é_tfrom a universe
short PCP construction of Dinur [15] to transform a given [U] = {1...U}, [S| = m, and Bob receives a sétC [U]
3SAT formulag into another formula’ of comparable size, ~ Of Sizén. They need to decide whethgrn S = &. We
such thaty' is either satisfiable, or no assignment can sat- Prove the following asymmetric communication complex-
isfy more tharl — o < 1 fraction of¢'s clauses, for a fixed ity lower bound for the latter problem.
constanty > 0.

In the next step, we transform the formufa into an
instance of the hitting set (HS) problem, with similar gap
properties. Finally, we reduce the hitting set problem to the
CSS problem. Although somewhat involved, the reduction
is intuitively natural, since the goal of the CSS problem is
to find a “center” string that “hits” (i.e., is “close” to a sub-

;tring Of). egch input s_tring. The main part.of the redupt?on The proof of this theorem is deferred to the full version.
is establishing a relation between cardinality (of the hitting In Section 2.2, we present the proof of a slightly weaker ver-
2

set) and proximity (i.e., the distance between the “center” " , L
string and the “close” substrings of the input strings). This Sion of this theorem, which implies a dependence Hf

task is accomplished by a variant of a theorem known in instead ofl /.
the list-decoding literature as the Johnson bound (see [16]). From the reduction in Section 2.1 and the above theorem
That theorem establishes an upper bound on the number ofor m = 9% we derive the following theorem on asymmet-
codewords (of a “good” error-correcting code) in a ball of ric communication complexity of thel + ¢)-NN problem:
certain radius. However, that upper bound is a constant fac-
tor away from the lower bound that we can establish for the Theorem 2. Consider the communication complexity ver-
(randomly constructed) error-correcting code that we use;sion of(1 + €)-NN in {0,1}%, d = O(“’f5 ), where Alice
receives the query € {0,1}? and Bob receives the set
E;Actuagy(/,l) we can show that the exponent is at least p {071}01_ Then, for any = Q(n™7), v < 1/2, in any
%g,n/ié‘r’]ire it%/;)o‘w'assum'”g even stronger hardness of 3-SAT. 4ndomized protocol deciding thé -+ ¢)-NN problem, ei-
60ur reduction uses values ofhat are subconstantin(that is,e — 0 ther Alice Send@(lofzn) bits or Bob Send@(nlié) bits,
asn — o). foranyéd > 0.

Theorem 1. Assume Alice receives a s&t|.S| = m and
Bob receives a séf, |T'| = n, both sets coming from a uni-
verse of siz&mn, for m < n7, wherey < 1 is a constant.

In any randomized, two-sided error communication proto-
col deciding disjointness aof and T, either Alice sends
Q(mlgn) bits or Bob send€(n!~?) bits, for anys > 0.




From the above theorem, we can obtain thel/<*) e if SNT = @, then for anyp € P, we have thaf|j —
lower bound on space for any data structure implementing 5|2 = ||G]|3 + |pl13 — 2G - p = 2;
(1 4+ ¢)-NN problem with a constant time query. Specifi-

cally, we apply Lemma 1 from [29], which states: o it SNP # o thenforu® € SN P andforp =

eu- € P, we havel|q—p(3 = (113 + [Ipl3 —24-p =
Lemmal ([29], Lemma 1).If there is a solution to the data 2 — 2(3eeyx) - ey = 2(1 — 3e).
structure problem with space query timet, and cell size y d Al
b, then there exists a protocol where Alice seftldog s] To construct? ¢ {0.’ 1} andq_ < {O’.l} ' AI|cedand
: . Bob perform a randomized mapping &f into {0, 1}¢ for
bits and Bob send&b bits. 2 s . .
d = O(log”n/e”), such that the distances are only in-

Fort = O(1), and cell sizeb < o(nl—é), for some significantly distorted, with high probability. Alice and
5 > 0, Bob sends an insufficient number of bits. Thus, Bob use a source of public random coins to construct the
Alice needs to sendt[log s] > Q(mlogn) bits. Solving same randomized mapping. First, they construct a random-

for s, we obtain that space is = n(1/<"). Note that the  ized embedding, mappingl¥ into llo(l"g"/ez) with dis-
cell sizeb is usually much smaller tham' 9, typically b = tortion less than(l + ¢/16) (cf. [19]). Then, they con-
dlog®M n. struct the standard embeddirig mappingl? !°% /<) into
) ) ) {0,1}000g” n/*)  The embedding first scales up all co-
2.1. Reduction from asymmetric set dis- ordinates byD = O('%&"), then rounds the coordinates,
jointness to (1 + ¢)-near neighbor and finally transforms each coordinate into its unary repre-

) o sentation. We set the constants such that the resulting ap-
We prove that we can reduce asymmetric set d'sjo'mnessproximation of f, is an additive tern@(lmﬁ) < Dev2
€2 16 °

problem to the approximate near neighbor. A randomized Next, Alice and Bob construat = f2(f1(q)) € {0, 1}¢

[a, b]-protocol for a communication problem is a protocol in andP = {fo(f1(p J d .
) ) ; ) = {f2(f1()) | p € P} C {0,1}*. Notice that for
which Alice sends: bits and Bob sendsbits, and the error anyp = fo(f1(5)) € P, if [§ — pll > V2, then g —

probability of the protocol is bounded away fran2. ol > DV — ¢/16) — fo ~ DVa(l - <), and if
Lemma 2. Suppose there exists a randomizéd b]- lG—pll2 < V2(1—%), then|g—p|ln < DV2(1—%)(1+
protocol for the(1 + €)-NN problem withd = O (105#) €/16) + Deg/i <DV2(1—e— ).

. 1 - .
where Alice receives the queryc {0, 1}¢ and Bob receives Finally, Alice and Bob can run ”‘(ff ¢)-NN communi-
the datasef C {0,1}% of sizen. Then there exists a ran-  Cation protocol withh = D+/2(1—e—3%) to decide whether
domizeda, b]-protocol for asymmetric set disjointnessinan © (7 = @. Note that the error probability of the resulting
arbitrary universe[U/], where Alice receives a st C [U] set disjointness protocol is bounded away froyi2 since

; _ 1 ; i (1 4+ €)-NN communication protocol has error probability
of sizem = gz, and Bob receives a sét U of sizen. bounded away from /2, and the embedding; o f; fails
Proof. We show how to map an instance of asymmet- with probability at most~(1), O
ric set disjointness, given by and S, into an instance
of (1 + ¢€)-NN, given by respectively the datasét C 2.2. Lower bound for asymmetric set dis-
{0,1}¢ and the query; € {0,1}?. For this purpose, jointness
first, Alice and Bob map their setS and 7' into query
¢ € RV and datase” C RY, i.e., an(1 + ¢)-NN in- In this section, we prove a slightly weaker version of
stance in Euclidead/-dimensional spacdy. Then, Al- Theorem 1:

ice and Bob map their points from tHE metric to Ham-
ming cube{0, 1}00°8” /<) essentially preserving the dis-
tances among all the poinfsind P. This method for reduc-
ing a communication complexity problem into an approxi-
mate problem involving Hamming distance appeared earlier
in [22], albeit in the context of different problems.

Theorem 3. Assume Alice receives a s&t|S| = m and
Bob receives a set,|T| = n, both sets coming from a
universe of siz&mn, for m < n”, wherey < 1/3 is a
constant. In any randomized, two-sided error communica-
tion protocol deciding disjointness 6fandT’, either Alice
send (-2 1gn) bits or Bob send&(n'~? /m?) bits, for

For the setl’ c [U], we defineP £ {e, | u € T}, log m
wheree, is a standard®® basis vector, with 1 in thet" anyo > 0.
coordinate, and 0 everywhere else. For theSsate set the First we define the hard instance. The elements of our
queryg £ 3e- Y, o g e; Note that|G[|3 = m - (3¢)? = 1. sets come from the univeré®m] x [n]. Alice receivess =

We show that ifS N T = @, then||g — p|» = V2 for all {(i,s:) | © € [m]}, for sq,...,s, chosen independently

p € P,and, ifSNT # @, then there exists a poiptc P at random fromn]. Bob receivesI’ = {(t¢;,7) | j € [n],
such that|g — 5> < (1 — 4)v/2. Indeed, we have that for t1,...,t, chosen independently frof2m|. The output



should bel iff the sets are disjoint. Note that the number of
choices is»™ for S and(2m)™ for T', and thatS andT are
chosen independently.

The lower bound follows from the following variant of

no s; is outside the heaviest' —° elements inS;. By a
union bound, the probability ove$ € S that somes; is
not among the heavy elements is at - = % Then,
|S’| > |S|/2. On the other handS’| < (n!=%)™, since

the richness lemma, based on [29, Lemma 6]. The onlyfor each coordinate we have at mast® choices. This

change is that we make the dependence emplicit, be-
cause we will use = o(1).

Lemma 3. Consider a probleny : X xY — {0,1},
such that the density df(z,y) | f(z,y) = 1} in X xY
is Q(1). If f has a randomized two-sided errdd, b]-
protocol, then there is a rectangle g¢f of dimensions at
least| X | /20(¢18(1/€)) » |y|/20((a+b)1(1/€) in which the
density of zeros is at most

To apply the lemma, we first show the disjointness func-
tion is 1 with constant probability.

Lemma 4. AsS andT are chosen randomly as described
abovePr[SNT = @] = Q(1).

Proof. Note thatS N'T" C [n] x [m]. We havePr[(i,j) €
SNT] = ;gmy wheni € [n], j € [m]. Then by linearity of
expectatiorE[|SNT|] = %. Since|SNT| € {0,1,2,...},
we must havePr[|SNT| = 0] > 1. O

Thus, it remains to show that no big enough rectangle
has a small density of zeros. Specifically, we show the fol-
lowing:

Lemma 5. Let 4 > 0 be arbitrary. If we chooses ¢
S,T € T uniformly and independently at random, where
S| > 2n(1=9)™ and T > (2m)" - 2/6”176/(87”2), then the

probability S N'T" # & is at Ieastmw12

We use the richness lemma with= ﬁ If there

exists ara, b] protocol for our problem, we can find a rect-
angle of size(n™/20(alem)) x ((2m)"/20(atb)lem)),

in which the fraction of zeros is at most To avoid contra-
dicting Lemma 5, we must either hag€(@'e™) > pom /o,

or 20((a+b)lgm)  ¢n'~*/(8m%) /3 This means either =
Q({1gn) ora+b = Q(n'=9/(m?1gm)). If m < n?,

lgm
for constanty < },) this implies thata = Q( - lgn) or

b= Q(n'=%/m?), for anys > 0.

Proof. (of Lemma 5) Choosing at random fron® induces

a marginal distribution ofin]. Now consider the heaviest
n'=9 elements in this distribution. If the total probability

mass of these elements is at mbst -, we calli awell-

spread coordinate

Lemma 6. If [S| > 2n1=9™ there exists a well-spread
coordinate.

Proof. Assume for contradiction that no coordinate is well-
spread. Consider the s&t formed by S € S such that

contradicts the lower bound d§|. O

Let i be a well-spread coordinate. We now lower bound
the probability ofS 0T # @ by the probability ofS N T’
containing an element on coordinate Furthermore, we
ignore then!—9 heaviest elements &;. Let the remaining
elements b&V, andp(j) = Pr[s; = j] whenj € W. Note
thatp(j) <1/n'~, andy>; y, p(j) > 55

Defineo (T) = Z W t__lp( /). For some choice df’,
o(T) gives exactly the probablhty of an interesting inter-
section, over the choice &f € S. Thus, we want to lower
boundEr[c(T) | T € T].

Assume for now thaf” is uniformly distributed in the
original space (not in the subspaZ@. Note thato(T) =
> jew Xj, where X; is a variable equal te(j) when

t; = 4 and 0 otherwise. By linearity of expectation,
Er[o(T)] = ¥ ,c 52 > 1/(2m)2. SinceX;'s are in-

dependentt(’s are independent whefi is not restricted),
we can use a Chernoff bound to dedu¢#) is close to this
expectation with very high probability over the choicelof
Indeed Pr(o(T) < § - hyz] < e/ m%),

Now we can restrict ourselves 6 € 7. The prob-
ability o(T) < gz is so small, that it remains small
even in this restricted subspace Specifically, this prob-
ability is at mostPr[o(T) ]/Pr[T e T] <
exp(—n'~?/(8m?))/(2exp(—n §/< %)) = 1. Since
o(T) > 0,(V)T, we conclude thaEr[o(T) | T e 7] >
1 1 1 ]

2 8m2Z — 16m?"

2.3. Approximate far neighbor problem

The above lower bound for thg + €)-NN problem can
also be transferred to the + ¢)-far neighbor problem,
yielding exactly the same space lower bound. Formally,
we define the1l + ¢)-far neighbor as follows. Given a set
P c {0,1}? of n points and a distancg build a data struc-
ture which givery € {0, 1}¢ does the following, with prob-
ability at least, say2/3:

e Ifthere isp € P such that|q — p|| > )\, answer YES

e If there is nop € P such that|q — p|| > A/(1 +¢€),
answer NO

The lower bound results from the following lemma, an
equivalent of lemma 2.

Lemma 7. Suppose there exists a randomizéd b]-
protocol for the(1 + ¢)-far neighbor problem withd =



0] (log ") where Alice receives the quepy= {0, 1} and

Bob receives the datasét C {0, 1}¢ of sizen. Then there
exists a randomizeflk, b]-protocol for asymmetric set dis-
jointness in an arbitrary universﬁ]} where Alice receives
a setS C [U] of sizem and Bob receives a set
T c U of sizen.

962 1

As before, together with theorem 1, this lemma im-
plies that any data structure f¢t + ¢)-far neighbor prob-
lem achieving constant number of cell probes, has spac
n(1/e?),

Proof (of lemma 7).Same as the proof of lemma 2, except
setthe query = =3¢}, g €u O

3. Lower bounds: Approximate closest sub-
string problem

In this section we focus on thpproximate Closest Sub-
string problem.

Our goal is to show a lower bound af/<**, for any
a € (0,1), for a running time of an algorithm solving
(1 + e)-approximate CSS. We do it by using the follow-
ing assumption. Recall that inKitting Set (HS)problem,
we are given setsl; ... A, C [m], and the goal is to find
H c [m] which intersects eacH; and minimizegH|. Our
assumptions are stated as the following two conjectures.

Conjecture 1. For any constant € (0, 1), there exists a
constantC, > 1 such that noC,-approximate algorithm
for the hitting set problem has running tirB€ ("),

In the following, we show that this conjecture is implied
by another (more palatable) one.

Conjecture 2. For anya € (0,1), there is no algorithm
solving 3-SAT witlD(n) constraints over variables, with
running time2° ("),

Theorem 4. Conjecture 2 implies Conjecture 1. That s, if
there exists < 1 such that for every constant, > 1 there
exists aC,-approximation algorithm for HS with running
time2°(™"), then there exists an algorithm for 3SAT ower
variables withO(n) constraints, with running tima© (")
for someb < 1.

The proof will follow from the following two reductions.
The first one follows from the PCP construction by [15].
Specifically, for any 3SAT formula, let SAT(¢) be the
maximum fraction of clauses satisfiable by any assignment.
Dinur [15] proved the following:

Fact 1. There is a polynomial-time algorithm which, given
a 3SAT formulap with m variables andD(m) constraints,
outputs a 3SAT formula’ with m’ = mlog®Y m vari-
ables such that each variable occurs in exactly the same
(and constant) number of constraints, and:

e If ¢ satisfiable thery’ satisfiable.
e If ¢ is not satisfiable, the§ AT (¢') < 1 — a.
wherea > 0 is an absolute constant.

The relation between the hitting set problem and the
3SAT problem is captured in the following lemma.

eLemma 8. There is a polynomial-time algorithm which,

given a 3 SAT formula with n variables, where each vari-
able occurs in exactly the same numi¥t constraints, pro-
duces an instance of HS with = 2n such that:
1. If ¢ is satisfiable, then there is a hitting set of size
2. Ifthere is a hitting set of sizd + v)n, fory > 0, then
SAT(¢) > (1 - 37).

Proof. The reduction is as follows. The universe of HS con-
sists of all literalse;, z;, wherez; is a variable. The family
of sets contains all pairs:;, 7; } (calledliteral sets), and all
constraints ofp interpreted as sets (callednstraintsets).

The first statement of the lemma is immediate. Consider
now a setd of size(1 + «)n which hits all sets. There are
(1 — v)n literal sets which are hit once - this defines the
assignment of the corresponding variable. Forthditeral
sets which are hit twice, define the assignment in an arbi-
trary way. For each such variable we “unsatisfy” at most
B” constraints, thus a total afB”’n constraints are unsat-
isfied. Sincegp contains exactlyB” /3 - n constraints, the
lemma follows. O

The main part of the reduction is encapsulated in the fol-
lowing theorem.

Theorem 5. If, for somea € (0,1), there is an algorithm
for the (14 ¢)-approximate CSS problem, with running time
20(1/€%) . (dn)©M), then for any (constant}, > 1, there

is a Cy-approximation algorithm for the hitting set problem
with the running time0(m* 1og°® m)

Proof. We exploit the following nice combinatorial struc-
ture. Consider a cod€ C {0,1}¢ with codewords
c1...cm,andC’ c {0,1}¢ with codewords?, ...c,,, (al-
ternatively referred to as ; ...c;, ,,) with the following
properties parametrized by constahits’ > 0, v’ > 1, as
well as a parameter> 0:

1. Foranyl C [m], |T| =t, R({c; :i € T}) <.

2. Lett’ = b"t. Consider any sequende of ¢’ pairs
(cil,cgl)...(cit,,c;t,), such that all of the indexes
i1...1p andjy ... jy are pairwise distinct. Then, for
each pair(c;,, cj, ), take g, to be anyd-length sub-
string ofc;, o ¢}, orc} oc; . We want to have a prop-
erty thatR({q1 ...qr }) > v’ forr’ = r(1 +¢), where
e = b’ /+/t for some (tiny)y’ > 0.



For completeness we mention that= d/2(1 — b/\/1), Proof of Lemma 9t suffices to construct the code with the
whereb =~ /2/7. Observe that the Property 2 essentially desired properties. We use the probabilistic method, that is,
states that the code obtained by taking substrings of a prodforeachi =1...m, j = 1...d, we select; independently
uct of C and C’ has good list-decodable properties. Ar- uniformly at random fron{0, 1}¢. We do the same faf".
guably, the definition would be more intuitive if we sim- Observe that the bits isr = {¢; : i € T} (as in
ply insisted that” has good list-decodable properties. In- Property 1), as well as the bits ;... ¢} (as in Prop-
deed, that suffices if our goal is to show hardness for justerty 2) are independent Bernoulli variables. Our strategy
the Group Closest Stringroblem, where the goal is to find is therefore to show that the respective properties hold for
a substring that is close to at least one string from each oft or ' strings randomly chosen frof0, 1}¢, with proba-

n groupsof strings. The latter problem strictly generalizes bility exp(—Q(d/t°(1))). This means that, if we set =

CSS, since we can define thitn group to contain all sub-
strings of theith input string. The more complicated def-

inition is a consequence of proving hardness for the more

restrictive CSS problem.

Lemma 9. For any fixed constant” > 1, and variables
m > 1,t > 1, e > 0, the “nice combinatorial structure”

defined above can be constructed probabilistically with suc-

cess probability at least/3, with d = t°™M) logm, and
positived’ strictly bounded away fror.

We defer the proof till later. For now, we assudieand
C' as above.

The reduction from HS to CSS is as follows. For each

setd; = A ={a; ...qa;} we generate a string

8i = Cay O Cjq .- Ca; OCh
The intuition is that the codewords 6frepresent the input,
while the codeword o>’ are placeholders, to make sure

that for each string;, the substring of; that is “close”

to the solution string does not overlap with more than one

codeword fromC.
We now show that:

o If there is a hitting sef{ of sizet, then there is a solu-
tion to CSS with cost at most

e If there is a solution to CSS with cost = (1 + ¢),
then there is a hitting set of size at mé4t.

The first part is easy. If there is a hitting set
H = {ai...a;} of size t, then (by Property 1)
R({ca, ---ca,}) < r. The corresponding string provides
a solution to CSS with cost at most

t°M log m, then the respective properties will hold for all
required sets of strings with high probability.

Considerc; ... c;, chosen independently frofo, 1}.
First we take care of the high probability bound. Define
R; = R({c1 . ..ct}), where each; is chosen independently
and uniformly at random fronf0, 1}<.

In the followingd > 0 denotes a (tiny) constant.

Lemma 10. The random variabl&® = R; is sharply con-
centrated around its mean. That is, for ahy 0:

Pr[|R — E[R]| > d/2-5/V1] < 2exp (-‘Z?)

Proof. Observe that, for any arguments. . . ¢;, changing
one coordinate of; changes the value at by at mostl.
The bound then follows from Azuma’s inequality, since

Pr{|R—E[R]| > d/2-§/V1] < 2exp <_W>

O

Now we proceed with the upper bound &). Consider
I Bernoulli variablesy; ... u;, and letu = ), u;. Consider
now the quantityf, = Efu|u < [/2]. For concreteness,
we mention that?; = 1/2(1 — (/2/7 + o(1)) /V/1), which
follows from the value of the influence of a variable in a ma-
jority function [30]. We express the lower and upper bound
for E[R] in terms ofE; andEy, respectively.

The second part is as follows. Suppose that we are given-€mma 11.

an z and indexed; ..., such that for eacl; ...7,, we
haveD(z, s;[l;...l; + d — 1]) < r(1 + ¢). Denotep; =
sill; ... l;+d —1]. Note that each; is ad-length substring
of ¢j, o ¢, orcl, o c;,, for somec;, € C,cj, € C'. Also,
note that alk, are distinct.

ConsiderH — {j1-..4n}. By construction itis a hitting
set. The question is, how madistinctelements it contains.
Assume it has at least elementsa; ...apr. But then we
know, by Property 2 of the “nice combinatorial structure”,
thatR({p1...pn}) > r'. Thus,|H| < t'. O

Pr[R E d d] <2d 0%

r[R; > ( t/t+2—\/f)~ | <2dexp <—8t2>

Proof. We construct a vector such that, with high proba-
bility over the choice of the codd(z, ¢;) < (E/t+5%)-

d for eachi = 1...d. Our approach is to use the major-
ity vote, that is, to define;; = Majority((c1)i...(ct)i),

i =1...d. By symmetry argument, for any=1...d, we
havePr((c;); # x;] = E/t. Thus,E[D(c;, )] = dE;/t.
Application of Lemma 10 finishes the proof. O



Now, we need to show a lower bound fBy,. Before we

We will now demonstrate, for each inpgy;, a feasible

do that, we mention that a weaker lower bound can be ob-solution. The expected value of the objective function will
tained by using Johnson bound for error correcting codes.be equal talE, /t'.

Specifically, assume thdtis large enough so that the mini-
mum distance of the cod@ = {q1...qv } IS~ d/2. Then
we can use Johnson bound, as in [16]. It says that:

R(Q) > d/2(1 - 1/Vt')

Unfortunately, this lower bound is not very tight — the afore-
mentioned upper bound would guarantee abd{#(1 —

\/2/7//t"). This discrepancy occurs because the Johnson

bound works forany code with sufficiently large minimum

distance. To circumvent this difficulty, we are going to show

a better Johnson-type bound foremdomcode

Lemma 12. E[Ry] > dEy /t'. Therefore

0 5%d
ﬁ) -d] < 2dexp <_8t’2>
Proof. Consider a linear relaxation of the problem of
finding R(Q). Specifically, the linear program finds the
smallest (with respect to the metric) ball enclosing?,
centered aainypointx € [0,1]%.

PI‘[Rt/ < (Et//t/ —

minimize r
subject to:
zj+ry;  >(q); foralli=1...¢ j=1...d
—zj iy 2 —=(a);
r—ri >0 foralli=1...¢
J
TijsTisT >0

We sety; = 1/t/, foreachi = 1...¢'. For each;, j, we
set eithelng or y,. to 0. The other possible value for these
variables isl /t'.

The specific assignment is as follows. For egch-
1...d, |eth = {Z : (qi)j = 1} Letmj = min(|]V[j|,t’ —
|Mj]). Form; indexesi € Mj, we sety;; = 1/t. Form;
indexesi ¢ M;, we sety,; = 1/t. The remainder variables
are set ta.

It is easy to see that the resulting solution is feasible.
Moreover, the value of the objective function is at least
Z?zl m;/t'. It follows that its expected value is equal to
dEy [t O

We now finalize the proof of Lemma 9. By the last three
lemmas, we know that, for large enough= t°() log m,
C and C’ satisfy the following two conditions with high
probability:

1. C satisfies Property 1 for

B 0 _V2/m—o(1) =0
r=d(E,/t+ 2\/£) <d/2 (1 7 )
2. C and(’ satisfy Property 2 for
S  V2/rto()+4
r' =d(Ey/t 2\/5) >d/2 (1 NG )

If b = ¢/t > 1,thenl + e = r'/r > 1+ b'//t for
someb’ > 0, by taking sufficiently small and large enough
t. Lemma 9 follows. O

Remark 1. From the above discussion it follows that for
any subsetS C C, |S| = t, we haveR,(S) < R(S) <
d/2(1 — b/y/t). At the same timeR,(C) > d/2(1 —

To show a lower bound for this program, we consider 1/y/m) > d/2(1 — %/+/t) for large enoughm. Thus, we

the dual LP, with dual variableg;;,;;, y: corresponding
to the respective inequalities in the primal LP.

maximize S Wi —vi) (i)
0.
subject to:
yh+y; —w <0 foralli=1...¢,j=1...d

<0 forallj=1...d

Z(yfg — ;)
Zyi

i
<1
y:jayigayi

>0

have thatR; (S) < R1(C)(1 —¢) as long ast < C/¢? for
some constant’ > 0. Therefore, any core-set far under
thel; norm must have size(1/¢?).
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A. Upper bounds for clustering problems

(1 4+ e)-approximate closest string in
nOWE(1/9/) time

In this section we describe an improved algorithm for the
closest string problem.

In [27], an algorithm with running time af°(/< was
given. As we show, it is not difficult to reduce the exponent
to O(1/€? - log(1/e)). Firstly, we need to briefly review the
algorithm of [27].

Let R = R(S). If R > Clogn/e? for some constant’,
then the problem can be solved as follows:

e Write an integer program optimizing(.S), with vari-
ablesz; € {0,1},i=1...d

e Relax it to a linear program, with variable$ € [0, 1];
this can be solved in polynomial time.



e Use randomized rounding to convetts into z;'s. 5. Using the above information, solve the problentih

This works as long as the expectationg(s;, «) are E.g., use the information to partitioR into clusters,
Q(logn/e?), which is the case by our assumption. and find optimum center iiR¢ for each cluster.
So, if Ris large, we are done. Whatif = O(logn/e?) This approach nicely applies to the closest substring

? A simple approach would be to take ang S, and enu- problem. LetGroupy(s) denote the set of all contiguous
merate allz such thatD(s, z) < R. This clearly identifies  d-length substrings of. We map alld-length substrings
an optimal solution. The drawback is that this results in Group,(s;) of the input strings int&t*.

quasi-polynomial time ofl© (los n/e), In the next step, we enumerate “all” candidates for the
To avoid this problem, the paper [27] proposed the fol- optimal center strings. This is implemented as follows.
lowing “dimensionality reduction” idea. For each detc First, we “guess” the valu€ = C/(s) of the objective

S, we define the sef(P) = {i : p; # ¢;, forsomep, q € function at the optimum string. Then, we guess the
P}; note thatl(P) is efficiently computable givet?. Let index j which minimizesD(s, s1[j...j + d — 1]). Let
I'(P) be the complement df( P). The idea isto show that s = si[j...j +d — 1]. SinceD(s,s’) < C, it follows
there exists a small sét such that for an optimum solu- that||s —s'||3 < C, and thereforg As — As’||3 < C(1+e).
tion z, and!’ = I'(P), we haveD(z|;,s) < eR for We now find a “good enough” approximation #x as
all s € P. This is good news, since now we can create follows. First, we impose amy/C-net N on thel, norm
a solutionz’, such thatr{;, = s for somes € 5, and ball B(As’,\/C(1+¢€)). Itis possible to construct such
x/, = a1 By the abovey’ is a(1 + ¢)-approximate so- @ net so thatN| < (1/€)°*) in time polynomial in|N|.

lution to the problem. To find it, we only need to fing). Then, we “guessp € N that is closest tols. Note that we
However,|I| < [P|- 2R = O(|P|logn/¢®). Thus, aslong  have|As — p|» < eV/C. _
as|P|is small, we can find:{, by exhaustive enumeration. Now we choose, for each= 1...n, the indexj; such

How small car{P| be ? The original paper [27] showed that the substring; — f[ji ... ji+d—1] minimizes|| As} —
a bound polynomial in /e. However, Lemma 2.2 of [28]  Pll2- Observe thallAs] — As|l» < (1 + ¢)V/C. Therefore
(more specifically, the statement in the second line of the We have
proof of that Lemma) gives an upper bound of jlusf(1/¢). , ,
Therefore, we obtain an algorithm with the running time of 145 = pllz < | As; = As|l2 + |45 = pll> < (1 + 29VC

O(log(1/€)/€? . . .
n@Uest/a/, At the same time, consider any other substrisigof

. $1...8, such thatD(s,s’) > (1 + 12¢)C. As before we
A.2. Other clustering problems get

The papers [14, 32] discovered a method for clustering || As' —pl|; > ||As'— As|a—eV/C > (1—¢)||s' —s|l2—eVC
in high dimensional spaces using dimensionality reduction.
As it turns out, this method can be generalized so that it > /C(1+12¢)(1 —€) —eVC
applies to a wide variety of problems, including the closest

substring problem. In fact, the algorithm of [27] can be which for e small enough is at least

viewed as an instantation of that method. \FC(l F5e)(1—€) — O > \/5(1 1 2¢)
The general method is as follows. Assume that each
cluster has a center; we denote the centers by. c;. Therefore, all strings chosen by the algorithms must sat-

isfy D(s},s) < (14 12¢)C.

It follows that solving a(1 + ¢)-approximate closest
string problem fow] . .. s/, yields a(1+O(e))-approximate
solution to the closest substring problem fgr... s,,. The
total time needed to enumerate all “guesses” is at most
(1/6)O(logn/62) _ nO(log(l/e)/e2).

1. Construct 1 + €)-approximate mappingl from the
original d-dimensional spac®?, to the host spack*.
It suffices that this mapping is correct for the input
points and: . .. ¢k, which can be guaranteed by taking
k= O(logn-1/€?).

2. Map (usingA) all input pointsP into R*.

3. Enumerate “all” possible imagetc; . .. Acy (after a
proper discretization)

4. Infer the “combinatorial structure” of an optimum
clustering fromA(P) and Ac; ... Acg. In the context
of clustering, for eacllp, p € P, find the nearest point
ACZ'.



