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Abstract

We investigate the optimality of(1+ε)-approximation al-
gorithms obtained via the dimensionality reduction method.
We show that:

• Any data structure for the(1 + ε)-approximatenearest
neighborproblem in Hamming space, which uses con-
stant number of probes to answer each query, must use
nΩ(1/ε2) space.

• Any algorithm for the(1+ε)-approximateclosest sub-
stringproblem must run in time exponential in1/ε2−γ

for any γ > 0 (unless 3SAT can be solved in sub-
exponential time)

Both lower bounds are (essentially) tight.

1. Introduction

Dimensionality reduction is a powerful method for de-
signing efficient approximation algorithms for problems of
a geometric nature. Its main idea is simple: to solve a
problem defined over a high-dimensional geometric space
<d, map that space onto<k wherek is “low”, and solve
the problem in the latter space. A prototypical tool used
for such purpose is the theorem by Johnson and Linden-
strauss [24], which states that there exists a randomized
mappingA : <d → <k, k = O(log(1/P )/ε2), such for
anyx ∈ <d we havePrA[‖Ax‖2 = (1± ε)‖x‖2] ≥ 1− P .
This theorem is often instantiated withP = 1/nO(1) where
n is the size of the input data set in<d. In that case we
havek = O(log n/ε2), which can be much smaller than the
original dimension.

The above theorem (or its variants1) has led to numerous
algorithmic results for several algorithmic domains:

1This is arguably a broad statement, since the dimensionality reduction
techniques used in those papers are quite diverse. Nevertheless, all of them
can be replaced by Johnson-Lindenstrauss lemma (e.g., see [18] and the
Appendix), which in our opinion justifies this point of view.

• DATA STREAM COMPUTATION: A low-space algo-
rithm for maintaining the second frequency moment of
the data stream was shown in [4]. The algorithm pro-
vides a(1+ε)-approximation to the estimated quantity
while using onlyO(1/ε2) memory words. The prob-
lem has numerous applications, see [31].

• DATA STRUCTURES: Several data structures for the
(1 + ε)-approximate nearest neighbor problem in<d

were given in [21, 26, 17, 11, 2]. In particular, the data
structure of [26] usesnO(1/ε2) space and guarantees
(d + log n + 1/ε)O(1) query time.

• APPROXIMATION ALGORITHMS: Severaln1/εO(1)
-

time (1 + ε)-approximate algorithms for various clus-
tering and pattern analysis problems were given,
e.g., in [32, 27, 23].

These algorithmic developments raise the natural ques-
tion: how close to optimal are the space/time bounds de-
rived using the dimensionality reduction method ? In addi-
tion to the theoretical importance of this question, resolving
it is of significant practical interest. The difference between
(say)1/ε0.5 and1/ε2 could easily mean the difference be-
tween a practical algorithm and an impractical one. This is
especially the case2 if the expression appears in the expo-
nent of the time/space bound.

What is known about this issue ? It is known [3] that
somen-point data sets cannot be mapped into a space of di-

mensionk = o
(

log n/ε2

log(1/ε)

)
without distorting the distances

by a factor larger than(1 + ε); for the l1 norm, a polyno-
mial lower bound for the dimensionk is known [7] for any
constantε. However, this does not shed much light on the
issue of optimality of bounds forconcrete applicationsof
that lemma. On the latter front, we are aware of only two
results:

• The aforementioned second frequency moment prob-
lem does requireΩ(1/ε2) space [22, 35]. Thus, the

2Even if the bound is polynomial in1/ε, the degree of the polynomial
is of key practical importance. E.g., see [13] for the discussion of this issue
in the context of streaming algorithms.



dimensionality reduction approach yields the optimal
bound for this problem.

• It has been observed in [19] that the techniques of [32]
yield a (1 + ε)-approximation algorithm for thek-
center problemin <d under the Euclidean metric, with
the running time exponential ink/ε2. However, it was
later showed that the same problem can be solved in
time dnkO(k/ε) [8]. Thus, here the dimensionality re-
duction gives a suboptimal bound.

In this paper we consider two problems which belong to
the two algorithmic domains (data structures and approxi-
mation algorithms) where the optimality of the dimension-
ality reduction method is not yet well-understood. Specif-
ically, we focus on the Approximate Near Neighbor (NN)
problem, and the Approximate Closest Substring (CSS)
problem. For both problems, we show lower bounds in-
dicating that the dimensionality reduction approach yields
algorithms whose time/space bounds have essentially opti-
mal (i.e., nearly quadratic) dependence on1/ε.

Approximate Near Neighbor. We consider a decision
version3 of the approximate nearest neighbor problem over
the Hamming space. Given a setP ⊂ {0, 1}d of n points
and a distanceλ, build a data structure which givenq ∈
{0, 1}d does the following, with probability at least, say,
2/3:

• If there isp ∈ P such that‖q − p‖ ≤ λ, answer YES

• If there is nop ∈ P such that‖q − p‖ ≤ (1 + ε)λ,
answer NO

Here we use‖ · ‖ for the Hamming norm. It is standard to
assume cells haveΘ(d) bits, i.e. a point can be stored in
one cell. The lower bound holds for the Euclidean space as
well.

This problem is closely related to the approximatenear-
est neighbor problem. In fact, the aforementioned pa-
per [26] provides an algorithm for the(1 + ε)-NN problem,
usingnO(1/ε2) space. Moreover, the algorithm has constant
query time (measured by the number of probes to the data
structure ).

In this paper, we complement that result by showing that
any data structure for(1 + ε)-NN which achieves constant
query time must usenΩ(1/ε2) space4. To prove the lower

3The definition of the approximate near neighbor problem employed
here is somewhat weaker than the usual one. Specifically, it does not
require the algorithm to provide a “near” point in the YES case. How-
ever, this definition is more suitable for the reductions used in this paper.
Clearly, the lower bound for this version holds for stronger versions as
well.

4In this extended abstract we present a proof of a slightly weaker lower

bound ofnΩ((1/ε2)/ log(1/ε)). The proof of the optimal bound is deferred
to the full version of this paper.

bound, we consider theasymmetric communication com-
plexityof the problem for dimensiond = (1

ε lg n)O(1). That
is, we consider the setting where two parties, Alice and Bob,
are communicating in order to answer a queryq. We as-
sume that Alice holdsq, while Bob holdsP . We show that
to solve the problem, either Alice sendsΩ( 1

ε2 lg n) bits, or
Bob sendsΩ(n1−δ) bits, for any constantδ > 0. By the
standard relation to cell-probe complexity [29], this implies
that the lower bound on space. Therefore, the aforemen-
tioned algorithms are space-optimal. Our result is obtained
by showing a close relationship between the complexity of
the(1 + ε)-NN problem and the complexity ofset disjoint-
ness. Lower bounds for the latter problem appeared in [29]
for the case of randomized protocols with one-sided error.
We give an analogous lower bound for the two-sided error
case, solving an open problem posed in that paper.

There has been a considerable number of results on lower
bounds for the near and nearest neighbor problems (e.g.
see [6, 10, 5, 11, 34] or [20] for a survey). Most ap-
ply to more restrictive (i.e, harder) versions of the prob-
lem, where either randomization or approximation are dis-
allowed. For randomized approximation algorithms for
the nearestneighbor problem, a tight query time bound of
Θ(lg lg d/ lg lg lg d) is known [11], for any constantε and
polynomial space.

In contrast to that work, our result holds for the approxi-
matenearneighbor problem, and establishes aquantitative
dependence between the approximation factor and the expo-
nent in the space bound (for the constant query time case).
Given that the exponent must be quadratic in1/ε, our results
indicate a fundamental difficulty in designing practical data
structures which are very accurateandvery fast.

Our space lower bound also holds for a closely related
(1 + ε)-far neighbor problem (defined formally in sec-
tion 2.3).

Approximate Closest Substring.The Closest Substring
problem is a fundamental pattern analysis problem in com-
putational biology. Assume we are given a set ofn strings
s1 . . . sn of lengthL over some alphabetΣ (in this paper we
focus on the caseΣ = {0, 1}). Let D(·, ·) be the Hamming
metric. The goal is to finds ∈ Σd which is “close” to some
substring of each input stringsi. More formally, the goal is
to minimize

C(s) = max
i=1...n

min
s′=si[j...j+d−1]

D(s, s′)

The closest substring problem is a combinatorial formal-
ization of the task of finding motifs in DNA sequences,
which is of major interest in molecular biology (see [33, 25]
for background and references). The problem is NP-hard,
but its(1+ε)-approximate version can be solved in polyno-
mial time. Specifically [27] provided an algorithm for this
problem with running time (roughly)(nL)O(1/ε4). In the
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appendix we show that, by combining known techniques,
one can reduce the exponent to1/ε2 · log(1/ε).

In this paper we show a result indicating that any(1+ε)-
approximate algorithm for the closest substring problem
must have running time that is exponential5 in 1/ε2−γ , for
any γ > 0. The result is based on a strong assumption
about hardness of the 3-SAT problem. That is, we assume
that 3-SAT for formulas withn variables andO(n) con-
straints cannot be solved in time2O(nb) for any fixed con-
stantb < 1. Our hardness result is then obtained by show-
ing the following: if, for any6 ε = ε(n) > 0 there is a
(1 + ε)-approximate algorithm for CSS with running time
polynomial ind, n and21/ε2a

for a fixed constanta < 1,
then there exists an algorithm for 3-SAT with running time
2O(nb) for a fixed constantb < 1.

We note that earlier work [28, 12] investigated the issue
of optimality of approximation schemes for substring prob-
lems developed in [27] and their followups. However, they
approached this problem from the fixed-parameter tractabil-
ity point of view. That is, they asked if one can obtain a
running time of the formf(ε)nO(1) for some functionf(·).
In comparison, the premise of our paper is that, in the expo-
nent of running time bound,1/ε can create as much trouble
aslog n; therefore, we focus on the dependence on1/ε.

Our lower bound for the closest substring problem is
shown using the following approach. Firstly, we use the
short PCP construction of Dinur [15] to transform a given
3SAT formulaφ into another formulaφ′ of comparable size,
such thatφ′ is either satisfiable, or no assignment can sat-
isfy more than1−α < 1 fraction ofφ′s clauses, for a fixed
constantα > 0.

In the next step, we transform the formulaφ′ into an
instance of the hitting set (HS) problem, with similar gap
properties. Finally, we reduce the hitting set problem to the
CSS problem. Although somewhat involved, the reduction
is intuitively natural, since the goal of the CSS problem is
to find a “center” string that “hits” (i.e., is “close” to a sub-
string of) each input string. The main part of the reduction
is establishing a relation between cardinality (of the hitting
set) and proximity (i.e., the distance between the “center”
string and the “close” substrings of the input strings). This
task is accomplished by a variant of a theorem known in
the list-decoding literature as the Johnson bound (see [16]).
That theorem establishes an upper bound on the number of
codewords (of a “good” error-correcting code) in a ball of
certain radius. However, that upper bound is a constant fac-
tor away from the lower bound that we can establish for the
(randomly constructed) error-correcting code that we use;

5Actually, we can show that the exponent is at least
1/ε2/ logO(1)(1/ε), assuming even stronger hardness of 3-SAT.
We’ll ignore it for now.

6Our reduction uses values ofε that are subconstant inn (that is,ε→ 0
asn→∞).

for our reduction, we need that factor to be arbitrarily close
to 1. We resolve this issue by establishing a tighter Johnson-
type bound for random error-correcting codes.

Other implications. The techniques introduced in this
paper have applications beyond the ones mentioned so far.
Specifically, consider the followingMinimum Enclosing
Ball (MEB) problem (with respect to thelp norm): given
Q ⊂ Rd, minimizeR = Rp(Q) so that there existsx ∈ <d

such that‖x − q‖p ≤ R for all q ∈ Q. A weakε-coreset
[9] for an MEB instance is a subsetS ⊂ Q such that
Rp(S) ≥ (1− ε)Rp(Q). Weak coresets have numerous ap-
plications for clustering of high-dimensional data (see [1]
for a survey); often, the coreset size appears in the exponent
of the running time bound.

It it known [8] that, in thel2 norm, any set contains a
weakε-coreset of size1/ε. In this paper we show that, in
thel1 norm, a weakε-coreset must have sizeΩ(1/ε2).

2. Lower bounds for the approximate near
neighbor

For proving the lower bound, we analyze the asymmet-
ric communication complexity of(1 + ε)-NN via a re-
duction from the set disjointness problem. In the set dis-
jointness problem, Alice receives a setS from a universe
[U ] = {1 . . . U}, |S| = m, and Bob receives a setT ⊂ [U ]
of sizen. They need to decide whetherT ∩ S = ∅. We
prove the following asymmetric communication complex-
ity lower bound for the latter problem.

Theorem 1. Assume Alice receives a setS, |S| = m and
Bob receives a setT, |T | = n, both sets coming from a uni-
verse of size2mn, for m < nγ , whereγ < 1 is a constant.
In any randomized, two-sided error communication proto-
col deciding disjointness ofS and T , either Alice sends
Ω(m lg n) bits or Bob sendsΩ(n1−δ) bits, for anyδ > 0.

The proof of this theorem is deferred to the full version.
In Section 2.2, we present the proof of a slightly weaker ver-

sion of this theorem, which implies a dependence of1/ε2

log(1/ε)

instead of1/ε2.
From the reduction in Section 2.1 and the above theorem

for m = 1
9ε2 , we derive the following theorem on asymmet-

ric communication complexity of the(1 + ε)-NN problem:

Theorem 2. Consider the communication complexity ver-

sion of(1 + ε)-NN in {0, 1}d, d = O( log2 n
ε5 ), where Alice

receives the queryq ∈ {0, 1}d and Bob receives the set
P ⊂ {0, 1}d. Then, for anyε = Ω(n−γ), γ < 1/2, in any
randomized protocol deciding the(1 + ε)-NN problem, ei-
ther Alice sendsΩ( log n

ε2 ) bits or Bob sendsΩ(n1−δ) bits,
for anyδ > 0.
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From the above theorem, we can obtain thenO(1/ε2)

lower bound on space for any data structure implementing
(1 + ε)-NN problem with a constant time query. Specifi-
cally, we apply Lemma 1 from [29], which states:

Lemma 1 ([29], Lemma 1). If there is a solution to the data
structure problem with spaces, query timet, and cell size
b, then there exists a protocol where Alice sends2tdlog se
bits and Bob sends2tb bits.

For t = O(1), and cell sizeb < O(n1−δ), for some
δ > 0, Bob sends an insufficient number of bits. Thus,
Alice needs to send2tdlog se > Ω(m log n) bits. Solving
for s, we obtain that space iss = nΩ(1/ε2). Note that the
cell sizeb is usually much smaller thann1−δ, typically b =
d logO(1) n.

2.1. Reduction from asymmetric set dis-
jointness to (1 + ε)-near neighbor

We prove that we can reduce asymmetric set disjointness
problem to the approximate near neighbor. A randomized
[a, b]-protocol for a communication problem is a protocol in
which Alice sendsa bits and Bob sendsb bits, and the error
probability of the protocol is bounded away from1/2.

Lemma 2. Suppose there exists a randomized[a, b]-
protocol for the(1 + ε)-NN problem withd = O

(
log2 n

ε5

)
,

where Alice receives the queryq ∈ {0, 1}d and Bob receives
the datasetP ⊂ {0, 1}d of sizen. Then there exists a ran-
domized[a, b]-protocol for asymmetric set disjointness in an
arbitrary universe[U ], where Alice receives a setS ⊂ [U ]
of sizem = 1

9ε2 , and Bob receives a setT ⊂ U of sizen.

Proof. We show how to map an instance of asymmet-
ric set disjointness, given byT and S, into an instance
of (1 + ε)-NN, given by respectively the datasetP ⊂
{0, 1}d and the queryq ∈ {0, 1}d. For this purpose,
first, Alice and Bob map their setsS and T into query
q̃ ∈ <U and dataset̃P ⊂ <U , i.e., an(1 + ε)-NN in-
stance in EuclideanU -dimensional space,lU2 . Then, Al-
ice and Bob map their points from thelU2 metric to Ham-
ming cube{0, 1}O(log2 n/ε5), essentially preserving the dis-
tances among all the points̃q andP̃ . This method for reduc-
ing a communication complexity problem into an approxi-
mate problem involving Hamming distance appeared earlier
in [22], albeit in the context of different problems.

For the setT ⊂ [U ], we defineP̃ , {eu | u ∈ T},
whereeu is a standard<d basis vector, with 1 in theuth

coordinate, and 0 everywhere else. For the setS, we set the
queryq̃ , 3ε ·

∑
u∈S eu; note that‖q̃‖2

2 = m · (3ε)2 = 1.
We show that ifS ∩ T = ∅, then‖q̃ − p̃‖2 =

√
2 for all

p̃ ∈ P̃ , and, ifS ∩ T 6= ∅, then there exists a point̃p ∈ P̃
such that‖q̃ − p̃‖2 ≤ (1− 4ε

3 )
√

2. Indeed, we have that

• if S ∩ T = ∅, then for anyp̃ ∈ P̃ , we have that‖q̃ −
p̃‖2

2 = ‖q̃‖2
2 + ‖p̃‖2

2 − 2q̃ · p̃ = 2;

• if S ∩ P 6= ∅, then foru∗ ∈ S ∩ P and for p̃ =
eu∗ ∈ P , we have‖q̃− p̃‖2

2 = ‖q̃‖2
2 + ‖p̃‖2

2 − 2q̃ · p̃ =
2− 2(3εeu∗) · eu∗ = 2(1− 3ε).

To constructP ⊂ {0, 1}d andq ∈ {0, 1}d, Alice and
Bob perform a randomized mapping oflU2 into {0, 1}d for
d = O(log2 n/ε5), such that the distances are only in-
significantly distorted, with high probability. Alice and
Bob use a source of public random coins to construct the
same randomized mapping. First, they construct a random-

ized embeddingf1 mappinglU2 into l
O(log n/ε2)
1 with dis-

tortion less than(1 + ε/16) (cf. [19]). Then, they con-

struct the standard embeddingf2 mappingl
O(log n/ε2)
1 into

{0, 1}O(log2 n/ε5). The embeddingf2 first scales up all co-
ordinates byD = O( log n

ε3 ), then rounds the coordinates,
and finally transforms each coordinate into its unary repre-
sentation. We set the constants such that the resulting ap-
proximation off2 is an additive termO( log n

ε2 ) < Dε
√

2
16 .

Next, Alice and Bob constructq = f2(f1(q̃)) ∈ {0, 1}d

andP = {f2(f1(p̃)) | p̃ ∈ P̃} ⊂ {0, 1}d. Notice that for
any p = f2(f1(p̃)) ∈ P , if ‖q̃ − p̃‖2 ≥

√
2, then‖q −

p‖H ≥ D
√

2(1 − ε/16) − Dε
√

2
16 = D

√
2(1 − ε

8 ), and if
‖q̃−p̃‖2 ≤

√
2(1− 4ε

3 ), then‖q−p‖H ≤ D
√

2(1− 4ε
3 )(1+

ε/16) + Dε
√

2
16 ≤ D

√
2(1− ε− 5ε

24 ).
Finally, Alice and Bob can run the(1+ε)-NN communi-

cation protocol withλ = D
√

2(1−ε− 5ε
24 ) to decide whether

S ∩ T = ∅. Note that the error probability of the resulting
set disjointness protocol is bounded away from1/2 since
(1 + ε)-NN communication protocol has error probability
bounded away from1/2, and the embeddingf2 ◦ f1 fails
with probability at mostn−Ω(1).

2.2. Lower bound for asymmetric set dis-
jointness

In this section, we prove a slightly weaker version of
Theorem 1:

Theorem 3. Assume Alice receives a setS, |S| = m and
Bob receives a setT, |T | = n, both sets coming from a
universe of size2mn, for m < nγ , whereγ < 1/3 is a
constant. In any randomized, two-sided error communica-
tion protocol deciding disjointness ofS andT , either Alice
sendsΩ( m

log m lg n) bits or Bob sendsΩ(n1−δ/m2) bits, for
anyδ > 0.

First we define the hard instance. The elements of our
sets come from the universe[2m]× [n]. Alice receivesS =
{(i, si) | i ∈ [m]}, for s1, . . . , sm chosen independently
at random from[n]. Bob receivesT = {(tj , j) | j ∈ [n],
for t1, . . . , tn chosen independently from[2m]. The output
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should be1 iff the sets are disjoint. Note that the number of
choices isnm for S and(2m)n for T , and thatS andT are
chosen independently.

The lower bound follows from the following variant of
the richness lemma, based on [29, Lemma 6]. The only
change is that we make the dependence onε explicit, be-
cause we will useε = o(1).

Lemma 3. Consider a problemf : X × Y → {0, 1},
such that the density of{(x, y) | f(x, y) = 1} in X × Y
is Ω(1). If f has a randomized two-sided error[a, b]-
protocol, then there is a rectangle off of dimensions at
least|X|/2O(a lg(1/ε)) × |Y |/2O((a+b) lg(1/ε)) in which the
density of zeros is at mostε.

To apply the lemma, we first show the disjointness func-
tion is1 with constant probability.

Lemma 4. AsS andT are chosen randomly as described
above,Pr[S ∩ T = ∅] = Ω(1).

Proof. Note thatS ∩ T ⊂ [n] × [m]. We havePr[(i, j) ∈
S∩T ] = 1

n(2m) wheni ∈ [n], j ∈ [m]. Then by linearity of

expectationE[|S ∩ T |] = 1
2 . Since|S ∩ T | ∈ {0, 1, 2, . . . },

we must havePr[|S ∩ T | = 0] ≥ 1
2 .

Thus, it remains to show that no big enough rectangle
has a small density of zeros. Specifically, we show the fol-
lowing:

Lemma 5. Let δ > 0 be arbitrary. If we chooseS ∈
S, T ∈ T uniformly and independently at random, where
|S| > 2n(1−δ)m andT ≥ (2m)n · 2/en1−δ/(8m2), then the
probabilityS ∩ T 6= ∅ is at least 1

16m2 .

We use the richness lemma withε = 1
32m2 . If there

exists an[a, b] protocol for our problem, we can find a rect-
angle of size

(
nm/2O(a lg m)

)
×
(
(2m)n/2O((a+b) lg m)

)
,

in which the fraction of zeros is at mostε. To avoid contra-
dicting Lemma 5, we must either have2O(a lg m) > nδm/2,
or 2O((a+b) lg m) > en1−δ/(8m2)/2. This means eithera =
Ω( m

lg m lg n) or a + b = Ω(n1−δ/(m2 lg m)). If m < nγ ,

for constantγ < 1
3 , this implies thata = Ω( m

lg m lg n) or

b = Ω(n1−δ/m2), for anyδ > 0.

Proof. (of Lemma 5) ChoosingS at random fromS induces
a marginal distribution on[n]. Now consider the heaviest
n1−δ elements in this distribution. If the total probability
mass of these elements is at most1 − 1

2m , we calli a well-
spread coordinate.

Lemma 6. If |S| > 2n(1−δ)m, there exists a well-spread
coordinate.

Proof. Assume for contradiction that no coordinate is well-
spread. Consider the setS ′ formed byS ∈ S such that

no si is outside the heaviestn1−δ elements inSi. By a
union bound, the probability overS ∈ S that somesi is
not among the heavy elements is at mostm 1

2m = 1
2 . Then,

|S ′| ≥ |S|/2. On the other hand|S ′| ≤ (n1−δ)m, since
for each coordinate we have at mostn1−δ choices. This
contradicts the lower bound on|S|.

Let i be a well-spread coordinate. We now lower bound
the probability ofS ∩ T 6= ∅ by the probability ofS ∩ T
containing an element on coordinatei. Furthermore, we
ignore then1−δ heaviest elements ofSi. Let the remaining
elements beW , andp(j) = Pr[si = j] whenj ∈ W . Note
thatp(j) ≤ 1/n1−δ, and

∑
j∈W p(j) ≥ 1

2m .
Defineσ(T ) =

∑
j∈W :tj=i p(j). For some choice ofT ,

σ(T ) gives exactly the probability of an interesting inter-
section, over the choice ofS ∈ S. Thus, we want to lower
boundET [σ(T ) | T ∈ T ].

Assume for now thatT is uniformly distributed in the
original space (not in the subspaceT ). Note thatσ(T ) =∑

j∈W Xj , where Xj is a variable equal top(j) when
tj = i and 0 otherwise. By linearity of expectation,

ET [σ(T )] =
∑

j∈W
p(j)
2m ≥ 1/(2m)2. SinceXj ’s are in-

dependent (tj ’s are independent whenT is not restricted),
we can use a Chernoff bound to deduceσ(T ) is close to this
expectation with very high probability over the choice ofT .
Indeed,Pr[σ(T ) < 1

2 ·
1

(2m)2 ] < e−n1−δ/(8m2).
Now we can restrict ourselves toT ∈ T . The prob-

ability σ(T ) < 1
8m2 is so small, that it remains small

even in this restricted subspace. Specifically, this prob-
ability is at most Pr[σ(T ) < 1

8m2 ]/ Pr[T ∈ T ] ≤
exp(−n1−δ/(8m2))/(2 exp(−n1−δ/(8m2))) = 1

2 . Since
σ(T ) ≥ 0, (∀)T , we conclude thatET [σ(T ) | T ∈ T ] ≥
1
2 ·

1
8m2 = 1

16m2 .

2.3. Approximate far neighbor problem

The above lower bound for the(1 + ε)-NN problem can
also be transferred to the(1 + ε)-far neighbor problem,
yielding exactly the same space lower bound. Formally,
we define the(1 + ε)-far neighbor as follows. Given a set
P ⊂ {0, 1}d of n points and a distanceλ, build a data struc-
ture which givenq ∈ {0, 1}d does the following, with prob-
ability at least, say,2/3:

• If there isp ∈ P such that‖q − p‖ ≥ λ, answer YES

• If there is nop ∈ P such that‖q − p‖ ≥ λ/(1 + ε),
answer NO

The lower bound results from the following lemma, an
equivalent of lemma 2.

Lemma 7. Suppose there exists a randomized[a, b]-
protocol for the(1 + ε)-far neighbor problem withd =

4



O
(

log2 n
ε5

)
, where Alice receives the queryq ∈ {0, 1}d and

Bob receives the datasetP ⊂ {0, 1}d of sizen. Then there
exists a randomized[a, b]-protocol for asymmetric set dis-
jointness in an arbitrary universe[U ], where Alice receives
a setS ⊂ [U ] of sizem = 1

9ε2 , and Bob receives a set
T ⊂ U of sizen.

As before, together with theorem 1, this lemma im-
plies that any data structure for(1 + ε)-far neighbor prob-
lem achieving constant number of cell probes, has space
nΩ(1/ε2).

Proof (of lemma 7).Same as the proof of lemma 2, except
set the querỹq = −3ε

∑
u∈S eu.

3. Lower bounds: Approximate closest sub-
string problem

In this section we focus on theApproximate Closest Sub-
stringproblem.

Our goal is to show a lower bound of21/ε2a

, for any
a ∈ (0, 1), for a running time of an algorithm solving
(1 + ε)-approximate CSS. We do it by using the follow-
ing assumption. Recall that in aHitting Set (HS)problem,
we are given setsA1 . . . An ⊂ [m], and the goal is to find
H ⊂ [m] which intersects eachAi and minimizes|H|. Our
assumptions are stated as the following two conjectures.

Conjecture 1. For any constanta ∈ (0, 1), there exists a
constantCa > 1 such that noCa-approximate algorithm
for the hitting set problem has running time2O(ma).

In the following, we show that this conjecture is implied
by another (more palatable) one.

Conjecture 2. For any a ∈ (0, 1), there is no algorithm
solving 3-SAT withO(n) constraints overn variables, with
running time2O(na).

Theorem 4. Conjecture 2 implies Conjecture 1. That is, if
there existsa < 1 such that for every constantCa > 1 there
exists aCa-approximation algorithm for HS with running
time2O(ma), then there exists an algorithm for 3SAT overn

variables withO(n) constraints, with running time2O(nb)

for someb < 1.

The proof will follow from the following two reductions.
The first one follows from the PCP construction by [15].
Specifically, for any 3SAT formulaφ, let SAT (φ) be the
maximum fraction of clauses satisfiable by any assignment.
Dinur [15] proved the following:

Fact 1. There is a polynomial-time algorithm which, given
a 3SAT formulaφ with m variables andO(m) constraints,
outputs a 3SAT formulaφ′ with m′ = m logO(1) m vari-
ables such that each variable occurs in exactly the same
(and constant) number of constraints, and:

• If φ satisfiable thenφ′ satisfiable.

• If φ is not satisfiable, thenSAT (φ′) ≤ 1− α.

whereα > 0 is an absolute constant.

The relation between the hitting set problem and the
3SAT problem is captured in the following lemma.

Lemma 8. There is a polynomial-time algorithm which,
given a 3 SAT formulaφ with n variables, where each vari-
able occurs in exactly the same numberB′′ constraints, pro-
duces an instance of HS withm = 2n such that:

1. If φ is satisfiable, then there is a hitting set of sizen.
2. If there is a hitting set of size(1+ γ)n, for γ > 0, then

SAT (φ) ≥ (1− 3γ).

Proof. The reduction is as follows. The universe of HS con-
sists of all literalsxi, xi, wherexi is a variable. The family
of sets contains all pairs{xi, xi} (calledliteral sets), and all
constraints ofφ interpreted as sets (calledconstraintsets).

The first statement of the lemma is immediate. Consider
now a setH of size(1 + γ)n which hits all sets. There are
(1 − γ)n literal sets which are hit once - this defines the
assignment of the corresponding variable. For theγn literal
sets which are hit twice, define the assignment in an arbi-
trary way. For each such variable we “unsatisfy” at most
B′′ constraints, thus a total ofγB′′n constraints are unsat-
isfied. Sinceφ contains exactlyB′′/3 · n constraints, the
lemma follows.

The main part of the reduction is encapsulated in the fol-
lowing theorem.

Theorem 5. If, for somea ∈ (0, 1), there is an algorithm
for the(1+ε)-approximate CSS problem, with running time
2O(1/ε2a) · (dn)O(1), then for any (constant)Cb > 1, there
is aCb-approximation algorithm for the hitting set problem
with the running time2O(ma logO(1) m).

Proof. We exploit the following nice combinatorial struc-
ture. Consider a codeC ⊂ {0, 1}d with codewords
c1 . . . cm, andC ′ ⊂ {0, 1}d with codewordsc′1 . . . c′nm (al-
ternatively referred to asc′1,1 . . . c′n,m) with the following
properties parametrized by constantsb, b′ > 0, b′′ > 1, as
well as a parametert > 0:

1. For anyT ⊂ [m], |T | = t, R({ci : i ∈ T}) ≤ r.
2. Let t′ = b′′t. Consider any sequenceP of t′ pairs

(ci1 , c
′
j1

) . . . (cit′ , c
′
jt′

), such that all of the indexes
i1 . . . it′ andj1 . . . jt′ are pairwise distinct. Then, for
each pair(cik

, c′jk
), take qk to be anyd-length sub-

string ofcik
◦ c′jk

or c′jk
◦ cik

. We want to have a prop-
erty thatR({q1 . . . qt′}) > r′ for r′ = r(1 + ε), where
ε = b′/

√
t for some (tiny)b′ > 0.
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For completeness we mention thatr = d/2(1 − b/
√

t),
whereb ≈

√
2/π. Observe that the Property 2 essentially

states that the code obtained by taking substrings of a prod-
uct of C and C ′ has good list-decodable properties. Ar-
guably, the definition would be more intuitive if we sim-
ply insisted thatC has good list-decodable properties. In-
deed, that suffices if our goal is to show hardness for just
theGroup Closest Stringproblem, where the goal is to find
a substring that is close to at least one string from each of
n groupsof strings. The latter problem strictly generalizes
CSS, since we can define theith group to contain all sub-
strings of theith input string. The more complicated def-
inition is a consequence of proving hardness for the more
restrictive CSS problem.

Lemma 9. For any fixed constantb′′ > 1, and variables
m > 1, t > 1, ε > 0, the “nice combinatorial structure”
defined above can be constructed probabilistically with suc-
cess probability at least2/3, with d = tO(1) log m, and
positiveb′ strictly bounded away from0.

We defer the proof till later. For now, we assumeC and
C ′ as above.

The reduction from HS to CSS is as follows. For each
setAi = A = {a1 . . . al} we generate a string

si = ca1 ◦ c′i,1 . . . cal
◦ c′i,l

The intuition is that the codewords ofC represent the input,
while the codeword ofC ′ are placeholders, to make sure
that for each stringsi, the substring ofsi that is “close”
to the solution string does not overlap with more than one
codeword fromC.

We now show that:

• If there is a hitting setH of sizet, then there is a solu-
tion to CSS with cost at mostr.

• If there is a solution to CSS with costr′ = r(1 + ε),
then there is a hitting set of size at mostb′′t.

The first part is easy. If there is a hitting set
H = {a1 . . . at} of size t, then (by Property 1)
R({ca1 . . . cat

}) ≤ r. The corresponding string provides
a solution to CSS with cost at mostr.

The second part is as follows. Suppose that we are given
an x and indexesl1 . . . ln such that for eachi1 . . . in we
haveD(x, si[li . . . li + d − 1]) ≤ r(1 + ε). Denotepi =
si[li . . . li +d− 1]. Note that eachpi is ad-length substring
of cji

◦ c′j′i
or c′j′i

◦ cji
, for somecji

∈ C, c′j′i
∈ C ′. Also,

note that allc′j′i are distinct.
ConsiderH = {j1 . . . jn}. By construction it is a hitting

set. The question is, how manydistinctelements it contains.
Assume it has at leastt′ elementsa1 . . . at′ . But then we
know, by Property 2 of the “nice combinatorial structure”,
thatR({p1 . . . pn}) > r′. Thus,|H| < t′.

Proof of Lemma 9.It suffices to construct the code with the
desired properties. We use the probabilistic method, that is,
for eachi = 1 . . .m, j = 1 . . . d, we selectci independently
uniformly at random from{0, 1}d. We do the same forC ′.

Observe that the bits inST = {ci : i ∈ T} (as in
Property 1), as well as the bits in{q1 . . . qt′} (as in Prop-
erty 2) are independent Bernoulli variables. Our strategy
is therefore to show that the respective properties hold for
t or t′ strings randomly chosen from{0, 1}d, with proba-
bility exp(−Ω(d/tO(1))). This means that, if we setd =
tO(1) log m, then the respective properties will hold for all
required sets of strings with high probability.

Considerc1 . . . ct, chosen independently from{0, 1}d.
First we take care of the high probability bound. Define
Rt = R({c1 . . . ct}), where eachci is chosen independently
and uniformly at random from{0, 1}d.

In the followingδ > 0 denotes a (tiny) constant.

Lemma 10. The random variableR = Rt is sharply con-
centrated around its mean. That is, for anyδ > 0:

Pr[|R− E[R]| > d/2 · δ/
√

t] ≤ 2 exp
(
−δ2d

8t2

)
Proof. Observe that, for any argumentsc1 . . . ct, changing
one coordinate ofci changes the value ofR by at most1.
The bound then follows from Azuma’s inequality, since

Pr[|R−E[R]| > d/2 · δ/
√

t] ≤ 2 exp
(
− (d/2 · δ/

√
t)2

2dt

)

= 2 exp
(
−δ2d

8t2

)

Now we proceed with the upper bound onRt. Consider
l Bernoulli variablesu1 . . . ul, and letu =

∑
i ui. Consider

now the quantityEl = E[u|u ≤ l/2]. For concreteness,
we mention thatEl = l/2(1− (

√
2/π + o(1))/

√
l), which

follows from the value of the influence of a variable in a ma-
jority function [30]. We express the lower and upper bound
for E[R] in terms ofEt andEt′ , respectively.

Lemma 11.

Pr[Rt > (Et/t +
δ

2
√

t
) · d] ≤ 2d exp

(
−δ2d

8t2

)
Proof. We construct a vectorx such that, with high proba-
bility over the choice of the code,D(x, ci) ≤ (Et/t+ δ

2
√

t
)·

d for eachi = 1 . . . d. Our approach is to use the major-
ity vote, that is, to definexi = Majority((c1)i . . . (ct)i),
i = 1 . . . d. By symmetry argument, for anyi = 1 . . . d, we
havePr[(cj)i 6= xi] = Et/t. Thus,E[D(ci, x)] = dEt/t.
Application of Lemma 10 finishes the proof.
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Now, we need to show a lower bound forRt′ . Before we
do that, we mention that a weaker lower bound can be ob-
tained by using Johnson bound for error correcting codes.
Specifically, assume thatd is large enough so that the mini-
mum distance of the codeQ = {q1 . . . qt′} is≈ d/2. Then
we can use Johnson bound, as in [16]. It says that:

R(Q) ≥ d/2(1− 1/
√

t′)

Unfortunately, this lower bound is not very tight – the afore-
mentioned upper bound would guarantee aboutd/2(1 −√

2/π/
√

t′). This discrepancy occurs because the Johnson
bound works foranycode with sufficiently large minimum
distance. To circumvent this difficulty, we are going to show
a better Johnson-type bound for arandomcode

Lemma 12. E[Rt′ ] ≥ dEt′/t′. Therefore

Pr[Rt′ < (Et′/t′ − δ

2
√

t′
) · d] ≤ 2d exp

(
− δ2d

8t′2

)
Proof. Consider a linear relaxation of the problem of
finding R(Q). Specifically, the linear program finds the
smallest (with respect to thel1 metric) ball enclosingQ,
centered atanypointx ∈ [0, 1]d.

minimize r

subject to:

xj + rij ≥ (qi)j for all i = 1 . . . t′, j = 1 . . . d

−xj + rij ≥ −(qi)j

r −
∑

j

rij ≥ 0 for all i = 1 . . . t′

rij , xi, r ≥ 0

To show a lower bound for this program, we consider
the dual LP, with dual variablesy+

ij , y
−
ij , yi corresponding

to the respective inequalities in the primal LP.

maximize
∑
i,j

(y+
ij − y−ij)(qi)j

subject to:

y+
ij + y−ij − yi ≤ 0 for all i = 1 . . . t′, j = 1 . . . d∑
i

(y+
ij − y−ij) ≤ 0 for all j = 1 . . . d∑

i

yi ≤ 1

y+
i,j , y

−
ij , yi ≥ 0

We will now demonstrate, for each inputqij , a feasible
solution. The expected value of the objective function will
be equal todEt′/t′.

We setyi = 1/t′, for eachi = 1 . . . t′. For eachi, j, we
set eithery+

ij or y−ij to 0. The other possible value for these
variables is1/t′.

The specific assignment is as follows. For eachj =
1 . . . d, letMj = {i : (qi)j = 1}. Letmj = min(|Mj |, t′−
|Mj |). Formj indexesi ∈ Mj , we sety+

ij = 1/t. Formj

indexesi /∈ Mj , we sety−ij = 1/t. The remainder variables
are set to0.

It is easy to see that the resulting solution is feasible.
Moreover, the value of the objective function is at least∑d

j=1 mj/t′. It follows that its expected value is equal to
dEt′/t′.

We now finalize the proof of Lemma 9. By the last three
lemmas, we know that, for large enoughd = tO(1) log m,
C and C ′ satisfy the following two conditions with high
probability:

1. C satisfies Property 1 for

r = d(Et/t+
δ

2
√

t
) ≤ d/2

(
1−

√
2/π − o(1)− δ√

t

)
2. C andC ′ satisfy Property 2 for

r′ = d(Et′/t′− δ

2
√

t′
) ≥ d/2

(
1−

√
2/π + o(1) + δ√

t′

)

If b′′ = t′/t > 1, then1 + ε = r′/r ≥ 1 + b′/
√

t for
someb′ > 0, by taking sufficiently smallδ and large enough
t. Lemma 9 follows.

Remark 1. From the above discussion it follows that for
any subsetS ⊂ C, |S| = t, we haveR1(S) ≤ R(S) ≤
d/2(1 − b/

√
t). At the same time,R1(C) ≥ d/2(1 −

1/
√

m) ≥ d/2(1 − b
2/
√

t) for large enoughm. Thus, we
have thatR1(S) < R1(C)(1 − ε) as long ast < C/ε2 for
some constantC > 0. Therefore, any core-set forC under
thel1 norm must have sizeΩ(1/ε2).
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[8] M. Bădoiu and K. Clarkson. Smaller core-sets for balls.Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms, 2003.
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A. Upper bounds for clustering problems

A.1. (1 + ε)-approximate closest string in
nO(log(1/ε)/ε2) time

In this section we describe an improved algorithm for the
closest string problem.

In [27], an algorithm with running time ofnO(1/ε4) was
given. As we show, it is not difficult to reduce the exponent
to O(1/ε2 · log(1/ε)). Firstly, we need to briefly review the
algorithm of [27].

Let R = R(S). If R > C log n/ε2 for some constantC,
then the problem can be solved as follows:

• Write an integer program optimizingR(S), with vari-
ablesxi ∈ {0, 1}, i = 1 . . . d

• Relax it to a linear program, with variablesx′i ∈ [0, 1];
this can be solved in polynomial time.
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• Use randomized rounding to convertx′is into xi’s.
This works as long as the expectations ofD(si, x) are
Ω(log n/ε2), which is the case by our assumption.

So, if R is large, we are done. What ifR = O(log n/ε2)
? A simple approach would be to take anys ∈ S, and enu-
merate allx such thatD(s, x) ≤ R. This clearly identifies
an optimal solution. The drawback is that this results in
quasi-polynomial time ofdO(log n/ε2).

To avoid this problem, the paper [27] proposed the fol-
lowing “dimensionality reduction” idea. For each setP ⊂
S, we define the setI(P ) = {i : pi 6= qi, for somep, q ∈
P}; note thatI(P ) is efficiently computable givenP . Let
I ′(P ) be the complement ofI(P ). The idea is to show that
there exists a small setP such that for an optimum solu-
tion x, andI ′ = I ′(P ), we haveD(x|I′ , s|I′) ≤ εR for
all s ∈ P . This is good news, since now we can create
a solutionx′, such thatx′|I′ = s|I′ for somes ∈ S, and
x′|I = x|I . By the above,x′ is a (1 + ε)-approximate so-
lution to the problem. To find it, we only need to findx|I .
However,|I| ≤ |P | · 2R = O(|P | log n/ε2). Thus, as long
as|P | is small, we can findx′|I by exhaustive enumeration.

How small can|P | be ? The original paper [27] showed
a bound polynomial in1/ε. However, Lemma 2.2 of [28]
(more specifically, the statement in the second line of the
proof of that Lemma) gives an upper bound of justlog(1/ε).
Therefore, we obtain an algorithm with the running time of
nO(log(1/ε)/ε2).

A.2. Other clustering problems

The papers [14, 32] discovered a method for clustering
in high dimensional spaces using dimensionality reduction.
As it turns out, this method can be generalized so that it
applies to a wide variety of problems, including the closest
substring problem. In fact, the algorithm of [27] can be
viewed as an instantation of that method.

The general method is as follows. Assume that each
cluster has a center; we denote the centers byc1 . . . ck.

1. Construct a(1 + ε)-approximate mappingA from the
originald-dimensional space<d, to the host space<k.
It suffices that this mapping is correct for the input
points andc1 . . . ck, which can be guaranteed by taking
k = O(log n · 1/ε2).

2. Map (usingA) all input pointsP into<k.

3. Enumerate “all” possible imagesAc1 . . . Ack (after a
proper discretization)

4. Infer the “combinatorial structure” of an optimum
clustering fromA(P ) andAc1 . . . Ack. In the context
of clustering, for eachAp, p ∈ P , find the nearest point
Aci.

5. Using the above information, solve the problem in<d.
E.g., use the information to partitionP into clusters,
and find optimum center in<d for each cluster.

This approach nicely applies to the closest substring
problem. LetGroupd(s) denote the set of all contiguous
d-length substrings ofs. We map alld-length substrings
Groupd(si) of the input strings into<k.

In the next step, we enumerate “all” candidates for the
optimal center strings. This is implemented as follows.
First, we “guess” the valueC = C(s) of the objective
function at the optimum strings. Then, we guess the
index j which minimizesD(s, s1[j . . . j + d − 1]). Let
s′ = s1[j . . . j + d − 1]. SinceD(s, s′) ≤ C, it follows
that‖s−s′‖2

2 ≤ C, and therefore‖As−As′‖2
2 ≤ C(1+ε).

We now find a “good enough” approximation toAs as
follows. First, we impose anε

√
C-net N on thel2 norm

ball B(As′,
√

C(1 + ε)). It is possible to construct such
a net so that|N | ≤ (1/ε)O(k) in time polynomial in|N |.
Then, we “guess”p ∈ N that is closest toAs. Note that we
have‖As− p‖2 ≤ ε

√
C.

Now we choose, for eachi = 1 . . . n, the indexji such
that the substrings′i = s[ji . . . ji +d−1] minimizes‖As′i−
p‖2. Observe that‖As′i − As‖2 ≤ (1 + ε)

√
C. Therefore

we have

‖As′i − p‖2 ≤ ‖As′i −As‖2 + ‖As− p‖2 ≤ (1 + 2ε)
√

C

At the same time, consider any other substrings′ of
s1 . . . sn such thatD(s, s′) ≥ (1 + 12ε)C. As before we
get

‖As′−p‖2 ≥ ‖As′−As‖2−ε
√

C ≥ (1−ε)‖s′−s‖2−ε
√

C

≥
√

C(1 + 12ε)(1− ε)− ε
√

C

which for ε small enough is at least
√

C(1 + 5ε)(1− ε)− ε
√

C >
√

C(1 + 2ε)

Therefore, all stringss′i chosen by the algorithms must sat-
isfy D(s′i, s) < (1 + 12ε)C.

It follows that solving a(1 + ε)-approximate closest
string problem fors′1 . . . s′n yields a(1+O(ε))-approximate
solution to the closest substring problem fors1 . . . sn. The
total time needed to enumerate all “guesses” is at most
(1/ε)O(log n/ε2) = nO(log(1/ε)/ε2).
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