
Computing Order Statistics in the Farey
Sequence

Corina E. Pǎtraşcu1 and Mihai Pǎtraşcu2

1 Harvard University, Department of Mathematics
patrascu@fas.harvard.edu

2 MIT, Computer Science and Artificial Intelligence Laboratory
mip@mit.edu

Abstract. We study the problem of computing the k-th term of the
Farey sequence of order n, for given n and k. Several methods for gen-
erating the entire Farey sequence are known. However, these algorithms
require at least quadratic time, since the Farey sequence has Θ(n2) el-
ements. For the problem of finding the k-th element, we obtain an al-
gorithm that runs in time O(n lg n) and uses space O(

√
n). The same

bounds hold for the problem of determining the rank in the Farey se-
quence of a given fraction. A more complicated solution can reduce the
space to O(n1/3(lg lg n)2/3), and, for the problem of determining the rank
of a fraction, reduce the time to O(n). We also argue that an algorithm
with running time O(poly(lg n)) is unlikely to exist, since that would
give a polynomial-time algorithm for integer factorization.

1 Introduction

For any positive integer n, the Farey sequence of order n is the set of all ir-
reducible fractions p

q , with 0 < p < q ≤ n, arranged in increasing order. An
alternative definition could include 0

1 and 1
1 as special fractions. For example,

the Farey sequence for n = 5 is: 1
5 , 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , 2
3 , 3

4 , 4
5 . The number of elements

of the Farey sequence is asymptotically 3
π2 n2 + O(n lg n) [5].

The Farey sequence is a well-known concept in number theory, whose explo-
ration has lead to a number of interesting results. However, from an algorithmic
point of view, very little is known. In particular, the only problem that appears
to be investigated is that of generating the entire sequence for a given n. Several
interesting solutions exist for this problem, though none of them presents any
algorithmic challenge:

– Sort all unreduced fractions p
q , and remove duplicates. The running time

is O(n2 lg n), which is almost optimal, but the space is O(n2). (We assume
that we are only interested in generating the fractions, not storing them;
otherwise, quadratic space is clearly the best possible.)

– The space in the above algorithm can be reduced to O(n), without changing
the running time [7]. This uses a priority queue to merge n sequences, where
the i-th such sequence is 1

i ,
2
i , . . . ,

i−1
i .

– To obtain the sequence of order n+1 from the sequence of order n, consider
all consecutive fractions a

b and c
d from the sequence of order n, and insert

the mediant fraction a+c
b+d between them, if the denominator is n+1 [5]. This

surprising construction is based on the initial observation made by Farey
in 1816 [4]. The resulting algorithm is the worst so far: the running time is
O(n3), and the space is O(n2).

– Combining several properties satisfied by Farey sequence, one can get a triv-
ial iterative algorithm, which generates the next Farey fraction, based on the
previous two ([5], problem 4-61). If p

q and p′

q′ are the last two fractions, the
next one is given by:

p′′ =
⌊

q + n

q′

⌋
p′ − p, q′′ =

⌊
q + n

q′

⌋
q′ − q

This is an ideal algorithm: it uses O(n2) time, and O(1) space.

– The Stern-Brocot tree is obtained by starting with 0
1 and 1

1 , and repeatedly
inserting the mediant between any two fractions that are consecutive in the
in-order traversal of the tree [5]. Farey fractions form a subtree of the Stern-
Brocot tree, often called the Farey tree. One can generate the Farey fractions
in order, by recursively exploring the tree. The algorithm requires quadratic
time, and O(n) memory (corresponding to the maximum depth of the Farey
fractions of order n).

The model of computation assumed by these algorithms, as well as the re-
maining algorithms from this paper, is the standard word RAM (Random Access
Machine). Such a machine can access words of O(lg n) bits, and can perform
usual arithmetic operations on such words in unit time. Space is also counted in
words.

In this work, we consider the most natural question in addition to that of
generating the entire Farey sequence. For given n and k, our problem is to
generate just the k-th element of the Farey sequence of order n (often called the
k-th order statistic [2]). Our motivation is not based on any practical application
of this problem (we are aware of none), but rather on the algorithmic challenges
it presents. It seems impossible to obtain good, or even just subquadratic time
bounds for these problems by modifying the algorithms listed above (the obvious
choice, and the one to which we devoted the most attention was the solution
involving the Stern-Brocot tree). Instead, our algorithms will be based on a set
of rather different ideas.

Our solution involves algorithms for another natural problem: given a frac-
tion, determine its rank in the Farey sequence. The bounds we obtain are usually
identical for both problems. In section 2, we describe a reduction between these
problems, and design an initial algorithm that runs in time O(n lg2 n) and uses
space O(n). In section 3, we improve the time complexity of this algorithm to
O(n lg n). Finally, section 4 improves the space complexity to O(

√
n), while pre-

serving the running time.

We have implemented the final algorithm, as well as the methods described
above for generating the entire sequence, and found ours to be very efficient,
both in terms of time, and space. Experimental results or source code can be
obtained from the authors.

This result leaves two natural questions unanswered. The first one is how
little memory suffices for an algorithm with roughly linear, say O(n ·poly(lg n)),
running time. In particular, reducing the memory to poly(lg n) would be inter-
esting. In section 5, we present a more complex algorithm, based on a result of
Deléglise and Rivat [3], which uses space O(n1/3(lg lg n)2/3). The algorithm can
determine the rank of a fraction in O(n) time; for our original problem (finding
a fraction of a given rank) the O(n lg n) time bound is not improved.

The second question is concerned with time, rather than space. Note that the
input to the problem consists of just two words, or O(lg n) bits, namely n and
k. Therefore, there is nothing that prohibits the existence of an algorithm with
running time sublinear in n. For somewhat related problems, such as computing
the number of primes less than a certain value, sublinear time algorithms are
known [1]. It seems reasonable to hope that the running time of the algorithm
from section 5 can be improved to O(n1−ε), for some constant ε > 0. We describe
two subproblems which would be sufficient to obtain such a result, but which
we cannot solve. In section 6 we argue instead that a much faster algorithm,
with running time O(poly(lg n)), is unlikely to exist. More precisely, we show
that such a polynomial algorithm for our problem would immediately imply a
polynomial-time algorithm for integer factorization.

2 An Initial Algorithm

We now describe a first attempt to solve the problem, which will give an al-
gorithm running in O(n lg2 n) time and O(n) space. This algorithm forms the
basis of our improved algorithms from the following sections. Our solution uses
as a subroutine an algorithm for determining the rank of a given fraction (not
necessarily in reduced form) in the Farey sequence. The subroutine developed in
this section will run in O(n lg n) time and O(n) space.

We begin by a reduction from the order statistic problem to the fraction
rank problem. Assume we want to compute the k-th order statistic. We first
determine a number j such that the answer lies in the interval

[
j
n , j+1

n

)
. This

can be done by binary search, as follows. Assume we have a guess for the value
of j. Determine the rank of j

n in the Farey sequence. If this rank is at most k
we know the correct value of j is not smaller than the current guess. Otherwise,
we should continue searching below j. This stage of the algorithm uses O(lg n)
calls to the fraction rank subroutine.

To solve the problem, we must now determine the fraction with rank equal
to k−rank(j

n) among all irreducible fractions from the interval
[

j
n , j+1

n

)
. Notice

that there is at most one fraction in this interval for any denominator less than
n. This follows from the fact that the length of the interval is 1

n , and consecutive
fractions with denominators q < n are separated by 1

q > 1
n . In addition, for

a given q, this fraction can be found in constant time, since the numerator
must be

⌊
(j+1)q−1

n

⌋
. There might not be any fraction in the range for a certain

denominator, so we also need to check that the fraction we obtain in this way
lies in the feasible interval.

Given these properties, it is not hard to find efficient algorithms for this
subproblem. A particularly easy one would consist of generating all (up to n)
fractions from the feasible interval, sorting them, and eliminating duplicates.
Alternatively, one can make a list of just the irreducible fractions, and then use
a linear time order statistic algorithm [2] on this list. However, we describe a
more interesting solution. This solution has the advantage that it runs in O(n)
time, and uses just O(1) memory, which will prove important in the following
section. First, generate the fractions in the range by considering all possible
denominators. As fractions are generated, keep just the minimum fraction found
that is strictly greater than j

n . At the end, reduce both j
n and the minimum

fraction greater than it. We now have two consecutive fractions from the Farey
sequence. As mentioned in the introduction, there is a simple constant-time
algorithm that can generate the next fraction in the Farey sequence based on
the previous two. This means that we can iterate through the fractions in the
range in increasing order, remembering just the previous two fractions. All we
have to do is count up to the desired rank, and return the corresponding fraction.

We are now left with giving an algorithm for the fraction rank problem.
We will actually solve a slightly more general problem: for any real number
x, determine the number of irreducible fractions p

q ≤ x, with q ≤ n. Let Aq

be the number of such irreducible fractions with denominator equal to q. Any
fraction with denominator q is either irreducible, in which case it should be
counted in Aq, or has a unique reduced representation. The denominator of
the reduced representation is a divisor of q. This transformation is, in fact,
reversible: given any irreducible fraction c

d , where d is a divisor of q, we can
multiply both the numerator and the denominator by q/d to get a fraction with
denominator equal to q. So we have a bijection between the set of all fractions
in (0, x] with denominator q and the set of reduced fractions with denominator
d, for all divisors d of q. This gives a recursive formula for Aq, which leads to
the solution of our problem:

rank(x) =
n∑

q=1

Aq, Aq = bx · qc −
∑

d<q, d|q

Ad (1)

The way to translate this formula into an efficient algorithm is obviously not
the most direct one, since there is no fast way to iterate over all divisors of a
number. Instead, begin by initializing an array A[1..n] by A[q] = bx · qc. Then
consider all numbers q in increasing order from 1 to n. For each q, consider all
multiples mq, and subtract A[q] from A[mq]. At step number q, we always have
A[q] = Aq, and this algorithm is a simple reformulation of the recursive formula
from above. The rank can be computed by summing the final values of all A[q].
The running time is O

(
n +

∑n
q=1

n
q

)
= O

(
n

∑n
q=1

1
q

)
= O(n lg n). So we have

an O(n lg n) algorithm for the rank problem, and thus an O(n lg2 n) algorithm
for the order statistic problem. Both algorithms use O(n) space.

3 Improving the Running Time

We now improve the time complexity of the algorithm from the previous section.
Since the running time of our order statistic algorithm is dominated by the
running time of the fraction rank algorithm, we concentrate on the latter. As
noted before, the order statistic algorithm makes O(lg n) calls to the fraction
rank subroutine. The key idea suggested by this fact is that one should try to
introduce some amount of preprocessing, which gives a one-time cost, in order
to improve the running time of every call to the fraction rank subroutine.

To find a way to trade preprocessing for running time of the rank subroutine,
let us re-examine relation 1. After recursive expansions of all Aq, the resulting
rank(x) will be a linear combination of terms of the form bx · qc, for all q ≤ n.
Except for these terms, the recursive formula is independent of x. Therefore, we
can precalculate the coefficient of every bx · qc. Now the rank routine becomes
trivial: for all q, calculate bx · qc, and add this value to the rank, weighted by
the appropriate coefficient. The numbers appearing at intermediate steps in the
computation, and even the coefficients themselves, may become large. However,
the end result (the rank) is obviously bounded by n2, so if all computations are
performed modulo a number greater than that, the result will be correct (this is
important because we can only manipulate in constant time numbers that have
O(lg n) bits). This issue is transparent to the implementation, since normally all
computations are carried out modulo a power of two, such as 232 for the usual
32-bit machines.

The algorithm for precalculating the coefficients of bx · qc is symmetric to
our old algorithm for calculating the rank. It is based on the following recursion
defining the coefficients:

Cq = 1−
∑

t>q, q|t

Ct, for all q ≤ n (2)

The correctness of the formula follows from “reverse induction”, since the
calculation of Cq uses only coefficients Ct with t > q. Indeed, the term bx · qc
appears initially in Aq. Then, Aq is subtracted from all its multiples t. At that
point At contains bx · tc with coefficient 1, and bx · qc with coefficient −1. All
subsequent operations involving At contribute to the total coefficient of bx · qc
exactly by minus the coefficient of bx · tc: since At is the only one that contains
bx · tc initially, all operations involving At are described by the final coefficient
of bx · tc.

The algorithm follows immediately from the formula, and calculates the co-
efficients from Cn down to C1. The running time is O

(∑n
q=1

n
q

)
= O(n lg n).

This cost is paid once, and every call to the rank subroutine can be answered
in O(n) time, so the total running time of the order statistic algorithm is also
O(n lg n).

4 Improving the Space Complexity

The key observation for improving the space complexity is that coefficients Cq

and Cq′ are identical whenever bn/qc = bn/q′c. This is not hard to see, and also
offers a good intuition for the new algorithm. Consider some value q. The term
bx · qc is added initially to Aq. Then Aq, which includes bx · qc, is subtracted
from m1q, for all possible m1. The values Am1q, which now contain bx · qc with
a coefficient of −1, are then subtracted from Am2m1q, and so on. The branches
of this recursion are only trimmed off when q

∏
mi > n, which is equivalent to∏

mi ≥ bn/qc. So the coefficient Cq only depends on bn/qc.
Based on this fact, we observe that there are only

√
n distinct values for the

coefficients among all Cq with q >
√

n. To avoid such repetitions, we break the
coefficients into two groups. The coefficients C1, . . . , Cb

√
nc are stored as before.

Instead of storing Cq for q >
√

n, we store an array Dr, such that Cq = Dbn/qc
for any q >

√
n. Notice that both arrays have O(

√
n) elements. The fraction

rank algorithm remains trivial. For all q ≤
√

n, we calculate bx · qc and add it
to the rank, weighted by Cq. For the remaining q’s, we instead use the weight
Dbn/qc.

It remains to show how to precompute the sequences Dr and Cq using just
O(
√

n) space. The computation of Dr is based on the following recursive formula:

Dr = 1−
r∑

t=2

Dbr/tc (3)

The formula can be obtained by careful relabeling of formula 2. Take a q,
such that r = bn/qc. Now consider consider our previous recursive formula for
Cq (slightly rewritten here):

Cq = 1−
bn/qc∑
t=2

Ctq

By definition, we have Dr = Cq and bn/qc = r. Also, Ctq = Dbn/tqc. The in-

dex on the right-hand side can be rewritten as
⌊

n
tq

⌋
=

⌊
bn/qc

t

⌋
= br/tc, finalizing

the transformation into formula 3.
Once we have the values Dr, computing the array Cq can be done as before,

using relation 2. The only difference is that whenever the algorithm needs Ct for
t >

√
n, is should instead use Dbn/tc, since we are only computing the values

Ct for t ≤
√

n. The time required by the computation of the sequence Dr is
quadratic in the size of the table, which is O(n). Computing Cq takes O(n lg n)
time, as before. Finally, rank queries still require linear time, so the overall
running time is unchanged, and the space is reduced to O(

√
n).

5 A Better Way to Calculate Coefficients

This section describes a better way to calculate the coefficients Dr from the
previous section, resulting in improved, but more complicated, algorithms. It

can be seen that Dr is precisely equal to M(r), where M is the summatory
function of the Möbius function, M(r) =

∑r
t=1 µ(t). The Möbius function is

defined by:

– µ(1) = 1;
– µ(t) = 0 if t has a squared prime factor;
– µ(t) = (−1)k if t = p1 · . . . · pk, where all pi’s are distinct and prime.

The identity between our coefficients and M(r) is immediate, since M(r)
satisfies the recursive formula 3 defining our coefficients ([5], relation 4.61) – this
is one of the fundamental properties of the Möbius function. Given this identity,
we can use an algorithm by Deléglise and Rivat [3], which calculates M(r) using
O(r2/3(lg lg r)1/3) time and O(r1/3(lg lg r)2/3) space.

Remember that our algorithm needs the coefficients Cq, q ∈ {1, . . . , n} and
that Cq = Dbn/qc. For all q < n1/6, we will use the algorithm of [3] to calculate
M(bn/qc). This first stage will require n1/6 · n2/3+o(1) = n5/6+o(1) time. Calcu-
lating Cq for all q ≥ n1/6 can be done by calculating Dr for all r ≤ n5/6. Since
Dr =

∑r
t=1 µ(t), calculating the Dr’s in the increasing order of r reduces to

calculating µ(t) for all t ≤ n5/6. In turn, calculating µ(t) is trivial if we have the
prime factorization of t. There exist several factorization algorithms which can
factor t in to(1) time [6], so we obtain a running time of n5/6+o(1) for calculating
all coefficients. The dominant factor in space usage is the space used by a call
to the subroutine for calculating M(r), which is O(n1/3(lg lg n)2/3).

The dominant factor in the running time is no longer calculating the coeffi-
cients. As each Cq becomes available, we need to multiply it by bx · qc and add
the result to an accumulator. Thus, the running time for computing the rank of
a fraction is O(n). The time needed to compute the fraction of a given rank is
still O(n lg n), because we run a binary search on top of the rank computation,
as explained in section 2.

Since the algorithm of this section can compute all coefficients in sublin-
ear time, there is hope of obtaining a sublinear running time overall. We now
describe a possible approach; however, since we cannot solve the two necessary
subproblems, this remains speculation. First, to compute ranks in sublinear time,
we could observe that many consecutive terms of bx ·qc have the same coefficient
Cq when q >

√
n. Thus, we should look for an algorithm to evaluate

∑b
q=abx · qc

in time O((b − a)1−ε), for some constant ε > 0. Even this, however, would not
imply a sublinear time algorithm for finding the fraction of a given rank. This
is because the binary search from section 2 can only narrow down the range
of possible fractions, and does not actually produce an output fraction in the
form p/q. As described, the range is reduced to

[
x
n , x+1

n

)
; we do not know how

to find a fraction of a given rank from this range without enumerating all O(n)
fractions. Alternatively, we could reduce the range to an interval of size O(1/n2),
and then we would need to find the unique fraction left in this range.

6 Relation to Factorization

We now show that a polynomial-time algorithm (i.e. one running in O(poly(lg n))
time) for our problem is unlikely to exist, since that would immediately give a
polynomial algorithm for integer factorization. It is a well-known conjecture that
such an algorithm does not exist.

Given a polynomial time algorithm for finding an order statistic, we can
construct a polynomial time algorithm for finding the rank of a given fraction
(this is the reverse of the reduction used for our actual algorithms). Observe that
we can test whether a guessed rank is too high or too low, using only one oracle
query to the order statistic algorithm: simply determine the fraction with that
rank, and compare it with the input fraction. Therefore, we can use galloping
binary search to solve the problem. We begin by trying powers of two until we
either obtain a fraction greater than the input fraction, or we exceed the number
of fractions in the Farey sequence (as reported by the order statistic algorithm).
Then, we do a binary search for the correct rank in the interval between the last
powers of two tried. This algorithm makes O(lg n) calls to the order statistic
algorithm, and no other expensive computations, so it runs in polynomial time.

Our algorithm for factorization is based on yet another problem: given a
number n, and k ≤ n that is relatively prime to n, report the number of integers
in [2, k] that are relatively prime to n. Given a polynomial time algorithm for this
problem, we can use binary search to find a factor of n. Assume k is relatively
prime to n (otherwise, we immediately get a factor), and we know the number
of integers in [2, k] that are relatively prime to n. If this number is k − 1, we
know that the smallest factor of n is greater than k; otherwise, there is at least
one factor below k.

It remains to describe the relation between the Farey sequence and this prob-
lem. Observe that all numbers i ∈ [2, k] that are relatively prime to n give frac-
tions i

n in the Farey sequence of order n. To count these numbers, we begin by
finding the rank of k

n in the Farey sequence of order n. Then, we determine the
largest fraction, strictly smaller than k

n . This can be done by one call to the
order statistic algorithm, since we already know the rank of k

n . Since k
n is irre-

ducible (by assumption), and it is the mediant of neighboring fractions from the
Farey sequence, it follows that the preceding fraction has a denominator strictly
smaller than n. We now find the rank of this fraction, in the Farey sequence of
order n− 1. Observe that the difference between the rank of k

n and this rank is
equal to the number of irreducible fractions i

n ≤ k
n , which is what we wanted to

count.
The reduction from above uses the order statistic oracle in one place, namely

to find the largest fraction smaller than k
n . One may wonder whether the re-

duction holds if we assume just a polynomial time algorithm for the problem
of ranking a fraction, proving also the hardness of this problem. The following
smarter reduction answers this question in the affirmative. Consider the frac-
tions k+1

n and k−1
n . Since their difference is 2

n , there exists exactly one fraction
in this range with a denominator of n − 1. Find this fraction (with O(1) arith-

metic operations), and reduce it, which takes O(lg n) time. Now find the ranks
of this fraction in the Farey sequences of order n and n − 1. The difference in
ranks is exactly the number of irreducible fractions i

n < k
n , possibly plus one

due to k
n . This nonuniformity is easily fixed by testing whether our fraction with

a denominator of n − 1 is smaller or larger than k
n , so we can again count the

number of integers from [2, k] that are relatively prime to n.

7 Acknowledgements

We thank an anonymous referee for valuable comments leading to the results
from section 5. This problem, with time and space limitations corresponding to
our initial algorithm from section 2, was proposed by the authors as a competi-
tion problem for the Balkan Olympiad in Informatics 2003. We thank all people
who expressed positive comments on that occasion. In addition, we thank Erik
Demaine and Noam Elkies for discussions and encouragement.

References

1. E. Bach and J. Shallit, Algorithmic Number Theory, Volume I: Efficient Algorithms,
MIT Press, 1996.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algo-
rithms, 2nd edition, MIT Press and McGraw-Hill, 2001.

3. M. Deléglise and J. Rivat, Computing the Summation of the Möbius Function,
Experimental Mathematics 5, 291-295, 1996.

4. J. Farey, On a Curious Property of Vulgar Fractions, London, Edinburgh and
Dublin Phil. Mag. 47, 385, 1816.

5. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Founda-
tion for Computer Science, 2nd edition, Addison-Wesley, 1994.

6. D. E. Knuth, The Art of Computer Programming, volume 2: Seminumerical Algo-
rithms, 2nd edition, Addison-Wesley, 1981.

7. V. Mitrana, Provocarea algoritmilor (in Romanian), Ed. Agni, Bucharest, Romania,
1995.

