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The Farey Sequence

Fn = {p
q | 0 < p < q ≤ n, gcd(p, q) = 1}

(sometimes include 0
1 and 1

1)

Total number of fractions: 3
π2 n2 + O(n log n).

Properties

P1. (Farey 1816) If p
q and p′

q′ consecutive in

Fn ⇒ p
q ≤ p+p′

q+q′ ≤ p′
q′ (mediant) is also Farey.

P2. If p
q and p′

q′ consecutive in Fn, then the next fraction p′′
q′′

is given by:
p′′ = �q+n

q′ �p′ − p, q′′ = �q+n
q′ �q′ − q

P2 suggests ideal algorithm for generating Fn in O(n2) time
and O(1) space.
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Stern-Brocot Tree

Start with 0
1 and 1

1 and insert mediant between any two
consecutive fractions in the in-order traversal of the tree.

1/20/1 1/1
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Stern-Brocot Tree

Start with 0
1 and 1

1 and insert mediant between any two
consecutive fractions in the in-order traversal of the tree.

1/20/1 1/1

1/3 2/3
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Stern-Brocot Tree

Start with 0
1 and 1

1 and insert mediant between any two
consecutive fractions in the in-order traversal of the tree.

1/20/1 1/1

1/3

1/4 2/5

2/3

3/5 3/4
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Stern-Brocot Tree

Start with 0
1 and 1

1 and insert mediant between any two
consecutive fractions in the in-order traversal of the tree.

1/20/1 1/1

1/3

1/4

1/5 2/7

2/5

3/8 3/7

2/3

3/5

4/7 5/8

3/4

5/7 4/5
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Computing order Statistics

Problem 1 (Order Statistic)

Given n and k , generate the k-th element of Fn.

give reduction to:

Problem 2 (Fraction Rank)

Given a fraction, determine its rank in the Farey sequence.

initial algorithm: time O(n log2 n) and space O(n);

first improvement: time O(n log n) and space O(
√

n);

second improvement: time O(n log n) and space
O(n1/3 log2/3 n) (fraction rank in O(n) time);

also find the number of Farey fractions in time n5/6+o(1);

recent progress: count number of Farey fractions in
n4/5+o(1).
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Reduction from Order Statistic to Fraction Rank

Want to determine k-th fraction:

use binary search to determine j such that answer is in the

interval
[

j
n , j+1

n

)
;

guess j and determine r = rank( j
n ) in Fn;

if r < k search above j ; else, search below; if r = k , done.

we use O(log n) calls to the fraction rank subroutine;

note that in
[

j
n , j+1

n

)
, there is at most one fraction for each

denominator (because length of interval is 1
n ).

this fraction, for denominator q, if it exists, has numerator
� (j+1)q−1

n �;
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Reduction from Order Statistic to Fraction Rank

must determine fraction with rank = k − rank( j
n ) among

irreducible fractions in interval
[

j
n , j+1

n

)
;

Algorithm – O(n) time and O(1) memory

generate all fractions in the range;

as we generate, keep just the minimum strictly greater than j
n ;

finally, reduce j
n and the minimum fraction obtained above ⇒ two

consecutive fractions in Fn;

use P2 to generate the next one in constant time etc.; keep a
count and return the desired fraction.
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Algorithm for Fraction Rank Problem

More general: Given x real, determine the number of
irreducible fractions p

q ≤ x , with q ≤ n.

Aq = the set of such irreducible fractions with denominator
q;

{all fractions in [0, x) with denominator q} ←→
{reduced fractions with denominator d , for all d |q};

this gives formula: �x · q� =
∑

d≤q,d |q Ad ;

so, to compute rank(x) =
∑n

q=1 Aq, we use:
Aq = �x · q� − ∑

d<q,d |q Ad .
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Algorithm for Fraction Rank Problem

Problem: no fast way to iterate over all divisors.

Solution:

initialize array T [1..n] by T [q] = �x · q�;
consider all q’s in increasing order from 1 to n;

for each q, consider its multiples m · q and subtract T [q]
from T [m · q];

at step q, we will have T [q] = Aq;

rank(x) is obtained by summing all the values in the array
at the end;

running time: O(n +
∑n

q=1
n
q ) = O(n log n).

Thus, we have an O(n log n) time algorithm for the fraction rank
problem ⇒ O(n log2 n) time algorithm for the order statistic
problem. Both use O(n) space.
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Improving the Running Time to O(n log n)

Preprocessing ⇒ improve time of every call to fraction rank.

Use previous formula: Aq = �x · q� − ∑
d<q,d |q Ad ; after

recursive expansions of Aq ’s ⇒ rank(x) will be a linear
combination of �x · q�,∀q ≤ n.

Idea:

the coefficients of �x · q� are independent of x ;

so, precalculate the coefficient of every �x · q�;
the numbers at intermediate steps may be large, but
rank(x) ≤ n2 eventually, so perform all computations
modulo a number greater than n2; (important because we
can manipulate in constant time only numbers with
O(log n) bits).
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C.E.Pǎtraşcu, M.Pǎtraşcu Computing Order Statistics in the Farey Sequence



Improving the Running Time to O(n log n)

Preprocessing ⇒ improve time of every call to fraction rank.

Use previous formula: Aq = �x · q� − ∑
d<q,d |q Ad ; after

recursive expansions of Aq ’s ⇒ rank(x) will be a linear
combination of �x · q�,∀q ≤ n.

Idea:

the coefficients of �x · q� are independent of x ;

so, precalculate the coefficient of every �x · q�;
the numbers at intermediate steps may be large, but
rank(x) ≤ n2 eventually, so perform all computations
modulo a number greater than n2; (important because we
can manipulate in constant time only numbers with
O(log n) bits).
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Precalculating the Coefficients

Obtain the recursive formula: Cq = 1 − ∑
t>q,q|t Ct , ∀q ≤ n.

Proof

�x · q� appears first in Aq;

Aq subtracted from all its multiples t ⇒ At contains �x · t�
with coefficient 1 and �x · q� with coefficient −1;

all operations made with At contribute to the coefficient of
�x · q� by −1× the coefficient of �x · t�;
since At is the only one that contains �x · t� initially, all
operations involving At are described by the final
coefficient of �x · t�.

The algorithm calculates Cn down to C1 ⇒ running time:
O(

∑n
q=1

n
q ) = O(n log n); this cost is paid once and every call to

fraction rank takes O(n) ⇒ total time: O(n log n).
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C.E.Pǎtraşcu, M.Pǎtraşcu Computing Order Statistics in the Farey Sequence



Precalculating the Coefficients

Obtain the recursive formula: Cq = 1 − ∑
t>q,q|t Ct , ∀q ≤ n.

Proof

�x · q� appears first in Aq;

Aq subtracted from all its multiples t ⇒ At contains �x · t�
with coefficient 1 and �x · q� with coefficient −1;

all operations made with At contribute to the coefficient of
�x · q� by −1× the coefficient of �x · t�;
since At is the only one that contains �x · t� initially, all
operations involving At are described by the final
coefficient of �x · t�.

The algorithm calculates Cn down to C1 ⇒ running time:
O(

∑n
q=1

n
q ) = O(n log n); this cost is paid once and every call to

fraction rank takes O(n) ⇒ total time: O(n log n).
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Improving Space Complexity to O(
√

n)

Lemma

Cq = Cq′ when �n/q� = �n/q′�.

Proof Idea

consider some q; the term �x · q� is first in Aq;

Aq is subtracted from Am1q, for all possible m1;

the Am1q ’s are now subtracted from Am1m2q, for all possible
m2 etc.;

the recursion stops only when
∏

mi ≥ �n/q� so Cq

depends only on �n/q�.

Observation: there are only
√

n distinct Cq ’s for q >
√

n.
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Avoid Repetitions

Break into two groups:

C1, . . . C√
n stored as before;

instead of storing Cq for q >
√

n, store array with Dr ’s such
that Cq = D�n/q�, for any q > �n/q�.

Observation: both arrays take O(
√

n) space and fraction rank
algorithm remains trivial.

Precomputing Dr and Cq in O(
√

n) space

rewrite: Cq = 1 − ∑�n/q�
t=2 Ctq;

Cq = D�n/q� ⇒ Ctq = D�n/tq� and since � n
tq � = � �n/q�

t �;
⇒ we obtain Dr = 1 − ∑r

t=2 D�r/t�.

Time for computing Dr : quadratic in size of table ⇒ O(n).
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Relation to Factorization

Conjecture: A polynomial time algorithm for factorization does
not exist.

We will show that this implies that no polynomial time algorithm
(i.e. O(poly log n)) exists for the order statistic problem.

Reduction from Fraction Rank to Order Statistic

assume we have a poly-time algorithm for order statistic;

do binary search: guess the rank, find fraction with that
rank, compare to our fraction and search below or above;

⇒ O(log n) calls to order statistic;

⇒ we have a polynomial time algorithm for the fraction
rank problem.
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Algorithm for Factorization

It is based on yet another problem:

Problem: Given n and k ≤ n such that gcd(k , n) = 1, report the
number of integers in [2, k ] that are relatively prime to n.

Algorithm for Factorization

assume a polynomial time algorithm for the above problem;

use binary search to find factor of n:

guess k ; if (k , n) �= 1, we can find a factor using Euclid’s
algorithm;
if (k , n) = 1, by above problem, we know the number of
numbers in [2, k ] relatively prime to n:

if this number is k − 1, the smallest factor of n is > k ;
otherwise, there is at least a factor below k .

⇒ polynomial time algorithm for factorization.
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Relation between Farey and Previous Problem

Problem: Given n and k ≤ n such that gcd(k , n) = 1, report the
number of integers in [2, k ] that are relatively prime to n.

all i ∈ [2, k ] such that (i , n) = 1 give fractions i
n ∈ Fn;

first, find r = rank( k
n ) in Fn (fraction rank);

then, find the fraction of rank r − 1 in Fn (order statistic);

since k
n is irreducible and it is the mediant of neighboring

fractions ⇒ the preceding fraction must have denominator
< n;

find the rank of this preceding fraction in Fn−1, say t ;

the difference r − t = number of irreducible fractions i
n ≤ k

n .
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Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the
previous reduction still hold? – this would imply hardness of
fraction rank.
A:

consider the fractions k−1
n and k+1

n ; since their difference is
2
n , ∃ only one fraction in this range with denominator n − 1;

find this fraction (O(1)) and reduce it ⇒ O(log n) time;

find the ranks of this fraction in Fn−1 and Fn; their
difference will give the number of irreducible fractions
i
n < k

n (possibly plus one due to k
n ; problem solved by

comparing our fraction to k
n );
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Computing Order Statistics in the Farey Sequence

THE END

Thank you!
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