Computing Order Statistics in the Farey Sequence

Corina E. Pătrașcu¹ Mihai Pătrașcu²

¹Department of Mathematics Harvard University

²MIT CSAIL

ANTS VI

A (1) × A (1) ×

 $\begin{aligned} \mathcal{F}_n &= \{ \frac{p}{q} \mid 0$

Properties

• P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in $\mathcal{F}_n \Rightarrow \frac{p}{q} \le \frac{p+p'}{q+q'} \le \frac{p'}{q'}$ (mediant) is also Farey.

• P2. If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in \mathcal{F}_n , then the next fraction $\frac{p''}{q''}$ is given by: $p'' = \lfloor \frac{q+n}{q'} \rfloor p' - p, \quad q'' = \lfloor \frac{q+n}{q'} \rfloor q' - q$

P2 suggests ideal algorithm for generating \mathcal{F}_n in $O(n^2)$ time and O(1) space.

<ロ> <問> <同> <目> <同> <目> <目</p>

 $\begin{aligned} \mathcal{F}_n &= \{ \frac{p}{q} \mid 0$

Properties

• P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in $\mathcal{F}_n \Rightarrow \frac{p}{q} \le \frac{p+p'}{q+q'} \le \frac{p'}{q'}$ (mediant) is also Farey.

• P2. If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in \mathcal{F}_n , then the next fraction $\frac{p''}{q''}$ is given by: $p'' = \lfloor \frac{q+n}{q'} \rfloor p' - p, \quad q'' = \lfloor \frac{q+n}{q'} \rfloor q' - q$

P2 suggests ideal algorithm for generating \mathcal{F}_n in $O(n^2)$ time and O(1) space.

(日) (四) (三) (三)

 $\begin{aligned} \mathcal{F}_n &= \{ \frac{p}{q} \mid 0$

Properties

- P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in $\mathcal{F}_n \Rightarrow \frac{p}{q} \le \frac{p+p'}{q+q'} \le \frac{p'}{q'}$ (mediant) is also Farey.
- P2. If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in \mathcal{F}_n , then the next fraction $\frac{p''}{q''}$ is given by: $p'' = \lfloor \frac{q+n}{q'} \rfloor p' - p, \quad q'' = \lfloor \frac{q+n}{q'} \rfloor q' - q$

P2 suggests ideal algorithm for generating \mathcal{F}_n in $O(n^2)$ time and O(1) space.

<ロ> (四) (四) (三) (三)

- 20

 $\begin{aligned} \mathcal{F}_n &= \{ \frac{p}{q} \mid 0$

Properties

- P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in $\mathcal{F}_n \Rightarrow \frac{p}{q} \le \frac{p+p'}{q+q'} \le \frac{p'}{q'}$ (mediant) is also Farey.
- P2. If $\frac{p}{q}$ and $\frac{p'}{q'}$ consecutive in \mathcal{F}_n , then the next fraction $\frac{p''}{q''}$ is given by: $p'' = \lfloor \frac{q+n}{q'} \rfloor p' - p, \quad q'' = \lfloor \frac{q+n}{q'} \rfloor q' - q$

P2 suggests ideal algorithm for generating \mathcal{F}_n in $O(n^2)$ time and O(1) space.

Start with $\frac{0}{1}$ and $\frac{1}{1}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

1/2

A (1) > A (1) > A

Start with $\frac{0}{1}$ and $\frac{1}{1}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

▲ 御 → - ▲ 三

Start with $\frac{0}{1}$ and $\frac{1}{1}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

Start with $\frac{0}{1}$ and $\frac{1}{1}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

< 17 >

Given *n* and *k*, generate the *k*-th element of \mathcal{F}_n .

give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O(n \log^2 n)$ and space O(n);
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time O(n log n) and space O(n^{1/3} log^{2/3} n) (fraction rank in O(n) time);
- also find the number of Farey fractions in time n^{5/6+o(1)};
- recent progress: count number of Farey fractions in n^{4/5+o(1)}.

Given *n* and *k*, generate the *k*-th element of \mathcal{F}_n .

give reduction to:

Problem 2 (Fraction Rank)

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O(n \log^2 n)$ and space O(n);
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time O(n log n) and space O(n^{1/3} log^{2/3} n) (fraction rank in O(n) time);
- also find the number of Farey fractions in time n^{5/6+o(1)};
- recent progress: count number of Farey fractions in n^{4/5+o(1)}.

Given *n* and *k*, generate the *k*-th element of \mathcal{F}_n .

give reduction to:

Problem 2 (Fraction Rank)

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O(n \log^2 n)$ and space O(n);
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time O(n log n) and space
 O(n^{1/3} log^{2/3} n) (fraction rank in O(n) time);
- also find the number of Farey fractions in time n^{5/6+o(1)};

 recent progress: count number of Farey fractions in n^{4/5+o(1)}.

Given *n* and *k*, generate the *k*-th element of \mathcal{F}_n .

give reduction to:

Problem 2 (Fraction Rank)

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O(n \log^2 n)$ and space O(n);
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time O(n log n) and space
 O(n^{1/3} log^{2/3} n) (fraction rank in O(n) time);
- also find the number of Farey fractions in time $n^{5/6+o(1)}$;
- recent progress: count number of Farey fractions in $n^{4/5+o(1)}$.

(日) (同) (日) (日)

Given *n* and *k*, generate the *k*-th element of \mathcal{F}_n .

give reduction to:

Problem 2 (Fraction Rank)

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O(n \log^2 n)$ and space O(n);
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time O(n log n) and space
 O(n^{1/3} log^{2/3} n) (fraction rank in O(n) time);
- also find the number of Farey fractions in time $n^{5/6+o(1)}$;
- recent progress: count number of Farey fractions in n^{4/5+o(1)}.

(日) (周) (日) (日)

Want to determine *k*-th fraction:

- use binary search to determine *j* such that answer is in the interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;
 - guess *j* and determine $r = \operatorname{rank}(\frac{j}{n})$ in \mathcal{F}_n ;
 - if r < k search above *j*; else, search below; if r = k, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left[\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each denominator (because length of interval is $\frac{1}{n}$).
- this fraction, for denominator q, if it exists, has numerator $\lfloor \frac{(j+1)q-1}{n} \rfloor$;

< 🗇 🕨 🔺 🚍 🕨 .

Want to determine *k*-th fraction:

- use binary search to determine *j* such that answer is in the interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;
 - guess *j* and determine $r = \operatorname{rank}(\frac{j}{n})$ in \mathcal{F}_n ;
 - if r < k search above *j*; else, search below; if r = k, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left[\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each denominator (because length of interval is $\frac{1}{n}$).
- this fraction, for denominator q, if it exists, has numerator $\lfloor \frac{(j+1)q-1}{n} \rfloor$;

A (10) N (10)

Want to determine *k*-th fraction:

- use binary search to determine *j* such that answer is in the interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;
 - guess *j* and determine $r = \operatorname{rank}(\frac{j}{n})$ in \mathcal{F}_n ;
 - if r < k search above *j*; else, search below; if r = k, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left[\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each denominator (because length of interval is $\frac{1}{n}$).
- this fraction, for denominator q, if it exists, has numerator $\lfloor \frac{(j+1)q-1}{n} \rfloor$;

- 4 週 ト - 4 三 ト - 4 三 ト

• must determine fraction with rank $= k - rank(\frac{j}{n})$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right]$;

Algorithm – O(n) time and O(1) memory

- generate all fractions in the range;
- as we generate, keep just the minimum strictly greater than $\frac{L}{p}$;
- finally, reduce ¹/_n and the minimum fraction obtained above ⇒ two consecutive fractions in F_n;
- use P2 to generate the next one in constant time etc.; keep a count and return the desired fraction.

《口》 《聞》 《臣》 《臣

• must determine fraction with rank $= k - rank(\frac{j}{n})$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right]$;

Algorithm -O(n) time and O(1) memory

- generate all fractions in the range;
- as we generate, keep just the minimum strictly greater than $\frac{1}{n}$;
- finally, reduce $\frac{i}{n}$ and the minimum fraction obtained above \Rightarrow two consecutive fractions in \mathcal{F}_n ;
- use P2 to generate the next one in constant time etc.; keep a count and return the desired fraction.

▲ @ ▶ < ■ ▶ </p>

• must determine fraction with rank $= k - rank(\frac{j}{n})$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right]$;

Algorithm -O(n) time and O(1) memory

- generate all fractions in the range;
- as we generate, keep just the minimum strictly greater than $\frac{i}{n}$;
- finally, reduce $\frac{i}{n}$ and the minimum fraction obtained above \Rightarrow two consecutive fractions in \mathcal{F}_n ;
- use P2 to generate the next one in constant time etc.; keep a count and return the desired fraction.

More general: Given *x* real, determine the number of irreducible fractions $\frac{p}{q} \le x$, with $q \le n$.

- A_q = the set of such irreducible fractions with denominator q;
- {all fractions in [0, x) with denominator q} ↔
 {reduced fractions with denominator d, for all d|q};
- this gives formula: $[x \cdot q] = \sum_{d \le q, d|q} A_d;$
- so, to compute $rank(x) = \sum_{q=1}^{n} A_q$, we use: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$.

More general: Given *x* real, determine the number of irreducible fractions $\frac{p}{q} \le x$, with $q \le n$.

- A_q = the set of such irreducible fractions with denominator q;
- {all fractions in [0, x) with denominator q} ↔
 {reduced fractions with denominator d, for all d|q};
- this gives formula: $[x \cdot q] = \sum_{d \le q, d|q} A_d;$
- so, to compute $rank(x) = \sum_{q=1}^{n} A_q$, we use: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$.

▲ @ ▶ < ■ ▶ </p>

More general: Given *x* real, determine the number of irreducible fractions $\frac{p}{q} \le x$, with $q \le n$.

- *A_q* = the set of such irreducible fractions with denominator *q*;
- {all fractions in [0, x) with denominator q} ↔
 {reduced fractions with denominator d, for all d|q};
- this gives formula: $\lfloor x \cdot q \rfloor = \sum_{d \le q, d \mid q} A_d;$
- so, to compute $rank(x) = \sum_{q=1}^{n} A_q$, we use: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$.

▲ □ ► ▲ □ ► ▲

More general: Given *x* real, determine the number of irreducible fractions $\frac{p}{q} \le x$, with $q \le n$.

- *A_q* = the set of such irreducible fractions with denominator *q*;
- {all fractions in [0, x) with denominator q} ↔
 {reduced fractions with denominator d, for all d|q};
- this gives formula: $\lfloor x \cdot q \rfloor = \sum_{d \le q, d \mid q} A_d$;
- so, to compute $rank(x) = \sum_{q=1}^{n} A_q$, we use: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array T[1..n] by $T[q] = \lfloor x \cdot q \rfloor$;
- consider all q's in increasing order from 1 to n;
- for each q, consider its multiples m · q and subtract T[q] from T[m · q];
- at step q, we will have $T[q] = A_q$;
- rank(x) is obtained by summing all the values in the array at the end;
- running time: $O(n + \sum_{q=1}^{n} \frac{n}{q}) = O(n \log n)$.

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O(n \log^2 n)$ time algorithm for the order statistic problem. Both use O(n) space.

(ロ) (部) (注) (注)

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array T[1..n] by $T[q] = \lfloor x \cdot q \rfloor$;
- consider all *q*'s in increasing order from 1 to *n*;
- for each q, consider its multiples m · q and subtract T[q] from T[m · q];
- at step q, we will have $T[q] = A_q$;
- rank(x) is obtained by summing all the values in the array at the end;
- running time: $O(n + \sum_{q=1}^{n} \frac{n}{q}) = O(n \log n).$

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O(n \log^2 n)$ time algorithm for the order statistic problem. Both use O(n) space.

(日) (四) (三) (三)

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array T[1..n] by $T[q] = \lfloor x \cdot q \rfloor$;
- consider all *q*'s in increasing order from 1 to *n*;
- for each q, consider its multiples m · q and subtract T[q] from T[m · q];
- at step q, we will have $T[q] = A_q$;
- rank(x) is obtained by summing all the values in the array at the end;
- running time: $O(n + \sum_{q=1}^{n} \frac{n}{q}) = O(n \log n).$

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O(n \log^2 n)$ time algorithm for the order statistic problem. Both use O(n) space.

(日) (周) (日) (日)

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array T[1..n] by $T[q] = \lfloor x \cdot q \rfloor$;
- consider all *q*'s in increasing order from 1 to *n*;
- for each q, consider its multiples m ⋅ q and subtract T[q] from T[m ⋅ q];
- at step q, we will have $T[q] = A_q$;
- rank(x) is obtained by summing all the values in the array at the end;
- running time: $O(n + \sum_{q=1}^{n} \frac{n}{q}) = O(n \log n).$

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O(n \log^2 n)$ time algorithm for the order statistic problem. Both use O(n) space.

(日) (周) (日) (日)

Preprocessing \Rightarrow improve time of every call to fraction rank.

Use previous formula: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$; after recursive expansions of A_q 's \Rightarrow rank(x) will be a linear combination of $\lfloor x \cdot q \rfloor, \forall q \leq n$.

ldea:

- the coefficients of $\lfloor x \cdot q \rfloor$ are independent of *x*;
- so, precalculate the coefficient of every $\lfloor x \cdot q \rfloor$;
- The numbers at intermediate steps may be large, but reak(x) is n° eventually, so perform all computations module a number greater than n°; (important because we can manipulate in constant time only numbers with D(top n) bits).

イロト イヨト イヨト イ

Preprocessing \Rightarrow improve time of every call to fraction rank.

Use previous formula: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d|q} A_d$; after recursive expansions of A_q 's \Rightarrow rank(x) will be a linear combination of $\lfloor x \cdot q \rfloor, \forall q \leq n$.

Idea:

- the coefficients of $\lfloor x \cdot q \rfloor$ are independent of *x*;
- so, precalculate the coefficient of every $\lfloor x \cdot q \rfloor$;
- the numbers at intermediate steps may be large, but rank(x) ≤ n² eventually, so perform all computations modulo a number greater than n²; (important because we can manipulate in constant time only numbers with O(log n) bits).

《口》 《圖》 《臣》 《臣

Preprocessing \Rightarrow improve time of every call to fraction rank.

Use previous formula: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d|q} A_d$; after recursive expansions of A_q 's \Rightarrow rank(x) will be a linear combination of $\lfloor x \cdot q \rfloor, \forall q \leq n$.

Idea:

- the coefficients of $\lfloor x \cdot q \rfloor$ are independent of *x*;
- so, precalculate the coefficient of every $\lfloor x \cdot q \rfloor$;
- the numbers at intermediate steps may be large, but $rank(x) \le n^2$ eventually, so perform all computations modulo a number greater than n^2 ; (important because we can manipulate in constant time only numbers with $O(\log n)$ bits).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Preprocessing \Rightarrow improve time of every call to fraction rank.

Use previous formula: $A_q = \lfloor x \cdot q \rfloor - \sum_{d < q, d \mid q} A_d$; after recursive expansions of A_q 's \Rightarrow rank(x) will be a linear combination of $\lfloor x \cdot q \rfloor, \forall q \leq n$.

Idea:

- the coefficients of $\lfloor x \cdot q \rfloor$ are independent of *x*;
- so, precalculate the coefficient of every $\lfloor x \cdot q \rfloor$;
- the numbers at intermediate steps may be large, but $rank(x) \le n^2$ eventually, so perform all computations modulo a number greater than n^2 ; (important because we can manipulate in constant time only numbers with $O(\log n)$ bits).

Precalculating the Coefficients

Obtain the recursive formula: $C_q = 1 - \sum_{t>q,q|t} C_t$, $\forall q \leq n$.

Proof

- $\lfloor x \cdot q \rfloor$ appears first in A_q ;
- A_q subtracted from all its multiples t ⇒ A_t contains [x · t] with coefficient 1 and [x · q] with coefficient −1;
- all operations made with A_t contribute to the coefficient of [x ⋅ q] by −1× the coefficient of [x ⋅ t];
- since A_t is the only one that contains [x · t] initially, all operations involving A_t are described by the final coefficient of [x · t].

The algorithm calculates C_n down to $C_1 \Rightarrow$ running time: $O(\sum_{q=1}^n \frac{n}{q}) = O(n \log n)$; this cost is paid once and every call to fraction rank takes $O(n) \Rightarrow$ total time: $O(n \log n)$.

Precalculating the Coefficients

Obtain the recursive formula: $C_q = 1 - \sum_{t > q, q|t} C_t$, $\forall q \leq n$.

Proof

- $\lfloor x \cdot q \rfloor$ appears first in A_q ;
- A_q subtracted from all its multiples t ⇒ A_t contains [x · t] with coefficient 1 and [x · q] with coefficient −1;
- all operations made with A_t contribute to the coefficient of [x ⋅ q] by −1× the coefficient of [x ⋅ t];
- since A_t is the only one that contains [x · t] initially, all operations involving A_t are described by the final coefficient of [x · t].

The algorithm calculates C_n down to $C_1 \Rightarrow$ running time: $O(\sum_{q=1}^n \frac{n}{q}) = O(n \log n)$; this cost is paid once and every call to fraction rank takes $O(n) \Rightarrow$ total time: $O(n \log n)$.

Precalculating the Coefficients

Obtain the recursive formula: $C_q = 1 - \sum_{t > q, q|t} C_t$, $\forall q \leq n$.

Proof

- $\lfloor x \cdot q \rfloor$ appears first in A_q ;
- A_q subtracted from all its multiples t ⇒ A_t contains [x · t] with coefficient 1 and [x · q] with coefficient −1;
- all operations made with A_t contribute to the coefficient of [x ⋅ q] by −1× the coefficient of [x ⋅ t];
- since A_t is the only one that contains [x · t] initially, all operations involving A_t are described by the final coefficient of [x · t].

The algorithm calculates C_n down to $C_1 \Rightarrow$ running time: $O(\sum_{q=1}^n \frac{n}{q}) = O(n \log n)$; this cost is paid once and every call to fraction rank takes $O(n) \Rightarrow$ total time: $O(n \log n)$.

Improving Space Complexity to $O(\sqrt{n})$

Lemma

$$C_q = C_{q'}$$
 when $\lfloor n/q \rfloor = \lfloor n/q' \rfloor$.

Proof Idea

- consider some q; the term $\lfloor x \cdot q \rfloor$ is first in A_q ;
- A_q is subtracted from A_{m_1q} , for all possible m_1 ;
- the A_{m1q}'s are now subtracted from A_{m1m2q}, for all possible m₂ etc.;
- the recursion stops only when $\prod m_i \ge \lfloor n/q \rfloor$ so C_q depends only on $\lfloor n/q \rfloor$.

Observation: there are only \sqrt{n} distinct C_q 's for $q > \sqrt{n}$.

▲ @ ▶ < ∃ ▶ </p>

Improving Space Complexity to $O(\sqrt{n})$

Lemma

$$C_q = C_{q'}$$
 when $\lfloor n/q
floor = \lfloor n/q'
floor.$

Proof Idea

- consider some q; the term $\lfloor x \cdot q \rfloor$ is first in A_q ;
- A_q is subtracted from A_{m_1q} , for all possible m_1 ;
- the A_{m1q}'s are now subtracted from A_{m1m2q}, for all possible m₂ etc.;
- the recursion stops only when $\prod m_i \ge \lfloor n/q \rfloor$ so C_q depends only on $\lfloor n/q \rfloor$.

Observation: there are only \sqrt{n} distinct C_q 's for $q > \sqrt{n}$.

< 口 > (一) > (二) > ((二) > ((二) > ((1)

Improving Space Complexity to $O(\sqrt{n})$

Lemma

$$C_q = C_{q'}$$
 when $\lfloor n/q
floor = \lfloor n/q'
floor.$

Proof Idea

- consider some q; the term $\lfloor x \cdot q \rfloor$ is first in A_q ;
- A_q is subtracted from A_{m_1q} , for all possible m_1 ;
- the A_{m1q}'s are now subtracted from A_{m1m2q}, for all possible m₂ etc.;
- the recursion stops only when $\prod m_i \ge \lfloor n/q \rfloor$ so C_q depends only on $\lfloor n/q \rfloor$.

Observation: there are only \sqrt{n} distinct C_q 's for $q > \sqrt{n}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Avoid Repetitions

Break into two groups:

- $C_1, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_q for $q > \sqrt{n}$, store array with D_r 's such that $C_q = D_{\lfloor n/q \rfloor}$, for any $q > \lfloor n/q \rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_r and C_q in $O(\sqrt{n})$ space

- rewrite: $C_q = 1 \sum_{t=2}^{\lfloor n/q \rfloor} C_{tq}$;
- $C_q = D_{\lfloor n/q \rfloor} \Rightarrow C_{tq} = D_{\lfloor n/tq \rfloor}$ and since $\lfloor \frac{n}{tq} \rfloor = \lfloor \frac{\lfloor n/q \rfloor}{t} \rfloor;$
- \Rightarrow we obtain $D_r = 1 \sum_{t=2}^r D_{\lfloor r/t \rfloor}$.

Time for computing D_r : quadratic in size of table $\Rightarrow O(n)$.

<ロ> <問> <同> <目> <同> <目> <目</p>

Avoid Repetitions

Break into two groups:

- $C_1, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_q for $q > \sqrt{n}$, store array with D_r 's such that $C_q = D_{\lfloor n/q \rfloor}$, for any $q > \lfloor n/q \rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_r and C_q in $O(\sqrt{n})$ space

- rewrite: $C_q = 1 \sum_{t=2}^{\lfloor n/q \rfloor} C_{tq}$;
- $C_q = D_{\lfloor n/q \rfloor} \Rightarrow C_{tq} = D_{\lfloor n/tq \rfloor}$ and since $\lfloor \frac{n}{tq} \rfloor = \lfloor \frac{\lfloor n/q \rfloor}{t} \rfloor;$
- \Rightarrow we obtain $D_r = 1 \sum_{t=2}^r D_{\lfloor r/t \rfloor}$.

Time for computing D_r : quadratic in size of table $\Rightarrow O(n)$.

(日) (四) (三) (三)

Break into two groups:

- $C_1, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_q for $q > \sqrt{n}$, store array with D_r 's such that $C_q = D_{\lfloor n/q \rfloor}$, for any $q > \lfloor n/q \rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_r and C_q in $O(\sqrt{n})$ space

• rewrite: $C_q = 1 - \sum_{t=2}^{\lfloor n/q \rfloor} C_{tq};$

•
$$C_q = D_{\lfloor n/q \rfloor} \Rightarrow C_{tq} = D_{\lfloor n/tq \rfloor}$$
 and since $\lfloor \frac{n}{tq} \rfloor = \lfloor \frac{\lfloor n/q \rfloor}{t} \rfloor$

•
$$\Rightarrow$$
 we obtain $D_r = 1 - \sum_{t=2}^r D_{\lfloor r/t \rfloor}$.

Time for computing D_r : quadratic in size of table $\Rightarrow O(n)$.

(日) (周) (日) (日)

Break into two groups:

- $C_1, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_q for $q > \sqrt{n}$, store array with D_r 's such that $C_q = D_{\lfloor n/q \rfloor}$, for any $q > \lfloor n/q \rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_r and C_q in $O(\sqrt{n})$ space

• rewrite: $C_q = 1 - \sum_{t=2}^{\lfloor n/q \rfloor} C_{tq};$

•
$$C_q = D_{\lfloor n/q \rfloor} \Rightarrow C_{tq} = D_{\lfloor n/tq \rfloor}$$
 and since $\lfloor \frac{n}{tq} \rfloor = \lfloor \frac{\lfloor n/q \rfloor}{t} \rfloor$

•
$$\Rightarrow$$
 we obtain $D_r = 1 - \sum_{t=2}^r D_{\lfloor r/t \rfloor}$.

Time for computing D_r : quadratic in size of table $\Rightarrow O(n)$.

э

Relation to Factorization

Conjecture: A polynomial time algorithm for factorization does not exist.

We will show that this implies that no polynomial time algorithm (i.e. $O(poly \log n)$) exists for the order statistic problem.

Reduction from Fraction Rank to Order Statistic

- assume we have a poly-time algorithm for order statistic;
- do binary search: guess the rank, find fraction with that rank, compare to our fraction and search below or above;
- $\Rightarrow O(\log n)$ calls to order statistic;
- ⇒ we have a polynomial time algorithm for the fraction rank problem.

Relation to Factorization

Conjecture: A polynomial time algorithm for factorization does not exist.

We will show that this implies that no polynomial time algorithm (i.e. $O(poly \log n)$) exists for the order statistic problem.

Reduction from Fraction Rank to Order Statistic

- assume we have a poly-time algorithm for order statistic;
- do binary search: guess the rank, find fraction with that rank, compare to our fraction and search below or above;
- $\Rightarrow O(\log n)$ calls to order statistic;
- → we have a polynomial time algorithm for the fraction rank problem.

Algorithm for Factorization

It is based on yet another problem:

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

Algorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of n:
 - guess k; if (k, n) ≠ 1, we can find a factor using Euclid's algorithm;
 - if (k, n) = 1, by above problem, we know the number of numbers in [2, k] relatively prime to n:
 - If this number is k − 1, the smallest factor of n is > k;
 - otherwise, there is at least a factor below k.

 \Rightarrow polynomial time algorithm for factorization.

(日) (四) (三) (三)

Algorithm for Factorization

It is based on yet another problem:

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

Algorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of *n*:
 - guess k; if (k, n) ≠ 1, we can find a factor using Euclid's algorithm;

if (k, n) = 1, by above problem, we know the number of numbers in [2, k] relatively prime to n:

- if this number is k 1, the smallest factor of n is > k;
- otherwise, there is at least a factor below *k*.

 \Rightarrow polynomial time algorithm for factorization.

(日) (同) (日) (日)

Algorithm for Factorization

It is based on yet another problem:

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

Algorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of *n*:
 - guess k; if (k, n) ≠ 1, we can find a factor using Euclid's algorithm;
 - if (k, n) = 1, by above problem, we know the number of numbers in [2, k] relatively prime to n:
 - if this number is k 1, the smallest factor of n is > k;
 - otherwise, there is at least a factor below *k*.
- \Rightarrow polynomial time algorithm for factorization.

(日) (同) (日) (日)

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

- all $i \in [2, k]$ such that (i, n) = 1 give fractions $\frac{i}{n} \in \mathcal{F}_n$;
- first, find $r = rank(\frac{k}{n})$ in \mathcal{F}_n (fraction rank);
- then, find the fraction of rank r 1 in \mathcal{F}_n (order statistic);
- since $\frac{k}{n}$ is irreducible and it is the mediant of neighboring fractions \Rightarrow the preceding fraction must have denominator < n;
- find the rank of this preceding fraction in \mathcal{F}_{n-1} , say *t*;
- the difference r t = number of irreducible fractions $\frac{i}{n} \leq \frac{k}{n}$.

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

- all $i \in [2, k]$ such that (i, n) = 1 give fractions $\frac{i}{n} \in \mathcal{F}_n$;
- first, find $r = rank(\frac{k}{n})$ in \mathcal{F}_n (fraction rank);
- then, find the fraction of rank r 1 in \mathcal{F}_n (order statistic);
- since ^k/_n is irreducible and it is the mediant of neighboring fractions ⇒ the preceding fraction must have denominator < n;
- find the rank of this preceding fraction in \mathcal{F}_{n-1} , say *t*;
- the difference r t = number of irreducible fractions $\frac{i}{n} \leq \frac{k}{n}$.

▲ @ ▶ < ∃ ▶ </p>

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

- all $i \in [2, k]$ such that (i, n) = 1 give fractions $\frac{i}{n} \in \mathcal{F}_n$;
- first, find $r = rank(\frac{k}{n})$ in \mathcal{F}_n (fraction rank);
- then, find the fraction of rank r 1 in \mathcal{F}_n (order statistic);
- since k/n is irreducible and it is the mediant of neighboring fractions ⇒ the preceding fraction must have denominator < n;
- find the rank of this preceding fraction in \mathcal{F}_{n-1} , say *t*;
- the difference r t = number of irreducible fractions $\frac{i}{n} \leq \frac{k}{n}$.

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Problem: Given *n* and $k \le n$ such that gcd(k, n) = 1, report the number of integers in [2, *k*] that are relatively prime to *n*.

- all $i \in [2, k]$ such that (i, n) = 1 give fractions $\frac{i}{n} \in \mathcal{F}_n$;
- first, find $r = rank(\frac{k}{n})$ in \mathcal{F}_n (fraction rank);
- then, find the fraction of rank r 1 in \mathcal{F}_n (order statistic);
- since ^k/_n is irreducible and it is the mediant of neighboring fractions ⇒ the preceding fraction must have denominator < n;
- find the rank of this preceding fraction in \mathcal{F}_{n-1} , say *t*;
- the difference r t = number of irreducible fractions $\frac{i}{n} \leq \frac{k}{n}$.

< 口 > (一) > (二) > ((二) > ((二) > ((1)

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? – this would imply hardness of fraction rank.

A:

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}$, \exists only one fraction in this range with denominator n 1;
- find this fraction (O(1)) and reduce it $\Rightarrow O(\log n)$ time;
- find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_n ; their difference will give the number of irreducible fractions $\frac{i}{n} < \frac{k}{n}$ (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$);

< 🗇 🕨 🔺 🚍 🕨

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? – this would imply hardness of fraction rank.

A: Yes.

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}$, \exists only one fraction in this range with denominator n 1;
- find this fraction (O(1)) and reduce it $\Rightarrow O(\log n)$ time;
- find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_n ; their difference will give the number of irreducible fractions $\frac{i}{n} < \frac{k}{n}$ (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$);

< 🗇 🕨 🔺 🚍 🕨 .

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? – this would imply hardness of fraction rank.

A: Yes.

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}$, \exists only one fraction in this range with denominator n 1;
- find this fraction (O(1)) and reduce it \Rightarrow O(log *n*) time;
- find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_n ; their difference will give the number of irreducible fractions $\frac{i}{n} < \frac{k}{n}$ (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$);

A (1) > A (1) > A

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? – this would imply hardness of fraction rank.

A: Yes.

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}$, \exists only one fraction in this range with denominator n 1;
- find this fraction (O(1)) and reduce it \Rightarrow O(log *n*) time;
- find the ranks of this fraction in *F*_{n-1} and *F*_n; their difference will give the number of irreducible fractions ⁱ/_n < ^k/_n (possibly plus one due to ^k/_n; problem solved by comparing our fraction to ^k/_n);

▲□► ▲ □► ▲

Computing Order Statistics in the Farey Sequence

THE END

Thank you!

C.E.Pătrașcu, M.Pătrașcu Computing Order Statistics in the Farey Sequence

э

▲御▶ ▲ 副▶ -