Computing Order Statistics in the Farey Sequence

Corina E. Pǎtraşcu ${ }^{1}$ Mihai Pǎtraşcu ${ }^{2}$

${ }^{1}$ Department of Mathematics Harvard University
${ }^{2}$ MIT CSAIL
ANTS VI

The Farey Sequence

$$
\mathcal{F}_{n}=\left\{\left.\frac{p}{q} \right\rvert\, 0<p<q \leq n, \quad \operatorname{gcd}(p, q)=1\right\}
$$

(sometimes include $\frac{0}{\top}$ and $\frac{1}{1}$) Total number of fractions: $\frac{3}{\pi^{2}} n^{2}+O(n \log n)$.

Properties

The Farey Sequence

$\mathcal{F}_{n}=\left\{\left.\frac{p}{q} \right\rvert\, 0<p<q \leq n, \quad \operatorname{gcd}(p, q)=1\right\}$
(sometimes include $\frac{0}{\top}$ and $\frac{1}{1}$)
Total number of fractions: $\frac{3}{\pi^{2}} n^{2}+O(n \log n)$.

Properties

- P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in $\mathcal{F}_{n} \Rightarrow \frac{p}{q} \leq \frac{p+p^{\prime}}{q+q^{\prime}} \leq \frac{p^{\prime}}{q^{\prime}}$ (mediant) is also Farey.
- P2. If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in \mathcal{F}_{n}, then the next fraction $\frac{p^{\prime \prime}}{q^{\prime \prime}}$ is given by:

[^0] and $O(1)$ space.

The Farey Sequence

$\mathcal{F}_{n}=\left\{\left.\frac{p}{q} \right\rvert\, 0<p<q \leq n, \quad \operatorname{gcd}(p, q)=1\right\}$
(sometimes include $\frac{0}{\top}$ and $\frac{1}{\top}$)
Total number of fractions: $\frac{3}{\pi^{2}} n^{2}+O(n \log n)$.

Properties

- P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in $\mathcal{F}_{n} \Rightarrow \frac{p}{q} \leq \frac{p+p^{\prime}}{q+q^{\prime}} \leq \frac{p^{\prime}}{q^{\prime}}$ (mediant) is also Farey.
- P2. If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in \mathcal{F}_{n}, then the next fraction $\frac{p^{\prime \prime}}{q^{\prime \prime}}$ is given by:

$$
p^{\prime \prime}=\left\lfloor\frac{q+n}{q^{\prime}}\right\rfloor p^{\prime}-p, \quad q^{\prime \prime}=\left\lfloor\frac{q+n}{q^{\prime}}\right\rfloor q^{\prime}-q
$$

The Farey Sequence

$\mathcal{F}_{n}=\left\{\left.\frac{p}{q} \right\rvert\, 0<p<q \leq n, \quad \operatorname{gcd}(p, q)=1\right\}$
(sometimes include $\frac{0}{\top}$ and $\frac{1}{\top}$)
Total number of fractions: $\frac{3}{\pi^{2}} n^{2}+O(n \log n)$.

Properties

- P1. (Farey 1816) If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in $\mathcal{F}_{n} \Rightarrow \frac{p}{q} \leq \frac{p+p^{\prime}}{q+q^{\prime}} \leq \frac{p^{\prime}}{q^{\prime}}$ (mediant) is also Farey.
- P2. If $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ consecutive in \mathcal{F}_{n}, then the next fraction $\frac{p^{\prime \prime}}{q^{\prime \prime}}$ is given by:

$$
p^{\prime \prime}=\left\lfloor\frac{q+n}{q^{\prime}}\right\rfloor p^{\prime}-p, \quad q^{\prime \prime}=\left\lfloor\frac{q+n}{q^{\prime}}\right\rfloor q^{\prime}-q
$$

P2 suggests ideal algorithm for generating \mathcal{F}_{n} in $O\left(n^{2}\right)$ time and $O(1)$ space.

Stern-Brocot Tree

 Start with $\frac{0}{7}$ and $\frac{1}{1}$ and insert mediant between any twoconsecutive fractions in the in-order traversal of the tree.

0/1
1/2
$1 / 1$

Stern-Brocot Tree

 Start with $\frac{0}{7}$ and $\frac{1}{1}$ and insert mediant between any twoconsecutive fractions in the in-order traversal of the tree.

0/1

Stern-Brocot Tree

Start with $\frac{0}{T}$ and $\frac{1}{\top}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

0/1

Stern-Brocot Tree

Start with $\frac{0}{\top}$ and $\frac{1}{\top}$ and insert mediant between any two consecutive fractions in the in-order traversal of the tree.

0/1

Computing order Statistics

Problem 1
 Given n and k, generate the k-th element of \mathcal{F}_{n}.

give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O\left(n \log ^{2} n\right)$ and space $O(n)$

- first improvement: time $O(n$ loq $n)$ and space $O($

Computing order Statistics

Problem 1

Given n and k, generate the k-th element of \mathcal{F}_{n}.
give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O\left(n \log ^{2} n\right)$ and space $O(n)$;
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time $O(n \log n)$ and space
- also find the number of Farey fractions in time n^{5}

Computing order Statistics

Problem 1

Given n and k, generate the k-th element of \mathcal{F}_{n}.
give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O\left(n \log ^{2} n\right)$ and space $O(n)$;
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time $O(n \log n)$ and space $O\left(n^{1 / 3} \log ^{2 / 3} n\right)$ (fraction rank in $O(n)$ time);
- also find the number of Farey fractions in time $n^{5 / 6+o(1)}$
- recent progress: count number of Farey fractions in

Computing order Statistics

Problem 1

Given n and k, generate the k-th element of \mathcal{F}_{n}.
give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O\left(n \log ^{2} n\right)$ and space $O(n)$;
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time $O(n \log n)$ and space $O\left(n^{1 / 3} \log ^{2 / 3} n\right)$ (fraction rank in $O(n)$ time);
- also find the number of Farey fractions in time $n^{5 / 6+o(1)}$;
- recent progress: count number of Farey fractions in

Computing order Statistics

Problem 1

Given n and k, generate the k-th element of \mathcal{F}_{n}.
give reduction to:

Problem 2

Given a fraction, determine its rank in the Farey sequence.

- initial algorithm: time $O\left(n \log ^{2} n\right)$ and space $O(n)$;
- first improvement: time $O(n \log n)$ and space $O(\sqrt{n})$;
- second improvement: time $O(n \log n)$ and space $O\left(n^{1 / 3} \log ^{2 / 3} n\right)$ (fraction rank in $O(n)$ time);
- also find the number of Farey fractions in time $n^{5 / 6+o(1)}$;
- recent progress: count number of Farey fractions in $n^{4 / 5+o(1)}$.

Reduction from Order Statistic to Fraction Rank

Want to determine k-th fraction:

- use binary search to determine j such that answer is in the interval
- guess j and determine $r=\operatorname{rank}\left(\frac{1}{n}\right)$ in \mathcal{F}_{n};
- if $r<k$ search above j; else, search below; if $r=k$, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left.\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each
denominator (because length of interval is $\frac{1}{n}$)
- this fraction, for denominator q, if it exists, has numerator

Reduction from Order Statistic to Fraction Rank

Want to determine k-th fraction:

- use binary search to determine j such that answer is in the interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;
- guess j and determine $r=\operatorname{rank}\left(\frac{j}{n}\right)$ in \mathcal{F}_{n};
- if $r<k$ search above j; else, search below; if $r=k$, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left.\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each
denominator (because length of interval is $\frac{1}{n}$).
- this fraction, for denominator q, if it exists, has numerator $\left\lfloor\frac{(j+1) q-1}{n}\right\rfloor$

Reduction from Order Statistic to Fraction Rank

Want to determine k-th fraction:

- use binary search to determine j such that answer is in the interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;
- guess j and determine $r=\operatorname{rank}\left(\frac{j}{n}\right)$ in \mathcal{F}_{n};
- if $r<k$ search above j; else, search below; if $r=k$, done.
- we use $O(\log n)$ calls to the fraction rank subroutine;
- note that in $\left[\frac{j}{n}, \frac{j+1}{n}\right)$, there is at most one fraction for each denominator (because length of interval is $\frac{1}{n}$).
- this fraction, for denominator q, if it exists, has numerator $\left\lfloor\frac{(j+1) q-1}{n}\right\rfloor$;

Reduction from Order Statistic to Fraction Rank

- must determine fraction with rank $=k-\operatorname{rank}\left(\frac{j}{n}\right)$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;

Reduction from Order Statistic to Fraction Rank

- must determine fraction with rank $=k-\operatorname{rank}\left(\frac{j}{n}\right)$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;

Algorithm - O(n) time and O(1) memory

- generate all fractions in the range;
- as we generate, keep just the minimum strictly greater than $\frac{j}{n}$;
- finally, reduce $\frac{j}{n}$ and the minimum fraction obtained above \Rightarrow two consecutive fractions in \mathcal{F}_{n};
- use P2 to generate the next one in constant time etc.; keep a count and return the desired fraction.

Reduction from Order Statistic to Fraction Rank

- must determine fraction with rank $=k-\operatorname{rank}\left(\frac{j}{n}\right)$ among irreducible fractions in interval $\left[\frac{j}{n}, \frac{j+1}{n}\right)$;

Algorithm time and memory

- generate all fractions in the range;
- as we generate, keep just the minimum strictly greater than $\frac{j}{n}$,
- finally, reduce $\frac{j}{n}$ and the minimum fraction obtained above \Rightarrow two consecutive fractions in \mathcal{F}_{n};
- use P2 to generate the next one in constant time etc.; keep a count and return the desired fraction.

Algorithm for Fraction Rank Problem

More general: Given x real, determine the number of irreducible fractions $\frac{p}{q} \leq x$, with $q \leq n$.

- $A_{q}=$ the set of such irreducible fractions with denominator

Algorithm for Fraction Rank Problem

More general: Given x real, determine the number of irreducible fractions $\frac{p}{q} \leq x$, with $q \leq n$.

- $A_{q}=$ the set of such irreducible fractions with denominator $q ;$
- $\{$ all fractions in $[0, x)$ with denominator $q\} \longleftrightarrow$ $\{$ reduced fractions with denominator d, for all $d \mid q\}$; - this gives formula:
- so, to compute rank(x) $\sum_{q=1}^{n} A_{q}$, we use:

Algorithm for Fraction Rank Problem

More general: Given x real, determine the number of irreducible fractions $\frac{p}{q} \leq x$, with $q \leq n$.

- $A_{q}=$ the set of such irreducible fractions with denominator $q ;$
- $\{$ all fractions in $[0, x)$ with denominator $q\} \longleftrightarrow$ $\{$ reduced fractions with denominator d, for all $d \mid q\}$;
- this gives formula: $\lfloor x \cdot q\rfloor=\sum_{d \leq q, d \mid q} A_{d}$;
- so, to compute $\operatorname{rank}(x)=\sum_{q=1}^{n} A_{q}$, we use:

Algorithm for Fraction Rank Problem

More general: Given x real, determine the number of irreducible fractions $\frac{p}{q} \leq x$, with $q \leq n$.

- $A_{q}=$ the set of such irreducible fractions with denominator $q ;$
- $\{$ all fractions in $[0, x)$ with denominator $q\} \longleftrightarrow$ \{reduced fractions with denominator d, for all $d \mid q\}$;
- this gives formula: $\lfloor x \cdot q\rfloor=\sum_{d \leq q, d \mid q} A_{d}$;
- so, to compute rank $(x)=\sum_{q=1}^{n} A_{q}$, we use: $A_{q}=\lfloor x \cdot q\rfloor-\sum_{d<q, d \mid q} A_{d}$.

Algorithm for Fraction Rank Problem

Problem: no fast way to iterate over all divisors.

```
Solution:
    - initialize array T[1..n] by }T[q]=\lfloorx\cdotq\rfloor
    - consider all q's in increasing order from 1 to n;
    - for each q, consider its multiples m | q and subtract T[q]
    from T[m\cdotq];
    - at step q, we will have }T[q]=\mp@subsup{A}{q}{}\mathrm{ ;
    - rank}(x)\mathrm{ is obtained by summing all the values in the array
    at the end;
```


Algorithm for Fraction Rank Problem

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array $T[1 . . n]$ by $T[q]=\lfloor x \cdot q\rfloor$;
- consider all q's in increasing order from 1 to n;
- for each q, consider its multiples $m \cdot q$ and subtract $T[q]$ from $T[m \cdot q]$;
- at step q, we will have $T[q]=A_{q}$;
- $\operatorname{rank}(x)$ is obtained by summing all the values in the array at the end;
- running time: $O\left(n+\sum_{q=1}^{n} \frac{n}{q}\right)=O(n \log n)$.

Algorithm for Fraction Rank Problem

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array $T[1 . . n]$ by $T[q]=\lfloor x \cdot q\rfloor$;
- consider all q's in increasing order from 1 to n;
- for each q, consider its multiples $m \cdot q$ and subtract $T[q]$ from $T[m \cdot q]$;
- at step q, we will have $T[q]=A_{q}$;
- $\operatorname{rank}(x)$ is obtained by summing all the values in the array at the end;
- running time: $O\left(n+\sum_{q=1}^{n} \frac{n}{q}\right)=O(n \log n)$.

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O\left(n \log ^{2} n\right)$ time algorithm for the order statistic problem. Both use $O(n)$ space.

Algorithm for Fraction Rank Problem

Problem: no fast way to iterate over all divisors.

Solution:

- initialize array $T[1 . . n]$ by $T[q]=\lfloor x \cdot q\rfloor$;
- consider all q's in increasing order from 1 to n;
- for each q, consider its multiples $m \cdot q$ and subtract $T[q]$ from $T[m \cdot q]$;
- at step q, we will have $T[q]=A_{q}$;
- $\operatorname{rank}(x)$ is obtained by summing all the values in the array at the end;
- running time: $O\left(n+\sum_{q=1}^{n} \frac{n}{q}\right)=O(n \log n)$.

Thus, we have an $O(n \log n)$ time algorithm for the fraction rank problem $\Rightarrow O\left(n \log ^{2} n\right)$ time algorithm for the order statistic problem. Both use $O(n)$ space.

Improving the Running Time to $O(n \log n)$

Preprocessing \Rightarrow improve time of every call to fraction rank.
Use previous formula: $A_{q}=\lfloor x \cdot q\rfloor-\sum_{d<a . d \mid q} A_{d}$; after recursive expansions of A_{q} 's $\Rightarrow \operatorname{rank}(x)$ will be a linear combination of $\lfloor x \cdot q\rfloor, \forall q \leq n$.

- the coefficients of $\lfloor x \cdot q\rfloor$ are independent of x;

Improving the Running Time to $O(n \log n)$

Preprocessing \Rightarrow improve time of every call to fraction rank.
Use previous formula: $A_{q}=\lfloor x \cdot q\rfloor-\sum_{d<q, d \mid q} A_{d}$; after recursive expansions of A_{q} 's $\Rightarrow \operatorname{rank}(x)$ will be a linear combination of $\lfloor x \cdot q\rfloor, \forall q \leq n$.

Idea:

- the coefficients of $|x \cdot q|$ are independent of x;
- so, precalculate the coefficient of every $\lfloor x \cdot q\rfloor$;

Improving the Running Time to $O(n \log n)$

Preprocessing \Rightarrow improve time of every call to fraction rank.
Use previous formula: $A_{q}=\lfloor x \cdot q\rfloor-\sum_{d<q, d \mid q} A_{d}$; after recursive expansions of A_{q} 's $\Rightarrow \operatorname{rank}(x)$ will be a linear combination of $\lfloor x \cdot q\rfloor, \forall q \leq n$.

Idea:

- the coefficients of $\lfloor x \cdot q\rfloor$ are independent of x;
- so, precalculate the coefficient of every $\lfloor x \cdot q\rfloor$;
- the numbers at intermediate steps may be large, but $\operatorname{rank}(x) \leq n^{2}$ eventually, so perform all computations
modulo a number greater than n^{2}; (important because ve
can manipulate in constant time only numbers with $O(\log n)$ bits $)$.

Improving the Running Time to $O(n \log n)$

Preprocessing \Rightarrow improve time of every call to fraction rank.
Use previous formula: $A_{q}=\lfloor x \cdot q\rfloor-\sum_{d<q, d \mid q} A_{d}$; after recursive expansions of A_{q} 's $\Rightarrow \operatorname{rank}(x)$ will be a linear combination of $\lfloor x \cdot q\rfloor, \forall q \leq n$.

Idea:

- the coefficients of $\lfloor x \cdot q\rfloor$ are independent of x;
- so, precalculate the coefficient of every $\lfloor x \cdot q\rfloor$;
- the numbers at intermediate steps may be large, but $\operatorname{rank}(x) \leq n^{2}$ eventually, so perform all computations modulo a number greater than n^{2}; (important because we can manipulate in constant time only numbers with $O(\log n)$ bits).

Precalculating the Coefficients

Obtain the recursive formula: $C_{q}=1-\sum_{t>q, q \mid t} C_{t}, \forall q \leq n$.

Proof

- $\lfloor x \cdot q\rfloor$ appears first in A_{q};
- A_{q} subtracted from all its multiples $t \Rightarrow A_{t}$ contains $\mid x \cdot t$ with coefficient 1 and $|x \cdot q|$ with coefficient -1 ;
- all operations made with A_{t} contribute to the coefficient of $\lfloor x \cdot q\rfloor$ by $-1 \times$ the coefficient of $\lfloor x \cdot t\rfloor$
- since A_{t} is the only one that contains $\lfloor x \cdot t\rfloor$ initially, all operations involving A_{t} are described by the final coefficient of $|x \cdot t|$

The algorithm calculates C_{n} down to $C_{1} \Rightarrow$ running time

Precalculating the Coefficients

Obtain the recursive formula: $C_{q}=1-\sum_{t>q, q \mid t} C_{t}, \forall q \leq n$.

Proof

- $\lfloor x \cdot q\rfloor$ appears first in A_{q};
- A_{q} subtracted from all its multiples $t \Rightarrow A_{t}$ contains $\lfloor x \cdot t\rfloor$ with coefficient 1 and $\lfloor x \cdot q\rfloor$ with coefficient -1 ;
- all operations made with A_{t} contribute to the coefficient of $\lfloor x \cdot q\rfloor$ by $-1 \times$ the coefficient of $\lfloor x \cdot t\rfloor$;
- since A_{t} is the only one that contains $\lfloor x \cdot t\rfloor$ initially, all operations involving A_{t} are described by the final coefficient of $\lfloor x \cdot t\rfloor$.

The algorithm calculates C_{n} down to $C_{1} \Rightarrow$ running time:

fraction rank takes $O(n) \Rightarrow$ total time:

Precalculating the Coefficients

Obtain the recursive formula: $C_{q}=1-\sum_{t>q, q \mid t} C_{t}, \forall q \leq n$.

Proof

- $\lfloor x \cdot q\rfloor$ appears first in A_{q};
- A_{q} subtracted from all its multiples $t \Rightarrow A_{t}$ contains $\lfloor x \cdot t\rfloor$ with coefficient 1 and $\lfloor x \cdot q\rfloor$ with coefficient -1 ;
- all operations made with A_{t} contribute to the coefficient of $\lfloor x \cdot q\rfloor$ by $-1 \times$ the coefficient of $\lfloor x \cdot t\rfloor$;
- since A_{t} is the only one that contains $\lfloor x \cdot t\rfloor$ initially, all operations involving A_{t} are described by the final coefficient of $\lfloor x \cdot t\rfloor$.

The algorithm calculates C_{n} down to $C_{1} \Rightarrow$ running time:
$O\left(\sum_{q=1}^{n} \frac{n}{q}\right)=O(n \log n)$; this cost is paid once and every call to fraction rank takes $O(n) \Rightarrow$ total time: $O(n \log n)$.

Improving Space Complexity to

Lemma
$C_{q}=C_{q^{\prime}}$ when $\lfloor n / q\rfloor=\left\lfloor n / q^{\prime}\right\rfloor$.

Proof dea

- consider some q; the term $\lfloor x \cdot q\rfloor$ is first in A_{q};
- A_{q} is subtracted from $A_{m_{1} q}$, for all possible m_{1};
- the $A_{m_{1} q}$'s are now subtracted from $A_{m_{1} m_{2} q}$, for all possible m_{2} etc.;
- the recursion stops only when $11 m_{i} \geq\lfloor n / q\rfloor$ so C_{q} depends only on $\lfloor n / q\rfloor$.

Observation: there are only \sqrt{n} distinct C_{q} 's for $q>\sqrt{n}$.

Improving Space Complexity to

Lemma
$C_{q}=C_{q^{\prime}}$ when $\lfloor n / q\rfloor=\left\lfloor n / q^{\prime}\right\rfloor$.

Proof Idea

- consider some q; the term $\lfloor x \cdot q\rfloor$ is first in A_{q};
- A_{q} is subtracted from $A_{m_{1} q}$, for all possible m_{1};
- the $A_{m_{1} q}$'s are now subtracted from $A_{m_{1} m_{2} q}$, for all possible m_{2} etc.;
- the recursion stops only when $\prod m_{i} \geq\lfloor n / q\rfloor$ so C_{q} depends only on $\lfloor n / q\rfloor$.

Observation: there are only \sqrt{n} distinct C_{q} 's for $q>\sqrt{n}$.

Improving Space Complexity to

Lemma
$C_{q}=C_{q^{\prime}}$ when $\lfloor n / q\rfloor=\left\lfloor n / q^{\prime}\right\rfloor$.

Proof Idea

- consider some q; the term $\lfloor x \cdot q\rfloor$ is first in A_{q};
- A_{q} is subtracted from $A_{m_{1} q}$, for all possible m_{1};
- the $A_{m_{1} q}$'s are now subtracted from $A_{m_{1} m_{2} q}$, for all possible m_{2} etc.;
- the recursion stops only when $\prod m_{i} \geq\lfloor n / q\rfloor$ so C_{q} depends only on $\lfloor n / q\rfloor$.

Observation: there are only \sqrt{n} distinct C_{q} 's for $q>\sqrt{n}$.

Avoid Repetitions

Break into two groups:

- $C_{1}, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_{q} for $q>\sqrt{n}$, store array with D_{r} 's such that $C_{q}=D_{\lfloor n / q\rfloor}$, for any $q>\lfloor n / q\rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

- rewrite

and since
- \Rightarrow we obtain $D_{\text {r }}$

Avoid Repetitions

Break into two groups:

- $C_{1}, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_{q} for $q>\sqrt{n}$, store array with D_{r} 's such that $C_{q}=D_{\lfloor n / q\rfloor}$, for any $q>\lfloor n / q\rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_{r} and C_{q} in $O(\sqrt{n})$ space

- rewrite:
- $C_{q}=D_{\lfloor n / q\rfloor} \Rightarrow C_{t q}=D_{\lfloor n / t q]}$ and since $\left\lfloor\frac{n}{[q}\right.$
- \Rightarrow we obtain D_{r}

Time for computing D_{r}
quadratic in size of table

Avoid Repetitions

Break into two groups:

- $C_{1}, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_{q} for $q>\sqrt{n}$, store array with D_{r} 's such that $C_{q}=D_{\lfloor n / q\rfloor}$, for any $q>\lfloor n / q\rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_{r} and C_{q} in $O(\sqrt{n})$ space

- rewrite: $C_{q}=1-\sum_{t=2}^{\lfloor n / q\rfloor} C_{t q}$;
- $C_{q}=D_{\lfloor n / q\rfloor} \Rightarrow C_{t q}=D_{\lfloor n / t q\rfloor}$ and since $\left\lfloor\frac{n}{t q}\right\rfloor=\left\lfloor\frac{\lfloor n / q\rfloor}{t}\right\rfloor$;
- \Rightarrow we obtain $D_{r}=1-\sum_{t=2}^{r} D_{\lfloor r / t\rfloor}$.

Time for computing D_{r} : quadratic in size of table $\Rightarrow O(n)$.

Avoid Repetitions

Break into two groups:

- $C_{1}, \ldots C_{\sqrt{n}}$ stored as before;
- instead of storing C_{q} for $q>\sqrt{n}$, store array with D_{r} 's such that $C_{q}=D_{\lfloor n / q\rfloor}$, for any $q>\lfloor n / q\rfloor$.

Observation: both arrays take $O(\sqrt{n})$ space and fraction rank algorithm remains trivial.

Precomputing D_{r} and C_{q} in $O(\sqrt{n})$ space

- rewrite: $C_{q}=1-\sum_{t=2}^{\lfloor n / q\rfloor} C_{t q}$;
- $C_{q}=D_{\lfloor n / q\rfloor} \Rightarrow C_{t q}=D_{\lfloor n / t q\rfloor}$ and since $\left\lfloor\frac{n}{t q}\right\rfloor=\left\lfloor\frac{\lfloor n / q\rfloor}{t}\right\rfloor$;
- \Rightarrow we obtain $D_{r}=1-\sum_{t=2}^{r} D_{\lfloor r / t\rfloor}$.

Time for computing D_{r} : quadratic in size of table $\Rightarrow O(n)$.

Relation to Factorization

Conjecture: A polynomial time algorithm for factorization does not exist.

We will show that this implies that no polynomial time algorithm (i.e. $O($ poly $\log n)$) exists for the order statistic problem.

> Reduction from Fraction Rank to Order Statistic
> - assume we have a poly-time algorithm for order statistic
> - do binary search: guess the rank, find fraction with that rank, compare to our fraction and search below or above;
> - $\Rightarrow O(\log n)$ calls to order statistic;
> - \Rightarrow we have a polynomial time algorithm for the fraction rank problem.

Relation to Factorization

Conjecture: A polynomial time algorithm for factorization does not exist.

We will show that this implies that no polynomial time algorithm (i.e. $O($ poly $\log n)$) exists for the order statistic problem.

Reduction from Fraction Rank to Order Statistic

- assume we have a poly-time algorithm for order statistic;
- do binary search: guess the rank, find fraction with that rank, compare to our fraction and search below or above;
- $\Rightarrow O(\log n)$ calls to order statistic;
- \Rightarrow we have a polynomial time algorithm for the fraction rank problem.

Algorithm for Factorization

It is based on yet another problem:
Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

Agorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of n :
- guess k; if $(k, n) \neq 1$, we can find a factor using Euclid's algorithm;
polynomial time algorithm for factorization.

Algorithm for Factorization

It is based on yet another problem:
Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

Algorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of n :
- guess k; if $(k, n) \neq 1$, we can find a factor using Euclid's algorithm;
- if $(k, n)=1$, by above problem, we know the number of numbers in $[2, k]$ relatively prime to n :
- if this number is $k-1$, the smallest factor of n is
- otherwise, there is at least a factor below k.
\Rightarrow polynomial time algorithm for factorization.
C.E.Pătraşcu, M.Pătraşcu

Algorithm for Factorization

It is based on yet another problem:
Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

Algorithm for Factorization

- assume a polynomial time algorithm for the above problem;
- use binary search to find factor of n :
- guess k; if $(k, n) \neq 1$, we can find a factor using Euclid's algorithm;
- if $(k, n)=1$, by above problem, we know the number of numbers in $[2, k]$ relatively prime to n :
- if this number is $k-1$, the smallest factor of n is $>k$;
- otherwise, there is at least a factor below k.
\Rightarrow polynomial time algorithm for factorization.

Relation between Farey and Previous Problem

Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

Relation between Farey and Previous Problem

Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

- all $i \in[2, k]$ such that $(i, n)=1$ give fractions $\frac{i}{n} \in \mathcal{F}_{n}$;
- first, find $r=\operatorname{rank}\left(\frac{k}{n}\right)$ in \mathcal{F}_{n} (fraction rank);
- then, find the fraction of rank $r-1$ in \mathcal{F}_{n} (order statistic);
- since $\frac{k}{n}$ is irreducible and it is the mediant of neighboring
fractions \Rightarrow the preceding fraction must have denominator
\square
- find the rank of this preceding fraction in \mathcal{F}_{n-1}, say
- the difference $r-t=$ number of irreducible fractions

Relation between Farey and Previous Problem

Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

- all $i \in[2, k]$ such that $(i, n)=1$ give fractions $\frac{i}{n} \in \mathcal{F}_{n}$;
- first, find $r=\operatorname{rank}\left(\frac{k}{n}\right)$ in \mathcal{F}_{n} (fraction rank);
- then, find the fraction of rank $r-1$ in \mathcal{F}_{n} (order statistic);
- since $\frac{k}{n}$ is irreducible and it is the mediant of neighboring fractions \Rightarrow the preceding fraction must have denominator $<n$;
- find the rank of this preceding fraction in \mathcal{F}_{n-1}, say t;
- the difference $r-t=$ number of irreducible fractions

Relation between Farey and Previous Problem

Problem: Given n and $k \leq n$ such that $\operatorname{gcd}(k, n)=1$, report the number of integers in $[2, k]$ that are relatively prime to n.

- all $i \in[2, k]$ such that $(i, n)=1$ give fractions $\frac{i}{n} \in \mathcal{F}_{n}$;
- first, find $r=\operatorname{rank}\left(\frac{k}{n}\right)$ in \mathcal{F}_{n} (fraction rank);
- then, find the fraction of rank $r-1$ in \mathcal{F}_{n} (order statistic);
- since $\frac{k}{n}$ is irreducible and it is the mediant of neighboring fractions \Rightarrow the preceding fraction must have denominator $<n$;
- find the rank of this preceding fraction in \mathcal{F}_{n-1}, say t;
- the difference $r-t=$ number of irreducible fractions $\frac{i}{n} \leq \frac{k}{n}$.

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? - this would imply hardness of fraction rank.
A:

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? - this would imply hardness of fraction rank.
A: Yes.
> - consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is only one fraction in this range with denominator $n-1$ - find this fraction $(O(1))$ and reduce it $\Rightarrow O(\log n)$ time; - find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_{n}; their difference will give the number of irreducible fractions (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$)

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? - this would imply hardness of fraction rank.
A: Yes.

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}, \exists$ only one fraction in this range with denominator $n-1$;
- find this fraction $(O(1))$ and reduce it $\Rightarrow O(\log n)$ time;
- find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_{n}; their
difference will give the number of irreducible fractions $\frac{i}{n}<\frac{k}{n}$ (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$)

Reduction to Fraction Rank

Q: Assume a poly-time algorithm just for fraction rank. Does the previous reduction still hold? - this would imply hardness of fraction rank.
A: Yes.

- consider the fractions $\frac{k-1}{n}$ and $\frac{k+1}{n}$; since their difference is $\frac{2}{n}, \exists$ only one fraction in this range with denominator $n-1$;
- find this fraction $(O(1))$ and reduce it $\Rightarrow O(\log n)$ time;
- find the ranks of this fraction in \mathcal{F}_{n-1} and \mathcal{F}_{n}; their difference will give the number of irreducible fractions $\frac{i}{n}<\frac{k}{n}$ (possibly plus one due to $\frac{k}{n}$; problem solved by comparing our fraction to $\frac{k}{n}$);

Computing Order Statistics in the Farey Sequence

Thank you!

[^0]: P2 suggests ideal algorithm for generating \mathcal{F}_{n} in $O\left(n^{2}\right)$ time

