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Abstract

We present the �rst sublinear-time algorithms for computing order statistics in the Farey sequence

and for the related problem of ranking. Our algorithms achieve a running times of nearly O(n2/3), which
is a signi�cant improvement over the previous algorithms taking time O(n).

We also initiate the study of a more general problem: counting primitive lattice points inside planar

shapes. For rational polygons containing the origin, we obtain a running time proportional to D6/7,

where D is the diameter of the polygon.

1 Introduction

1.1 Algorithms for the Farey Sequence

The Farey sequence of order n (denoted Fn) is the increasing sequence of all irreducible fractions from
the interval [0, 1] with denominators less than or equal to n. In other words, Fn denotes the sorted set
{ab | 0 ≤ a ≤ b ≤ n}. Farey sequences have numerous interesting properties, and are well known in
number theory and combinatorics. We refer the reader to [7] for a comprehensive list of such properties and
applications.

Several algorithms for generating the entire sequence Fn in O(n2) time are known, e.g. [7, Problem 4-61].
This running time is optimal, as the sequence Fn has 3

π2 ·n2 +O(n log n) terms. In this paper, we study two
algorithmic problems which give us �local� access to the sequence, even when we cannot a�ord to generate
it entirely:

• the order statistic problem is to �nd the fraction at a given index in the sequence. Formally, for
k ≤ |Fn|, let Stat(k, n) be the k-th value in Fn (in sorted order).

• the rank problem is to �nd the rank of a given fraction in the sequence. Formally, given a number
α ∈ [0, 1], let Rank(α, n) =

∣∣Fn ∩ [0, α]
∣∣.

These problems have been studied previously in [20], where the following results are obtained:

• the Stat problem can be solved with O(log n) calls to the Rank problem, plus additional O(n) time.

• a Rank problem can be solved in O(n) time.

∗This work represents a merging of [19] and [21], with additional extensions.
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• a number n can be factored by O(log n) calls to Stat or Rank. Under the typical assumption that
factoring is hard, we conclude that it is not possible to �nd algorithms for these problems running in
time (log n)O(1), i.e. polynomial time.

The authors of [20] remark that their solution to the rank problem could run in time n5/6+o(1) if it was

possible to compute the sum
∑b
i=abx · ic, for rational x, in time no(1). This sum is related to counting lattice

points in right triangles, and in fact, a simple algorithm for that task running in logarithmic time has been
discovered [24]. For completeness, we present another logarithmic solution in Appendix A, which is also
useful in our improved results.

Unfortunately, this n5/6+o(1) solution is complicated. It involves summation of the Möbius function, and
subexponential integer factorization. As the main result of this paper, Section 2 presents a simple and faster
algorithm for the rank problem with time complexity O(n2/3 log1/3 n). Our result assumes the RAM model
of computation, where usual arithmetic operations can be performed on cells of O(log n) bits in constant
time.

We also show that the rank problem is reducible to the problem of evaluating the Mertens function (the
summatory Möbius function) at all values bnd c, for integer d ≥ 1. Using this technique, we obtain a slight

improvement of our algorithm to O
(
n2/3(log log n)1/3

)
.

Order Statistics. Using the reduction in [20], a sublinear-time algorithm for Rank does not imply a
sublinear algorithm for Stat, due to the additive O(n) term. However, a better reduction is already known,
using a technique called rational search. The rational search problem is to �nd an unknown fraction a

b , with
a ≤ b ≤ n, by using only comparison queries. In our case, a comparison query is implemented by the Rank
problem: if the rank is greater than k, the guessed fraction is larger than the target fraction.

Integer search is of course solved by binary search with dlog2 ne queries. In the rational case, Papadim-
itriou [18], Reiss [22], Kwek and Mehlhorn [11], and Fori²ek [6] give similar solutions, which all use O(log n)
queries.

Combining with our running time for Rank, this gives an O
(
n2/3 log n(log log n)1/3

)
algorithm for the

order statistic problem. It should be noted that Rank can be easily solved with O(log n) calls to Stat, by
a simple binary search. Thus, the complexity of Rank and Stat are equal up to a logarithmic factor.

Overall, our results put local access to the Farey sequence on a similar footing to other summatory
problems in algorithmic number theory. In problems such as computing the number of primes less than n
[1], or computing the Mertens function [5], algorithms with some sublinear running time have been developed,
while running times of no(1) are generally considered unattainable.

1.2 Counting Primitive Lattice Points

In this paper, a lattice point refers to a point in (x, y) ∈ Z2. A primitive lattice point is a lattice point (x, y)
satisfying gcd(x, y) = 1. These are sometimes called �points visible from the origin�, since a point (x, y) is
visible by a straight line only if the slope of the line, xy , is irreducible.

One can observe that answering Rank(α, n) is equivalent to counting primitive lattice points in the right
triangle de�ned by the origin, (n, 0), and (n, αn). See Figure 1. This follows because a Farey fraction y

x ∈ Fn
with y

x ≤ α is equivalent to a primitive point (x, y) with 0 ≤ x ≤ n and 0 ≤ y ≤ αx, i.e. inside the region
de�ned by the triangle.

Counting primitive lattice points in planar shapes is a relatively new topic in mathematics, but one that
is gathering signi�cant momentum [12, 14, 8, 15, 9, 13, 16, 10, 26, 4, 23, 25, 17]. In the mathematical sense,
�counting� refers to estimating the number of primitive points with a small error, as the size of the shape
goes to in�nity. Exact counting is hopeless by an elementary formula.

In this paper, we initiate the study of the algorithmic problem of counting (exactly) the number of
primitive lattice points inside a given shape. More precisely, we study this problem for polygons containing
the origin. The condition that the shape should contain the origin also appears in the mathematical works
referenced above, and is natural given that we are counting points visible from the origin.
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n

(n, αn)
Fn ∩ [0, α]

Figure 1: The Rank problem is equivalent to counting primitive lattice points inside a right triangle.

Theorem 1. Let P be a polygon containing the origin, de�ned by k vertices at b-bit rational coordinates.
If D is the diameter of the polygon, one can count the number of primitive lattice points inside P in time
D6/7 · k · bO(1).

This theorem is shown in Section 3.
A very pertinent question is how e�cient this running time actually is. Remember that [20] shows that the

Farey rank problem can be used to factor integers. Since counting primitive lattice points is a generalization,
we conclude that a polynomial-time algorithm, i.e. poly(k ·b), is likely impossible. Thus, the algorithm needs
to depend on some parameter describing the polygon, which can be exponential in b. One such parameter
is the diameter D. Clearly, however, this is not the only choice, and it is conceivable that other measures
lead to better results. For right triangles such as those in the Farey rank problem, the diameter is n, yet we
know a better algorithm with time essentially n2/3.

A trivial alternative to Theorem 1 is the algorithm which iterates over all lattice points inside the polygon,
and runs Euclid's algorithm on each point. It is possible [2, 3, 24] to list all lattice points with a polynomial
poly(k · b) cost per point. If the polygon has integral coordinates, Pick's formula shows that the number
of lattice points inside is asymptotically equal to the area. Thus, the exhaustive algorithm has complexity
proportional to the area, times polynomial factors.

Unfortunately, the area and the diameter are not related in the worst-case (e.g., for very skinny shapes).
However, in the more �typical� case when the polygon is fat, the area is A = Θ(D2). Thus our running time
of D6/7 can be rewritten as A3/7, which gives a signi�cant saving over the exhaustive algorithm. It is an
interesting open problem to construct an algorithm which beats exhaustive search for any polygon.

2 An Algorithm for the Rank Problem

Let Sn be the quantity we are searching for, i.e. the number of irreducible fractions a
b ≤ x with b ≤ n.

Grouping reducible fractions by gcd, we obtain the following recursive formula, which will be the starting
point of our algorithm:

Sn(x) =
∣∣∣{a
b

∣∣ b ≤ n ∧ a

b
≤ x ∧ gcd(a, b) = 1

}∣∣∣
=

∣∣∣{a
b

∣∣ b ≤ n ∧ a

b
≤ x

}∣∣∣−∑
d≥2

∣∣∣{a
b

∣∣ b ≤ n ∧ a

b
≤ x ∧ gcd(a, b) = d

}∣∣∣
=

n∑
b=1

bbxc −
∑
d≥2

Sbn
d c(x).

Let us explain the steps of the reasoning. The number of irreducible fractions can be computed as the total
number of fractions minus the number of fractions with gcd of numerator and denominator equal to some
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d ≥ 2. The total number of fractions with denominator b less than or equal to x is bbxc. Finally, every

fraction a
b with gcd(a, b) = d can be reduced to a′

b′ , with a
′ = a

d , b
′ = b

d . Such a fraction is counted in Sbn
d c(x)

because it is irreducible, a
′

b′ = a
b ≤ x, and b

′ = b
d ≤

n
d .

We thus obtain the following recursive formula:

Sn =
n∑
b=1

bbxc −
∑
d≥2

Sbn
d c. (1)

Observe that as we unravel the recursion, a quantity Si can only appear if i = bnd c, for some positive integer
d. This property follows from the equality: ⌊⌊ n

d1

⌋
d2

⌋
=
⌊ n

d1d2

⌋
.

Thus, our task is to compute all Si values, where i is from set I =
{⌊

n
d

⌋
| d ≥ 1

}
. Though the set I iterates

over d = 1 to d = n, it is not hard to see that it contains only O(
√
n) distinct values. For d ≤

√
n all

expressions Sbn
d c(x) are unique. If d >

√
n, then n

d <
√
n, and there are at most

√
n distinct values.

Our task will be to compute these O
(√
n
)
di�erent quantities, implementing recursion (1) by dynamic

programming. The �constant�
∑i
b=1bbxc in the recursion for Si can be calculated in O(polylog(n)), as shown

in Appendix A. All these computations can be done in the beginning, in time O(
√
n · polylog n). It remains

to see how e�ciently the dynamic program can be evaluated.

An O(n3/4) algorithm. As explained above, the sum
∑
d≥2 Sb i

d c
only contains O

(√
i
)
distinct summands,

since values start repeating for d >
√
i. For each symbol Sj occurring in the sum we can �nd its multiplicity

in constant time, by �nding the interval of d values for which bnd c = j. Therefore, if we have already

computed Sj for j < i, the time complexity of calculating Si is O
(√
i
)
.

Surprisingly, this algorithm works in time O(n3/4). We prove this in two parts. First, let us determine
the time for calculating Si for all i ≤ b

√
nc:

√
n∑

i=1

O
(√
i
)
≤

√
n∑

i=1

O

(√√
n

)
= O

(√
n · n1/4

)
= O(n3/4).

Now consider i ∈ {
⌊
n
d

⌋
| 1 ≤ d ≤

√
n
}
. The time needed to calculating all these Si's is:

√
n∑

d=1

O

(√⌊n
d

⌋)
= O

(
√
n

√
n∑

d=1

1√
d

)
= O

(√
n ·
√√

n

)
= O(n3/4).

Here we have used the asymptotic equality
∑

1≤i≤x
1√
i

= O
(√
x
)
.

An O(n2/3 log1/3 n) algorithm. The key to this improvement is to show that S1, . . . , Sk can be computed
in time O(k log k), for any k. Then, the remaining terms can be computed by the old algorithm in time:

n/k∑
d=1

O

(√⌊n
d

⌋)
= O

(
√
n

n/k∑
d=1

1√
d

)
= O

(√
n ·
√
n

k

)
= O

(
n√
k

)
.

The total running time is then O(k log k + n√
k

). We optimize k by setting k
√
k · log k = n, leading to

k = (n/ log n)2/3. Thus, the running time will be O(n2/3 log1/3 n).
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To compute S1, . . . , Sk e�ciently, we make the observation that the composition (with respect to recursive
terms) of Si and Si−1 are not too di�erent. Speci�cally,

∑
d≥2 Sbi/dc di�ers from

∑
d≥2 Sb(i−1)/dc only for

the values of d that i is a multiple of.
To maintain understanding of divisibility by all d's, and compute Si(x) values in order, we use an

algorithm similar in �avor to Eratosthenes sieve. We �rst create an array D[1 . . . k], where D[i] holds a list
of all divisors of i. To create the array, simple consider all d, and add d to D[md], for all m. This takes time∑
d≥1

k
d = O(k log k).

Now, iterate i from 1 to k, maintaining
∑
d≥2 Sbi/dc at all times. The sum is updated by considering all

d ∈ D[i], subtracting Sb(i−1)/dc and adding Sbi/dc. The complexity is linear in the size of D[1 . . . k], and is
thus O(k log k).

An application. Our algorithm works whenever we have a recursive formula of the following form:∑
d≥1

f
(⌊n
d

⌋)
= g(n). (2)

If g(·) is computable in �reasonable� time, our algorithm is able to compute some f(n) in time proportional
to n2/3.

As an example, we can compute the Mertens function M(n), which is the summation of the Möbius
function, M(n) =

∑n
k=1 µ(k). It is known that M(n) satis�es

∑
d≥1M(bnd c) = 1, i.e. we have g(n) = 1.

Thus, we immediately obtain an algorithm for computing M(n) in time O(n2/3 log1/3 n).
Using a more careful analysis of the Mertens function, Deléglise and Rivat [5] show that the sequence

M(1), . . . ,M(k) can be computed even faster, in time O(k log log k). This leads to overall algorithm running
in time O

(
n2/3(log log n)1/3

)
. This is the same running time as that of [5], but their algorithm is based on

more complicated combinatorial identities.

An O
(
n2/3(log log n)1/3

)
algorithm. In fact, the connection to the Mertens function feeds back to our

problem, generating a slightly better solution. Applying Möbius inversion to (2), we have:

f(n) =
∑
d≥1

µ(d)g
(⌊n
d

⌋)
. (3)

Here we have to compute g(i), when i is in the set I =
{⌊

n
d

⌋
| d ≥ 1

}
. As we have seen, this set has size

O
(√
n
)
and many terms g(i) are repeating on the right hand side of (3). Let us rewrite (3) to take advantage

of this fact:

f(n) =
∑
d≥1

µ(d)g
(⌊n
d

⌋)
=
∑
i∈I

∑
bn

d c=i

µ(d)g(i) =
∑
i∈I

g(i)
∑

i≤n
d<i+1

µ(d)

=
∑
i∈I

g(i)
∑

n
i+1<d≤

n
i

µ(d) =
∑
i∈I

g(i)
(
M
(⌊n

i

⌋)
−M

(⌊ n

i+ 1

⌋))
.

Observe that our O
(
n2/3(log log n)1/3

)
algorithm for computing M(n) also computes all M(bnd c) for all

d ≥ 1. We have to compute g(i) only O
(√
n
)
times. Therefore, an e�cient algorithm for computing g(i)

will make this component a second-order term, and imply an O
(
n2/3(log log n)1/3

)
-time algorithm for f(n).

For Rank we know how to compute g(i) (counting lattice points in right triangles) in time O(log i),
which is more than su�cient for using in the above scheme, and imply the desired running time. Moreover,
if a faster algorithm is discovered for computing the sequence M(bnd c), for all d ≥ 1, then we immediately
get a faster algorithm for the rank problem. Note, however, that this approach cannot obtain a running time
below O(

√
n).
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3 An Algorithm for Counting Primitive Points

Let P be a polygon, de�ned by rational points (x1, y1), . . . , (xk, yk). Then, let P/d be the polygon de�ned
by (x1

d ,
y1
d ), . . . , (xk

d ,
yk

d ). De�ne A(P ) to be the number of lattice points inside polygon P , and S(P ) the
number of primitive lattice points inside P .

We �rst observe the following recursive formula:

S(P ) = A(P )−
∑
d≥2

S(P/d). (4)

Indeed, every point in A(P ), but not in S(P ) is a nonprimitive lattice point (x, y). If gcd(x, y) = d > 1,
then (xd ,

y
d ) is a primitive lattice point. Furthermore, such a point is inside P/d, so we can remove all points

with a greater common divisor equal to d by subtracting P/d.
We can bound the recursion depth in (4), by appealing to the diameter D. We note that the diameter of

P/(D+1) is less than 1, so it does not contain any lattice point outside the origin. Thus, S(P/d) = 0 for all
D < d <∞, and S(P/∞) = 1 (the origin). Then, it su�ces to consider only P, P/2, . . . , P/D in the algorithm.

To compute the �constants� A(P/i) in the recursion, one needs to compute the number of lattice points
inside polygons with rational coordinates. This is a well-studied problem, and [2, 3, 24] given polynomial-
time algorithms. Observe that for i ≤ D ≤ 2b, coordinates of P/i have at most 2b bits of precision. Thus,
computing A(P/i) takes time O(k · poly(b)); the dependence on k is linear by triangulating the polygon.

Note that formula (4) is very similar to the recursive formula for the rank problem (1). Indeed, (1) is
simply a transcription of (4), where the polygons are right triangles as in Figure 1.

It is thus tempting to conjecture that we can use the same dynamic program to evaluate (4). Unfortu-
nately, this is not the case, for a somewhat subtle reason. Due to the geometry of the rank problem, Sn/d
was the same as Sbn/dc. By taking �oors, we concluded that among Sbn/dc's with d ∈ {

√
n, . . . , n}, there are

only
√
n distinct quantities. Unfortunately, in general we cannot round the vertices of P/d to lattice points,

and thus we cannot conclude that for d ≥
√
D there are only

√
D distinct cases.

A more careful analysis. Since we are not interested in factors of k · bO(1) in the running time, let us
de�ne O∗(f) = f · k · bO(1). To use ideas similar to the previous dynamic program, we begin by obtaining a
weaker bound for computing the small terms of the recurrence:

Lemma 2. We can (implicitly) compute S(P/τ ), S(P/(τ+1)), . . . , S(P/D) in time O∗
(
D2

τ2

)
.

Proof. Note that P/D ⊆ P/(D−1) ⊆ · · · ⊆ P/τ . Also, the diameter of P/τ is D/τ , implying that P/τ , and any

smaller polygon only contain O
(
(Dτ )2

)
lattice points. Since S(P/i) can only grow between 1 and O

(
(Dτ )2

)
when i goes from D to τ , there are only so many distinct values that can appear.

To actually compute these values, we perform an exhaustive enumeration of all lattice points in P/τ .
Points which are not primitive are discarded. For every primitive point (x, y), we compute a value ϕ(x, y)
which is the minimum i such that P/i does not contain it. This is done by a binary search for i. Every
comparison is a point-in-polygon test, which takes O(k) time.

We now sort the φ(x, y) values from largest to smallest. The sorted list gives us an implicit representation
for S(P/i) for every i ≥ τ . Indeed, it su�ces to binary search for the �rst occurrence of i; the elements to
the left correspond to primitive points which are inside P/i.

Let us now consider the problem of computing a term using our recursion:

S(P/i) = A(P/i)−
∑
d≥2

S(P/id).

We assume terms S(P/j) for j ≥ i have already been computed; in particular, for j ≥ τ we have the implicit
representation from Lemma 2.
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In principle, the expression for S(P/i) has bDi c terms. However, as in Lemma 2, we can observe that for

�xed δ, there are only O
(
D2

δ2

)
distinct terms among all S(P/id)'s with id ≥ δ. These terms can actually be

summed up in O∗
(
D2

δ2

)
time. Indeed, we begin with d0 = d δi e, and binary search for the minimum d1 such

that S(P/id1) < S(P/id0). We add to the sum S(P/id0) · (d1 − d0), then binary search for the minimum d2

leading to a di�erent value, and so on.
After dealing like this with all terms d ≥ δ

i , we can simply add the remaining terms. The running time

for computing S(P/i) is therefore O∗
(
D2

δ2 + δ
i

)
. We can optimize by setting δ = D2/3i1/3, yielding a running

time of O∗
(
(Di )2/3

)
.

We now want to optimize the parameter τ in Lemma 2. A choice of τ implies that we spend O∗
(
D2

τ2

)
time by Lemma 2, and then run the dynamic program for terms S(P/i) with i < τ . This second part will
take time:

τ∑
i=1

O∗
(
D

i

)2/3

= O∗(D2/3τ1/3).

Then, we can optimize by setting D2

τ2 = D2/3τ1/3, i.e. τ = D4/7. The �nal running time is therefore O∗(D6/7).
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A Counting Lattice Points in a Class of Triangles

In this section we present a simple algorithm for computing the sum
∑n
i=1b

a
b ic, where

a
b is a non-negative

irreducible fraction. The value of the sum is the number of lattice points in a triangle bounded by the x-axis
and lines x = n and y = a

bx, excluding lattice points on the x-axis. Refer to Figure 2.

y =
a
b
x

0 1 2 3 n· · ·

Figure 2: The sum
∑n

i=1b
a
b
ic counts lattice points in a right triangle.
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We remark that [2] and [3] have previously given polynomial (in the bit precision) algorithms for counting
lattice points in any polygon with rational coordinates. However, the algorithms in these papers do not render
themselves to easy implementation. A much simpler algorithm for counting lattice points in a rational right
triangle was presented in [24]. Here, we give a similar algorithm, which is a simpli�cation of [24] for our
special case of a rational right triangles.

Let us denote

T (n, a, b) =
n∑
i=1

⌊a
b
i
⌋
.

We develop recursive formulas for T (n, a, b), analyzing several possible cases.

The case n ≥ b. If n is divisible by b, we can derive a closed form for the answer. Let n = qb, and refer to
Figure 3. Observe that the lower right triangle is identical to the upper left triangle, so it contains the same

0
0

b

a

2b

2a

qb

qa

· · ·

...

Figure 3: The case when n is divisible by b.

number of lattice points. Summing up both triangles we get the rectangle with diagonal counted twice. The
number of lattice points in the rectangle is (qb + 1)(qa + 1), and the number of points on the diagonal is
equal to q+ 1. The sum of both values divided by two gives the number of lattice points in a triangle. Now,
we subtract the number of lattice points on the x-axis, obtaining:

T (qb, a, b) =
(qa+ 1)(qb+ 1) + q + 1

2
− (qb+ 1) =

q(qab− b+ a+ 1)
2

. (5)

More generally, suppose n ≥ b and let n = qb+ r, where q ≥ 1 and 0 ≤ r < b. The sum can be split into
three parts:

qb+r∑
i=1

⌊a
b
i
⌋

=
qb∑
i=1

⌊a
b
i
⌋

+
qb+r∑
i=qb+1

⌊a
b
i
⌋

=
qb∑
i=1

⌊a
b
i
⌋

+
r∑
i=1

⌊a
b

(qb+ i)
⌋

=
qb∑
i=1

⌊a
b
i
⌋

+ r · aq +
r∑
i=1

⌊a
b
i
⌋
.

See Figure 4 for intuition. As a result we obtain the equation:

T (qb+ r, a, b) = T (qb, a, b) + rqa+ T (r, a, b). (6)

Combining the above formula with (5), we can reduce n to n mod b in a single step. Therefore, in the
remainder we assume that n < b. Observe that a consequence of this is that there is no integral point on
the line y = a

bx for x = 1, 2, . . . , n.
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qb∑
i=1

⌊a
b
i
⌋ r · qa

rqb

qa

n

r∑
i=1

⌊a
b
i
⌋

Figure 4: Case n ≥ b.

The case a ≥ b. If a = qb+ r for some q ≥ 1 and 0 ≤ r < b, we can rewrite:

n∑
i=1

⌊a
b
i
⌋

=
n∑
i=1

⌊qb+ r

b
i
⌋

=
n∑
i=1

qi+
n∑
i=1

⌊r
b
i
⌋

= q
n(n+ 1)

2
+

n∑
i=1

⌊r
b
i
⌋
.

Thus, in this case we have the formula:

T (n, qb+ r, b) =
n(n+ 1)

2
q + T (n, r, b). (7)

Inverting a
b . We now use the graphical representation of Figure 5 to correlate sums

∑
bab ic and

∑
b ba ic. In

Figure 5, the area labeled S1 represents the sum
∑n
i=1b

a
b ic. The x and y coordinates of lattice points in this

n

⌊a
b
n
⌋

S1

S2

Figure 5: Graphical representation of sums
∑
ba

b
ic and

∑
b b

a
ic.

area do not exceed n, and babnc respectively. Consider the rectangular set R = {1, . . . , n} × {1, . . . , babnc},
containing nbabnc lattice points. Let S2 be complement of S1 in R. We assumed that n < b and there is no
element in R lying on the line y = a

bx. Therefore, for given j = 1, . . . , babnc, the number of lattice points from

S2 with y coordinate equal to j will be b bajc. Hence, the size of S2 is
∑b a

b nc
j=1 b bajc. Since |S1| + |S2| = |R|,

we have
n∑
i=1

⌊a
b
i
⌋

+
b a

b nc∑
j=1

⌊ b
a
j
⌋

= n
⌊a
b
n
⌋
.

Thus, the last recursive formula is:

T (n, a, b) = n
⌊a
b
n
⌋
− T

(⌊a
b
n
⌋
, b, a

)
. (8)

It allows to swap a with b in T (·, a, b). It can be used to make a ≥ b. Notice that after swapping a with b,
our assumption that n < b holds, since if n < b, then a

bn < a and babnc < a.
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The �nal algorithm. We combine the recursive formulas for T (n, a, b) to design the �nal algorithm. The
procedure is similar to the Euclidean algorithm. First, if n ≥ b, we reduce n using (6) making n < b, then
repeat the following steps until either n or a reach zero. If a < b, use (8) to exchange a with b. Next, use
(7) to reduce a to a mod b. The total number of steps in this procedure is O(log max{n, a, b}), as it is in the
Euclidean algorithm.
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