
Counting Inversions, Offline Orthogonal Range Counting,
and Related Problems

Timothy M. Chan∗ Mihai Pǎtraşcu†

Abstract

We give an O(n
√

lgn)-time algorithm for counting the
number of inversions in a permutation on n elements. This
improves a long-standing previous bound of O(n lgn/ lg lgn)
that followed from Dietz’s data structure [WADS’89], and
answers a question of Andersson and Petersson [SODA’95].
As Dietz’s result is known to be optimal for the related
dynamic rank problem, our result demonstrates a significant
improvement in the offline setting.

Our new technique is quite simple: we perform a
“vertical partitioning” of a trie (akin to van Emde Boas
trees), and use ideas from external memory. However, the
technique finds numerous applications: for example, we
obtain

• in d dimensions, an algorithm to answer n offline orthog-
onal range counting queries in time O(n lgd−2+1/d n);

• an improved construction time for online data structures
for orthogonal range counting;

• an improved update time for the partial sums problem;

• faster Word RAM algorithms for finding the maximum
depth in an arrangement of axis-aligned rectangles, and
for the slope selection problem.

As a bonus, we also give a simple (1+ε)-approximation

algorithm for counting inversions that runs in linear time,

improving the previous O(n lg lgn) bound by Andersson and

Petersson.

1 Introduction

1.1 A Complexity Theoretic View. The standard
model of computation enshrined in all widely used
programming languages (like C, Java, Python, etc.)
allows the following assumptions:

• the memory consists of words, and permits random
access.

• machine words can be manipulated in constant time
by a standard set of operations (including arithmetic,
shift, bitwise, and logical operations).
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• the machine word is large enough to represent point-
ers and indices to the data.

In theory, this model has been formalized as the
Word RAM . Understanding the power of this model
has been a very active direction after Fredman and
Willard’s seminal result [FW93] demonstrating that
sorting can be done in o(n lg n) operations.

Concentrating on offline problems, the main flavors
of algorithmic improvement achieved in the Word RAM
model seem to be:

• “accidental” problems with a linear-time solution,
such as the classic algorithm of Rabin for planar clos-
est pair [Rab76] or Thorup’s algorithm for undirected
single-source shortest paths [Tho99].

• sorting, and the myriad problems reducible to it,
which have a current bound of O(n

√
lg lg n) due to

Han and Thorup [HT02].

• problems related to offline point location, with a

current bound of n · 2O(
√

lg lgn) [CP07].

• problems with complexity O(n lg n/ lg lg n), stem-
ming from the use of data structures with slightly
sublogarithmic performance (including the problems
addressed in this paper).

• logarithmic improvements to algorithms with a poly-
nomial running time, from the classic “four Russians
trick” to computing all-pairs shortest paths [Cha07].

In this paper, we introduce an algorithmic innova-
tion that creates a new “level” in this hardness classifi-
cation. In particular, we show that counting the number
of inversions in a permutation, and, more generally, 2-d
offline orthogonal range counting are not limited by the
complexity of the associated online data structures. In-
stead, these problems can be solved in O(n

√
lg n) time.

Our algorithmic idea (in instantiations of varying
technical difficulty) leads to improved results for an
array of problems, including static and dynamic data
structures. These results are summarized in Section 1.3.
Before that, however, we take the opportunity to discuss
our approach in the simplest possible setting: counting
inversions.



1.2 Counting Inversions. The number of inver-
sions in a permutation π is defined as the number of
pairs i < j with π(i) > π(j). This is a natural and
frequently-used measure for the sortedness of the data.
The number of inversions between two permutations,
called the Kendall tau distance, is a classic distance
measure between two orders. In [DKNS01], it is argued
that the Kendall tau distance is especially important for
rank aggregation in large Internet-related applications.

History. Counting inversions in O(n lg n) time (e.g.,
by mergesort) is a textbook problem. For a faster
solution, one can reduce to offline dominance counting
in two dimensions: given a set of n points, how
many other points does each point dominate? A point
dominates another if each one of its coordinates is
(strictly) larger. To see the connection, just map
a permutation π to the point set {(i,−π(i)) : i ∈
[n]}. Dominance counting in turn reduces to offline
orthogonal range counting.

Until now, the fastest way to solve offline domi-
nance counting in d dimensions was to treat one co-
ordinate as “time,” turning the problem into dynamic
dominance counting in d − 1 dimensions. In one di-
mension, dominance counting is more commonly known
as “dynamic ranking” or “the partial sums problem.”
This problem is solved in O(lg n/ lg lg n) time for oper-
ation by Dietz’s well known data structure, dating back
to WADS’89 [Die89]. Thus, counting inversions can be
done in O(n lg n/ lg lg n) time.

Another classic result due to Fredman and
Saks [FS89] states that Ω(lg n/ lg lg n) time is needed for
dynamic ranking, even in the cell-probe model. Since
counting inversions is so inherently tied to this problem,
one is tempted to believe that the bound for counting
inversions might also be optimal.

In SODA’95, Andersson and Petersson [AP98] at-
tacked the approximate version of the problem and
asked whether Dietz’s bound can be improved for exact
counting. Their algorithm runs in time O(n lg lg n) and
finds a (1+ε)-approximation for any ε = Ω(1/

√
lg lg n).

In recent years, the problem has received renewed
attention from the streaming community [AJKS02,
GZ03]. In 2007, the status of the problem was suf-
ficiently entrenched that, when discussing segment in-
tersection counting, we [CP07] wrote: “Note that this
problem is no easier than counting inversions in a per-
mutation, so, in some sense, the best bound one would
hope to get is O(n lgn

lg lgn ).”
However, as we show here, counting the exact

number of inversions can be done in O(n
√

lg n) time.
In Section 5, we also show how to improve the results of
Andersson and Petersson for approximate counting. In

particular, we obtain an O(n)-time algorithm that find
a (1 + ε)-approximation to the count, for any constant
ε > 0.

The improved exact solution (a quick sketch).
The starting point of our solution is the following simple
variation of external-memory radix sort. Consider a
sequence of n numbers of L bits each. In the external
memory model with B words per page, we can count the
number of inversions in the sequence using O(nL/B)
I/O operations. This is easy to see: We maintain a
running count of the number of inversions. We begin
by partitioning the elements into those beginning with
a zero bit, and those beginning with a one bit. For
each zero element, we add to the inversion count the
number of preceding elements starting with a one. This
partition takes O(n/B) operations. Finally, we recurse
into each of the subarrays, with L decremented.

This algorithm can be simulated on a Word RAM,
but how do we obtain the ability to manipulate B el-
ements in constant time? By packing multiple ele-
ments in a single word. If B = w/L where w denotes
the word size, the above algorithm would run in time
O(nL/B) = O(nL2/w). For w ≈ lg n, we can simu-
late word operations in constant time by table lookup.
The running time is thus O(n) for L ≈

√
lg n. We re-

mark that the word packing idea is also a key ingre-
dient in several previous algorithms that solve offline
problems faster than their online counterparts (e.g., for
sorting [FW93, AHNR98] and point location [CP07]).

How can we use the above subroutine to solve the
original problem where the elements can be lg n bits
long? We use a trick similar to the van Emde Boas data
structure [vEBKZ77]: for each element, break its word
into multiple components. Formally, consider a trie of
depth (lg n)/L over the alphabet [2L].1 Each node is
associated with the elements of the permutation that
fall under the node (they start with the prefix leading
to the node). For a given node of the trie, consider the
sequence of the first letters after the common prefix of
the elements associated with the node (these letters are
L-bit numbers). We compute the number of inversions
in this sequence by the above subroutine and add to the
running count. Finally, we recurse into each child of the
node.

The trie can be built in O(n) time per level, by
bucketing. For L ≈

√
lg n, the subroutine calls cost

O(n) per level. Since the depth is (lg n)/L, we obtain
an O(n

√
lg n)-time algorithm.

A more precise description of the algorithm, in a
more general setting, is provided in Section 2.1.

1Throughout this paper, [n] denotes {0, 1, . . . , n− 1}.



1.3 Applications. Though our solution idea is quite
simple, the end result remains surprising. In fact, more
powerful instantiations of this basic idea yield a handful
of improved algorithms and data structures.

Offline orthogonal range counting. A slightly
trickier version (Section 2.2) of our initial algorithm
can solve a more general problem in O(n

√
lg n) time

in 2-d: given n red/blue points, compute the number
of red points dominated by each blue point. One can
easily observe that this problem is equivalent to 2-
d offline orthogonal range counting: given n points
and n axis-aligned rectangles, compute the number
of points inside each rectangle. The problem has
an immediate application to 2-d orthogonal segment
intersection counting: given n horizontal/vertical line
segments, count the number of their intersections.

The offline orthogonal range counting result can be
extended to any constant dimension d, as shown in Sec-
tion 4, where we get running time O(n lgd−2+1/d n).
Previous known (online) algorithms require at least
O(n(lg n/ lg lg n)d−1) time (even if preprocessing cost is
ignored) [JMS04]. Of course, orthogonal range search-
ing is a well-loved topic in computational geometry and
countless results have appeared in the literature, e.g.,
see [AE99, AAL09, ABR00, ABR01, MPP05, Cha88,
Cha90a, Cha90b, Cha97, JMS04, Pǎt07, Pǎt08]. One
should not confuse counting problems with their report-
ing analogs, though, and we have exploited special fea-
tures of counting problems to get results better than for
range searching in a more abstract group or semigroup
model.

Offline dynamic ranking and selection. As an-
other immediate corollary, we can solve an offline ver-
sion of the dynamic ranking problem in 1-d: maintain a
set of numbers under insertions and deletions so that we
can determine the rank of any query point. Under the
assumption that the sequence of updates and queries is
known in advance, we obtain a total running time of
O(n
√

lg n).
Selection queries (the “inverse” of ranking) require

more effort: given a query value k, we want to find
the k-th smallest element in the current set. We show
in Section 3.1 that an offline sequence of updates and
selection queries can be done in O(n

√
lg n lg1/4 lg n)

expected time.

Online orthogonal range counting. The
space/time tradeoffs possible for 2-d online orthog-
onal range counting are well understood: with
space O(n polylog n), the best possible query time is
Ω(lg n/ lg lg n) [Pǎt08, Pǎt07]. Furthermore, it is pos-

sible to achieve query time O(lg n/ lg lg n) with space
O(n) [JMS04].

Given this precise understanding, it now makes
sense to look at the preprocessing time more carefully.
Unfortunately, it is not known how to construct a
data structure with optimal query performance in linear
time. For instance, the data structure of [JMS04]
requires O(n lg n) preprocessing time; even the earlier
O(n)-space data structure of Chazelle [Cha88] with
O(lg n) query time, or the (even earlier) standard range
tree, requires O(n lg n) preprocessing time.

In Section 2.3, we offer a 2-d data structure of linear
size and optimal O(lg n/ lg lg n) query time, which can
be constructed faster in O(n

√
lg n) time.

The generalization of the result in dimen-
sion d has O(n lgd−2+1/d n) preprocessing time,
O(n(lg n/ lg lg n)d−2) space, and O((lg n/ lg lgn)d−1)
query time.

Online partial sums and dynamic ranking and se-
lection. As we have mentioned, Dietz’s data structure
solved the online partial sum or online dynamic rank-
ing problem in O(lg n/ lg lg n) update time and query
time. Although the query time matches known lower
bounds, we show that curiously the update time can
be improved—this is the first improvement since 1989.
In Section 3.4, we give a new online data structure
for partial sums and dynamic ranking/selection with
O(lg0.5+ε n) update time and O(lg n/ lg lg n) query time
for an arbitrarily small constant ε > 0. Interestingly
this solution exploits further techniques from external
memory, namely, buffer trees [Arg03].

Range median. A series of recent papers [KMS05,
HPM08, GS09] studied the following problem: prepro-
cess a sequence of numbers a1, . . . , an so that given any
i, j, return the median of the subsequence ai, . . . , aj .
The best result known, by Gfeller and Sanders [GS09],
achieved O(n lg n) preprocessing time, O(n) space, and
O(lg n) query time. In Section 3.3, we obtain O(n

√
lg n)

preprocessing time, O(n) space, and O(lg n) query time.
Our observation is that certain data structures for 2-
d orthogonal range counting can already answer range
median queries efficiently; only the query algorithm
needs to be changed. (The linear-space data struc-
ture from [GS09], for instance, is essentially identical
to Chazelle’s data structure for 2-d orthogonal range
counting [Cha88], and their simple O(n log n)-space
data structure is just a standard 2-d range tree in dis-
guise.)

More applications in computational geometry.
Many further consequences follow. For example, given n



axis-aligned rectangles in 2-d, we can find the maximum
depth in the arrangement in O(n

√
lg n) time, as shown

in Section 3.2.
There are applications even to nonorthogonal prob-

lems. For example, consider the slope selection prob-
lem: given a set P of n points in 2-d and an integer
k, find the k-th smallest slope formed by the

(
n
2

)
lines

through P . In the Real RAM model, several O(n lg n)-
time algorithms have been proposed for this problem
[BC98, CSSS89, KS97]; in particular, in the known
randomized algorithms [DMN92, Mat91], the dominant
cost lies in counting inversions. It can be checked that
with our inversion-counting subroutine, these random-
sampling-based algorithms can solve the slope selection
problem in O(n

√
lg n) expected time on the Word RAM

for points with integer coordinates.

Remark. All of our results for orthogonal problems on
the Word RAM hold not only for integer input but also
for floating-point numbers, since the known Word RAM
sorting algorithms [HT02] are applicable to floats. The
only main assumption is that the word size is at least
as large as both lgn and the maximum size of an input
number (i.e., each input number should fit in one word).
In fact, in all of our algorithms, if the input numbers
have been pre-sorted, we only need RAM operations
on lg n-bit words—which are standard and commonly
assumed in analysis of algorithms. For results where the
claimed time bounds exceed n lg n (such as our result on
offline orthogonal range counting for dimension d ≥ 3),
the pre-sorting assumption is not even needed, since we
can afford to use a comparison-based sorting algorithm.

2 2-d Offline Orthogonal Range Counting

2.1 The basic approach. We start by describing
our technique for the 2-d offline red/blue dominance
counting problem, which includes as special cases in-
version counting (by letting the red point set equal the
blue point set) and 2-d offline orthogonal segment inter-
section counting (by adding and subtracting a constant
number of counts).

Theorem 2.1. Given n red/blue points in the plane,
we can count the number of pairs of points (p, q) where
the red point p is dominated by the blue point q, in
O(n
√

lg n) time.

Proof. Algorithm template. The basic strategy is a
standard divide-and-conquer. Suppose that the input
n-point set P is given in sorted x-order, has distinct
x-coordinates, and has y-coordinates from [2`]. Divide
IR × [0, 2`) into 2h horizontal strips of height 2`−h for
some parameter h. Let Pi be the subset of points in the
i-th strip. Round each point p immediately downward

to a point p̃ on a horizontal dividing line and let P̃
be the set of rounded points. Recursively solve the
subproblems for the Pi’s and for P̃ . The overall count
for P is just the sum of the counts for Pi’s and the
count for P̃ . Note that by translation and scaling, we
can make the Pi’s y-coordinates lie in [2`−h] and P̃ ’s
y-coordinates lie in [2h].

We now describe the choices of input representation
and the parameter h, and elaborate on the details and
analysis of the various steps. Fix a value L, to be set
later.

Case 1: ` ≤ L. For each point p, we record its color
and its y-coordinate p.y (but not its x-coordinate) using
L + 1 bits. We store the input point set P as a list of
records in x-order, packed into O(nL/w) words, each
holding O(w/L) points. We choose h = 1, i.e., use a
2-way divide-and-conquer.

We can split the list P into the two sublists P0 and
P1 in O(nL/w) time, by repeated use of the following
word operation: given a word z holding O(w/L) points
and the number `, output the word z′ (resp. z′′) holding
the sublist of points p with p̃.y = 0 (resp. p̃.y = 1),
retaining the same ordering in the sublist.

We can solve the subproblem for P̃ directly in
O(nL/w) time: given the list of words z0, z1, . . ., we
can compute (i) the number ri of red points p in zi with
p̃.y = 0, (ii) the number bi of blue points q in zi with
q̃.y = 1, and (iii) the number ci of red-blue dominating

pairs within zi, by word operations. The count for P̃
is
∑

i ci +
∑

i bi
∑

j<i rj , which is computable in time
linear in the number of words.

As a result, we get the following recurrence for the
running time:

T (n, `) = T (n0, `− 1) + T (n1, `− 1)(2.1)

+O(nL/w) ∀` ≤ L

for some n0, n1 with n0 + n1 = n, where T (n, 1) =
O(nL/w) for the base case. This yields T (n,L) =
O(nL2/w).

Case 2: ` > L. Here, we store the given points P
naively in O(n) words, but we choose h = L instead.
We can split the list P into the sublists P0, . . . , P2L−1,
while retaining the same ordering in the sublists, in
O(n) time by using an array of 2L buckets. We can

generate P̃ in O(n) time, convert it into the packed-

word representation, and compute the count for P̃ in
O(nL2/w) time by Case 1.

We get the following recurrence:

T (n, `) =

2L−1∑
i=0

T (ni, `− L) +O(n(1 + L2/w)),(2.2)



for some ni’s with
∑

i ni = n. This yields T (n, `) =
O(n(`/L)(1 + L2/w)). Setting L =

√
w gives T (n, `) =

O(n`/
√
w).

Initialization. We can pre-sort both the x- and the y-
coordinates by known Word RAM sorting algorithms,
for example, in O(n lg lg n) deterministic time [Han04].
By normalization, we can make the x- (resp. y-
)coordinates distinct and lie in [n], so initially ` = lg n.
To support the above word operations in constant time,
we can precompute tables storing the output of the op-
erations on every input combination, in time 2O(w). Set-
ting w = ε lg n for some constant ε > 0, we get the final
time bound of O((n lg n)/

√
w) = O(n

√
lg n). 2

Corollary 2.1. Given a permutation over [n], we can
count the number of inversions in O(n

√
lg n) time.

Corollary 2.2. Given n horizontal/vertical line seg-
ments in the plane, we can count the number of their
intersections in O(n

√
lg n) time.

2.2 Individual counts. For the version of the offline
dominance counting problem where we want a separate
count for each query point, we need to work a little
harder. Offline orthogonal range counting reduces to
this problem (by adding and subtracting a constant
number of counts per query point).

Theorem 2.2. Given n red/blue points in the plane, we
can count the number of red points dominated by each
blue point, in O(n

√
lg n) total time.

Proof. We follow the same algorithm template as in the
proof of Theorem 2.1. Here, for each blue point p, if
p ∈ Pi, the count for p in P is just the sum of the count
for p in Pi and the count for p̃ in P̃ .

As output representation becomes an issue, some
modifications are needed and one more case arises.

Case 1′: ` ≤ L and n ≤ 2L. The record for each point
p ∈ P now stores an extra field for the output count
(initially, this field is nil). Since n ≤ 2L, the counts
are only O(L)-bit long, so the point set P can still be
packed into O(nL/w) words. We choose h = 1.

Splitting of P into P1 and P2 can be done as
before. The subproblem for P̃ can be solved using
O(nL/w) number of similarly defined word operations.
To combine the output, we first need to “unsplit” P1

and P2 to get back P with the count fields filled in.
Unsplitting can be done in O(nL/w) time, e.g., by
repeated use of the following word operation: given
a word z holding O(w/L) points, a number `, and a
word z′ (resp. z′′) holding the sublist of points p with
p̃.y = 0 (resp. p̃.y = 1), output a modified version of
z with the count fields copied from the corresponding

counts in z′ (resp. z′′). We can then add the individual

counts computed for P̃ to the counts for P , again with
O(nL/w) word operations.

As a result, we get the same recurrence (2.1) and
obtain O(nL2/w) running time.

Case 1′′: ` ≤ L and n > 2L. This time, we form
the subsets Pi by using vertical dividing lines instead,
with each subset containing n/2h points. We form P̃ by
rounding leftward. We choose h = lg n− L.

We can easily generate the Pi’s and P̃ in O(n) time.
We can solve the subproblem for each Pi in O(nL2/w)

time by Case 1′. We can solve the subproblem for P̃
directly in O(n) time, since the rounded points lie in
a grid [2h] × [2L], which has size O(n) (it is easy to

compute all the counts in P̃ from the multiplicities of
all the grid points). Thus, we get a time bound of
O(n(1 + L2/w)).

Case 2: ` > L. At this stage, we can proceed exactly as
in the proof of Theorem 2.1 and obtain the recurrence
(2.2) and the final time bound of O(n

√
lg n). 2

Corollary 2.3. Given n points and n axis-aligned
rectangles in the plane, we can count the number of
points inside each box in O(n

√
lg n) total time.

2.3 Adding online queries. Although we cannot
improve the query time for the corresponding online
problems, we can apply our approach to improve the
preprocessing time of online data structures. We will
need some extra ideas similar to techniques from suc-
cinct data structures (which were also used in Chazelle’s
previous data structure [Cha88]).

Theorem 2.3. We can preprocess n points in the plane
in O(n

√
lg n) time, using a data structure with O(n)

words of space, so that we can count the number of
points dominated by a query point in O(lg n/ lg lg n)
time.

Proof. We follow the same algorithm template as in the
proof of Theorem 2.1 (but ignoring colors). Here, the
count for a query point q in P is just the sum of the
count for q in Pi and the count for q̃ in P̃ . We assume
that in the query algorithm, we are given the x-rank of
q in P . Let A and H be parameters to be set later.

Case 0′: ` ≤ H and n ≤ 2A. Here, we solve
the problem directly without recursion. We store the
given point set P as a sequence of O(nH/w) words
z0, z1, . . ., each holding g = O(w/H) points of P , in
x-order. For each i and each j ∈ [2H ], let cij be the
number of points p in z0, . . . , zi−1 with p.y < j. These
O(nH/w · 2H) numbers are A bits long and can thus be
packed in O(nH/w · 2H · A/w) words. We can bound



the preprocessing time by O(nH/w · 2H) and space by
O(nH/w + nH/w · 2H ·A/w).

Given a query point q with x-rank r, we can
compute the count for q in P as follows: letting i =
br/gc and j = q.y, we compute the number of points p
in zi that are dominated by q by a word operation, and
add cij to the count. The query time is O(1).

Case 0′′: ` ≤ H and n > 2A. We form the subsets
Pi by using vertical dividing lines instead, with each
subset containing n/2h points. We form P̃ by rounding

leftward. We choose h = lg n− A. For P̃ , we explicitly
build a table containing all answers, inO(n/2A·2H) time
and space. The total preprocessing time O(2HnH/w +
n/2A−H), and space is O(nH/w + 2Hn(A/w)(H/w) +
n/2A−H).

Given a query point q with x-rank r, we can
compute the count for q in P as follows: letting i =
br/gc, we recursively compute the add for q in Pi, look

up the count for q̃ in P̃ from the table, and return the
sum. The query time is O(1).

Case 1: H < ` ≤ L. We represent the given point set
P as a sequence of O(nL/w). We return to dividing
by horizontal lines. Previously we chose h = 1 for this
case, but we now choose h = H.

Recall that we can split P into two sublists in
O(nL/w) time. By applying this procedure recursively,
we can split the list P into the 2H sublists P0, . . . , P2H−1
in O(nHL/w) time.

We build the data structure for P̃ by Cases 0′ and
0′′. We then recursively build the data structure for the
Pi’s.

Given a query point q with x-rank r, we can
compute the count for q̃ in P̃ by Cases 0′ and 0′′, and
recursively compute the count for q in Pi with i = q̃.y.
Before the recursion, we need to determine the x-rank
of q in Pi, which can be done in two queries on P̃ : just
take the number of points dominated by (q̃.x, q̃.y + 1)
minus the number of points dominated by (q̃.x, q̃.y) in

P̃ .
As a result, we get the following recurrences for the

preprocessing time, space, and query time:

P (n, `) =
∑
i

P (ni, `−H) +O(nHL/w + 2HnH/w

+ n/2A−H)

S(n, `) =
∑
i

S(ni, `−H) +O(nH/w +

2Hn(A/w)(H/w) + n/2A−H)

Q(n, `) = max
i
Q(ni, `−H) +O(1) ∀` ≤ L

for some ni’s with
∑

i ni = n. This yields P (n,L) =
O(nL2/w + 2HnL/w + (n/2A−H)(L/H)), S(n,L) =

O(nL/w + 2Hn(A/w)(L/w) + (n/2A−H)(L/H)), and
Q(n,L) = O(L/H).

Case 2: ` > L. Here, we store the given points P naively
in O(n) words, but we choose h = L instead. We build

the data structure for P̃ by Case 1 and build the data
structure for the Pi’s recursively. Given a query point
q with x-rank r, we can compute the count for q̃ in P̃
by Case 1, and recursively compute the count for q in
Pi with i = q̃.y. Before recursion, we determine the x-
rank of q in Pi, which can be done in O(1) time by two

queries on P̃ as before.
We get the following recurrences:

P (n, `) =
∑
i

P (ni, `− L) +O(n+ nL2/w +

2HnL/w + (n/2A−H)(L/H))

S(n, `) =
∑
i

S(ni, `− L) +O(nL/w +

n(A/w)(L/w) + (n/2A−H)(L/H))

Q(n, `) = max
i
Q(ni, `− L) +O(L/H).

for some ni’s with
∑

i ni = n. This yields P (n, `) =
O((`/L)[n + nL2/w + 2HnL/w + (n/2A−H)(L/H)]),
S(n, `) = O(`/L)[nL/w + 2Hn(A/w)(L/w) +
(n/2A−H)(L/H)]), and Q(n, `) = O(`/H). Setting
L =

√
w, w = ε lg n, A = (1 + ε) lgw, and H = ε lgw

gives P (n, lg n) = O(n
√

lg n), S(n, lg n) = O(n), and
Q(n, lg n) = O(lg n/ lg lg n).

Note that initially we can determine the x-rank of
the query point by predecessor search, e.g., in O(

√
lg n)

time [FW93]. 2

3 Variations

3.1 1-d offline dynamic ranking and selection.
In this section, we explore variants of our algorithms
to solve several related problems. We first consider the
1-d dynamic offline ranking/selection problem. Here,
we want to maintain a set P of numbers, under the
following operations: P .insert(p) inserts a new element
p to P ; P .delete(p) removes p from P ; P .rank(p) returns
the rank of p; and P .select(k) returns the k-th element
of P . We allow duplicate elements (i.e., P is a multiset).
In the offline setting, the sequence of all update and
query operations is given in advance.

It is easy to reduce offline dynamic ranking queries
directly to 2-d offline red/blue dominance counting.
For selection queries, we present a modification of our
algorithm:

Theorem 3.1. We can perform an offline sequence of
n updates and selection queries over a (multi)set of

integers in O(n
√

lg n lg1/4 lg n) expected total time.



Proof. Algorithm template. Suppose we are given an
offline sequence S of n operations over a multiset P ⊆
[2`], and an initial multiset for P (we allow P to be
initially nonempty).

For each i ∈ [2h], let Pi be the multiset {p ∈ P :⌊
p/2`−h

⌋
= i}. Let P̃ be the multiset {

⌊
p/2`−h

⌋
:

p ∈ P}. To handle each operation P .insert(p)
(resp. P .delete(p)), we compute i =

⌊
p/2`−h

⌋
and in-

voke the operations Pi.insert(p) and P̃ .insert(i) (resp.

Pi.delete(p) and P̃ .delete(i)). To handle the operation

P .select(k), we first invoke P̃ .select(k) to get an inter-

mediate output i, then invoke P̃ .rank(i) to get another
intermediate output k′, and then invoke Pi.select(k −
k′ + 1) to get the final output. Note that all the in-

voked operations on P̃ are to be executed collectively
first, before the operations on the Pi’s. Also note that
by translation, we can make Pi ⊆ [2`−h], and we know

P̃ ⊆ [2h].

Case 1′: ` ≤ L, n ≤ 2L, and the maximum multiplicity
is at most O(2L). For each operation in S, we create a
record storing its type, its input parameter (an element
p or an index k), and its (intermediate or final) output.
Since each index k can be at most 2L · 2L by the
multiplicity assumption, we can store the given sequence
S, together with the initial multiset, in O(nL/w) words.
We choose h = 1.

We first gather the sequence of invoked in-
sert/delete/select operations on P̃ and execute them di-
rectly. This can be done in O(nL/w) time by appropri-
ate word operations. We then perform the sequence of
invoked rank operations on P̃ directly, also in O(nL/w)
time (recall that offline dynamic rank queries reduce to
red-blue dominance counting). We then split S (based
on the intermediate output for each select operation) to
get the sequence of invoked operations on P0 and the
invoked operations on P1. This again takes O(nL/w)
time. After recursively handling these two sequences,
we can unsplit to get back S with the final output filled
in.

As a result, we get the same recurrence (2.1) and
obtain O(nL2/w) running time.

Case 1′′: ` ≤ L, without further restrictions. We divide
the sequence S into O(n/2L) blocks, each containing
2L − 1 operations. Fix one block. At the beginning of
the block, identify the “problematic” elements p0, p1, . . .
that have initial multiplicity greater than 2L+1. Let
µi and ri denote the initial multiplicity and rank of pi
respectively, and let di =

∑
j≤i(µj −2L). We can easily

compute all these values in O(2L) time per block. Let
P ′ be equal to P , except that the multiplicity of pi in
P ′ is decreased by µi − 2L. Note that the multiplicities

in P ′ lie in the range (0, 2L+1) at all times, since the
block has fewer than 2L operations.

Updates to P are applied to P ′. To find the k-th
smallest element in P , we first find i with ri + 2L ≤ k <
ri+1 + 2L by a predecessor search. Observe that at all
times, the rank of pi in P is < ri + 2L ≤ k, and the
rank of pi+1 + 1 in P is > ri+1 + 2L+1 − 2L ≥ k. So,
the answer must lie between pi and pi+1 + 1. On the
other hand, observe that for each p = pi + 1, . . . , pi+1,
the rank of p in P ′ exactly equals the rank of p in P
minus di. So, compute the (k − di)-th smallest element
q in P ′. If q ≤ pi, return pi; if q ≥ pi+1 + 1, return
pi+1 + 1; otherwise, return q.

Note that for each block, the O(2L) predecessor
queries are given offline and are done to a static set of
size O(2L). Thus, they can be performed collectively by

sorting, which takes O(2L
√

lg lg 2L) expected time by
the fastest known Word RAM algorithm [HT02]. The
selection queries on P ′ take O(2LL2/w) time by Case
1′. Summing over all O(n/2L) blocks, we get a total
expected running time of O(n(

√
lgL+ L2/w)).

Case 2: ` > L. Here, we store the given sequence
S naively in O(n) words, but we choose h = L
instead. We handle the invoked insert/delete/select

operations on P̃ by Case 1, and the rank operations
on P̃ by dominance counting, and then recursively
perform the invoked operations on the Pi’s. We get
almost the same recurrence as (2.2), except that the
overhead term is O(n(

√
lgL + L2/w)). This yields

T (n, `) = O(n(`/L)(
√

lgL + L2/w)). Setting L =√
w lg1/4 w gives T (n, lg n) = O((n/

√
w) lg n lg1/4 w) =

O(n
√

lg n lg1/4 lg n).
In initialization, we can again use a Word RAM

sorting algorithm to convert the integers to lie in [n]. 2

3.2 1-d offline dynamic depth. Next, we turn to
an offline version of the following problem: maintain
the maximum depth in a set of intervals in 1-d, under
insertions and deletions of intervals. Here, the depth of
a point p with respect to a collection of objects (e.g.,
intervals) is defined as the number of objects containing
p, and the maximum depth refers to the maximum
depth over all possible points.

We generalize the problem slightly and consider the
maintenance of a set P of weighted integer points in 1-d
to support the following operation:

P.prefix-update(p, δ), where δ ∈ {−1,+1}:
add δ to the weight of every element q ≤ p
in P , and output the change in the maximum
weight in P (the change is either 0 or δ).

Initially, we let P contain all the intervals’ endpoints
(which can be normalized to lie in [2n] after call-



ing a Word RAM sorting algorithm), and we set
all the weights to 0. We can simulate an inser-
tion (resp. deletion) of an interval [p, q] by invoking
P.prefix-update(q,+1) and P.prefix-update(p − 1,−1)
(resp. P.prefix-update(q,−1) and P.prefix-update(p −
1,+1)); then the maximum depth corresponds to the
maximum weight.

Theorem 3.2. We can perform an offline sequence of
n prefix-update() operations in O(n

√
lg n) total time.

Proof. Algorithm template. Suppose we are given the
offline sequence S of n operations over a set P ⊆ [2`].
Divide P into 2h subsets Pi ⊆ [2`−hi, 2`−h(i + 1)).

Create an extra set P̃ , maintaining the invariant that
the weight of i in P̃ equals the maximum weight
of p in P over all p ∈ Pi. To handle the opera-
tion P.prefix-update(p, δ), we compute i =

⌊
p/2`−h

⌋
and invoke Pi.prefix-update(p, δ); if the output is 0,

then we invoke P̃ .prefix-update(
⌊
p/2`−h

⌋
− 1, δ), else

P̃ .prefix-update(
⌊
p/2`−h

⌋
, δ), to get the final output.

Note that by translation, we can make Pi ⊆ [2`−h], and

we know P̃ ⊆ [2h].

Case 1: ` ≤ L. For each operation in S, we create
a record storing its input parameters and a bit for
(intermediate or final) output. The given sequence S
can be stored in O(nL/w) words. We choose h = 1.

We first split S to get the sequence of invoked
operations on P0 and the sequence of invoked operations
on P1, using O(nL/w) word operations. We execute
these two sequences recursively and then unsplit. We
next generate the sequence of invoked operations on
P̃ , again in O(nL/w) time using appropriate word

operations. We can solve the subproblem for P̃ directly
in O(nL/w) time.

As a result, we get the same recurrence (2.1) and
obtain O(nL2/w) running time.

Case 2: ` > L. Here, we store the sequence S naively
in O(n) words, but we choose h = L instead. As in the
proof of Theorem 2.1, we get the same recurrence (2.2)
and obtain the final time bound of O(n

√
lg n). 2

Corollary 3.1. We can maintain the maximum depth
over a set of intervals under an offline sequence of n
insertions and deletions in O(n

√
lg n) total time.

We mention two immediate consequences:

• We can compute the maximum depth in a 2-
d arrangement of n axis-aligned rectangles in
O(n
√

lg n) time. This follows by applying a stan-
dard plane-sweep algorithm.

• Given n points in the plane and an integer k, we
can find the smallest axis-aligned square enclos-
ing k points in O(n

√
lg n) expected time. This

follows from the preceding item by applying a
known randomized optimization technique [Cha99].
(Alternatively, by parametric or matrix searching

techniques, we get an O(n lg3/2 n)-time determin-
istic algorithm for this k-enclosing square problem,
which improves over the previous best determinis-
tic algorithm running in O(n lg2 n) time [EE94].)

3.3 Online range median. Next, we consider
range median queries. This problem can be viewed
geometrically: for a set of n points 2-d, we want to
find the point with the median y-coordinate among the
points inside a query vertical slab. A decision version
of the problem (deciding whether the median is less
than a given value) is easily reducible to orthogonal
range or dominance counting. We show that a simpler
version of our online data structure for dominance
counting queries with O(lg n) query time can answer
range median queries in the same amount of time.

Theorem 3.3. We can preprocess n points in the plane
in O(n

√
lg n) time, using a data structure with O(n)

words of space, so that we can select the k-th lowest
point among the points inside a query vertical slab for
any given k in O(lg n) time.

Proof. We use the same data structure as in the proof of
Theorem 2.3 but with a different setting of parameters:
H = 1 and A = lg n. Case 0′′ disappears, and Case 0′

becomes trivial. Thus, in Case 1, we revert to a simpler
2-way divide-and-conquer. The preprocessing time is
O(n
√

lg n) and space is O(n).
Assume that we are a given the two x-ranks of the

coordinates of the query slab σ. To select the k-th lowest
point of P ∩ σ, we (i) select the k-th lowest point q̃ of

P̃ ∩ σ, (ii) compute the y-rank k′ of q̃ in P̃ ∩ σ, and
(iii) select the (k−k′+ 1)-th lowest point of Pi∩σ with
i = q̃.y.

In Case 1, step (i) takes O(1) time by computing

the y-rank of only two y-values (since h = 1) in P̃ ∩ σ,

which reduces to dominance counting in P̃ . Step (ii)

takes O(1) time, again by dominance counting in P̃ .
Step (iii) is done recursively. We thus get the same
recurrence for the query time.

In Case 2, step (i) reduces to Case 1, step (ii)

reduces to dominance counting in P̃ , and step (iii) is
done recursively. Again we get the same recurrence for
the query time.

Note that initially the x-ranks can be determined
more simply by binary search in O(lg n) time. 2



Recently (and independently to our work), Bro-
dal and Jørgensen [BJ09] obtained a linear-space
data structure that supports range median queries in
O(lg n/ lg lg n) time. It remains to be seen whether the
preprocessing time of their data structure could be re-
duced to O(n

√
lg n).

3.4 1-d online dynamic ranking and selection.
In this subsection, we give a data structure for online
dynamic ranking and selection with an improved update
time. Roughly speaking, we need to rework the offline
algorithms from Section 2 or 3.1 to handle an online
sequence of updates. For convenience, we will deviate
somewhat from notation of the earlier sections, however.

We begin by designing a better data structure for
maintaining partial sums. In this problem, we are to
maintain an array A[1 . . n] of positive integers under:
incrementing or decrementing a location A[i]; asking for

a partial sum:
∑k

i=1A[i]; and selection query: asking
for the predecessor of some x among the partial sums
(i.e. find k such that

∑k
i=1A[i] ≤ x <

∑k+1
i=1 A[i]).

We can achieve an optimal O(lg n/ lg lg n) query
time, while improving the update time almost quadrat-
ically:

Theorem 3.4. We can maintain partial sums with
O(lg n/ lg lg n) time per query, and O(lg0.5+ε n) time per
update.

Proof. Let H = ε lgw. If we can maintain partial
sums with O(1) update and query time in an array of
size 2H , we can obtain O((lg n)/H) time per operation
overall. Indeed, consider a balanced tree with degree
2H spanning the array A. To each node, we associate
the sum of all leaves in its subtree. A node stores
a small partial sums data structure for the values
associated to its children. An update translates into
O((lg n)/H) updates on a root-to-leaf path, and a query
into O((lg n)/H) queries.

Let us ignore selection queries for now. To speed up
the updates, we will implement the partial sums data
structure inside each node with constant query time and
subconstant amortized update time. Imagine first that
we are working in external memory, and B words can be
manipulated in constant time. Then we can use buffer
trees [Arg03] to delay the updates. Each node will hold
a buffer of B recent updates that concern leaves in its
subtree. In addition, it will maintain the partial sums
of its children, as they were before these recent updates.

As long as the buffer of the root is not full, we can
simply insert a new update there. When it gets filled,
we recompute the partial sums array (incorporating the
B updates), and distribute the corresponding updates
down to the 2H children of the root. Recurse if any

child’s buffer gets filled. Emptying a buffer takes
O(2H) time, and each of B updates is pushed down one
level. Suppose n ≤ 2L. Overall, an update is pushed
down at most O(L/H) times, so its amortized cost is

O
(
1 + 2H

B · (L/H)). The queries are only slowed down
by a constant factor, since the buffer of recent updates
can be examined in constant time at each level.

If L � w, we can indeed use a machine word as
an external memory page storing B = w/L elements.
Thus, we get query cost O(L/H) and amortized update

cost O(1 + 2H

w/L · (L/H)), which is bounded by O(1 +

2HL2/w).
To handle the case n > 2L, we solve the partial sums

problem using a tree of depth (lg n)/L, and branching
factor 2L. In each node, we are facing a small partial
sums problem, which can be solved above. Overall, we
get amortized update cost O((lg n)/L · [1 + 2HL2/w]),
and query cost O((lg n)/L · L/H) = O((lg n)/H). For
w = Ω(lg n), setting L =

√
w and H = ε logw gives

update timeO(lg0.5+ε n) and query timeO(lg n/ lg lgn).
Finally, we discuss the selection query. In each node

of the 2H -ary tree, we maintain the partial sums ar-
ray (ignoring recent updates) as a fusion data struc-
ture [FW93]. This allows for constant-time predeces-
sor search. The reconstruction time (when updates are
pushed down to children) is slowed down from O(2H)
to 2O(H), but this is inconsequential (except in the de-
pendence on the constant ε).

It is not immediately possible to answer the se-
lection query based on the predecessor and the recent
updates, but there is a standard trick to solve this is-
sue [PD06]. In a packed word, each node remembers
the value of its children, capped to B + 1. This re-
quires O(2H lgB) = O(lg0.5+2ε n)� w bits. As demon-
strated in [PD06], the selection query can be answered
in constant time from the predecessor found by the fu-
sion node, and the capped values. This is true, since we
are only considering B recent updates before a node re-
buile, and thus the capping cannot change the answer.

2

We now turn our attention to dynamic algorithms
for the rank problem. The goal is to maintain a
list of n elements under: querying the rank of a
given element; querying for the k-th element (selection
queries); deleting a given element; and inserting an
element after a given element.

Theorem 3.5. There exists a data structure for dy-
namic rank supporting updates in O(lg0.5+ε n) time and
queries in O(lg n/ lg lg n) time.

Proof. This proceeds by reduction to partial sums. We
recall the ordered file data structure of [DS87, BCD+02].



This data structure can maintain n objects inside an
array of size O(n) under insertions and deletions, always
preserving a strict ordering of the elements. At insertion
time, an amortized O(lg2 n) elements are moved to
create space for the inserted item.

We will group our list elements into buckets of
Θ(lg2 n) consecutive elements, each of which is main-
tained as a balanced binary search tree. Each bucket is
stored as an element in an ordered file data structure.
On top of the O(n) array of the ordered file data struc-
ture, we store a partial sums data structure (the leaf
values are the exact size of each bucket).

To insert or delete an element, we first insert/delete
in the binary search tree of the bucket. Then, the
count of the bucket size is updated in the partial sums
structure. If the bucket has grown or shrunk by a
constant factor, we break it or merge two consective
buckets. An element must be inserted or removed in
the ordered file structure. However, one such update is
done for O(lg2 n) original updates, so the amortized cost
is constant. Overall, the time is equal to the update in
the partial sums structure, plus O(lg lg n).

To query the rank of the element, we first run a
partial sums query up to its bucket, and add the rank
within the bucket. To select an element, we select in
the partial sums data structure, and finish off in the
corresponding bucket. In both cases, the query time is
the partial sums query, plus O(lg lg n). 2

4 Higher Dimensions

We can generalize the results in Section 2 to higher
dimensions. In fact, the improvement gets closer to a
full logarithmic factor as the dimension increases.

Theorem 4.1. Given n red/blue points in a constant
dimension d ≥ 3, we can count the number of red points
dominated by each blue point, in O(n lgd−2+1/d n) total
time.

Proof. We generalize the algorithm template in the
proof of Theorems 2.1 and 2.2 in the obvious way.
Suppose that the input point set P is given in sorted
order with respect to the last coordinate, has distinct
last coordinates, and has j-th-coordinates from [2`j ] for
j = 1, . . . , d− 1.

In Case 1′, we assume that `1, . . . , `d−1 ≤ L and
n ≤ 2(d−1)L. The point set can still be packed into
O(nL/w) words. By dividing with respect to the j-th
coordinate, we get the following analog of recurrence
(2.1):

T (n, `1, . . . , `d−1)

=

1∑
i=0

T (ni, `1, . . . , `j−1, `j − 1, `j+1, . . . , `d−1) +

T (ni, `1, . . . , `j−1, 1, `j+1, . . . , `d−1) +O(nL/w)

∀`1, . . . , `d−1 ≤ L, ∀j ∈ {1, . . . , d− 1}

for some n1, n2 with n1 + n2 = n, where
T (n, 1, . . . , 1) = O(nL/w). This yields
T (n, `1, . . . , `d−1) = O(n`1 · · · `d−1L/w) = O(nLd/w).

In Case 1′′, we remove the assumption about n.
After resetting h to lg n − (d − 1)L, we get the time
bound O(n(1 + Ld/w)).

In Case 2, the recurrence (2.2) modifies to

T (n, `1, . . . , `d−1)

=

2L−1∑
i=0

T (ni, `1, . . . , `j−1, `j − L, `j+1, . . . , `d−1) +

T (ni, `1, . . . , `j−1, L, `j+1, . . . , `d−1) +O(nL/w)

∀`1, . . . , `d−1 ≤ L, ∀j ∈ {1, . . . , d− 1}

for some ni’s with
∑

i ni = n, where
T (n,L, . . . , L) = O(n(1 + Ld/w)). This yields
T (n, `1, . . . , `d−1) = O(n(`1/L) · · · (`d−1/L)(1+Ld/w)).
Setting L = w1/d and w = ε lg n gives
T (n, lg n, . . . , lg n) = O(n[(lg n)/w1/d]d−1) =

O(n[(lg n)1−1/d]d−1) = O(n lgd−2+1/d n).
In initialization, we can afford to use any standard

O(n lg n) sorting algorithm in place of known Word
RAM results. 2

Corollary 4.1. Given n points and n axis-aligned
boxes in a constant dimension d ≥ 3, we can count the
number of points inside each box, in O(n lgd−2+1/d n)
total time.

The above result leads to some interesting new time
bounds for a few applications. For example:

• The 2-d offline dynamic orthogonal range counting
problem reduces to 3-d offline (static) orthogonal
range counting (by adding time as the third co-
ordinate and subtracting counts for points deleted
from counts for points inserted). It can thus be

solved in O(n lg4/3 n) total time, i.e., O(lg4/3 n)
amortized update/query time. In contrast, the best
2-d online dynamic orthogonal range counting result
with O(polylog n) update time has O((lg n/ lg lg n)2)
query time [Nek09].

• The following rectangle enclosure problem has
been studied by several researchers [PS85, LP82,
GJSD97]: given n axis-aligned rectangles in the
plane, report all pairs of rectangles (r1, r2) where r1
is strictly contained in r2. The counting version of
the problem reduces to 4-d offline orthogonal range
counting (by mapping each rectangle to a 4-d point)
and can thus be solved in O(n lg2.25 n) time.



We can also obtain a generalization of the online
data structure in Theorem 2.3 (the proof is similar
enough and hence is omitted):

Theorem 4.2. We can preprocess n points in a con-
stant dimension d ≥ 3 in O(n lgd−2+1/d n) time, using a
data structure with O(n(lg n/ lg lg n)d−2) words of space,
so that we can count the number of points dominated by
a query point in O((lg n/ lg lg n)d−1) time.

5 Approximation

In this final section, we turn to approximation results,
specifically, for our initial problem: counting inversions.
We present a nice, simple linear-time algorithm that
improves over known (1 + ε)-approximation algorithms.
We first solve a modified version of the approximation
problem in which we are given a “threshold” parameter
K. We will describe our solution in setting of 2-d offline
red/blue dominance counting:

Theorem 5.1. Given m red and n blue points in [m+
n]2, let K∗ denote the (unknown) number of pairs (p, q)
where the red point p is dominated by the blue point q.
Given K, we can either report K∗ > K or approximate
K∗ to within an additive error of εK, in O(m+n) time.

Proof. The algorithm. Let k = 2K/n. We sweep the
points from left to right. Let S be the (dynamic) set of
all red points to the left of the sweep line, ordered by
y-coordinates. Let {p1, . . . , pb} be a set of “approximate
quantiles”, with b = d20/εe, satisfying the property that
pi has rank in [ik/b, ik/b + 0.05εk) in S at all times.
Such approximate quantiles can be maintained easily
in O(1) amortized time as follows: initialize T to ∅;
whenever the sweep line passes through b0.05εkc red
points, insert these points to T , eliminate all points of
y-rank exceeding k from T , and reset each pi to be the
(ik/b)-th lowest point in T , computable in O(k) time by
a linear-time selection algorithm.

Whenever the sweep line passes through a blue
point q, we do the following: If q.y > pb, then we
mark q as bad. Otherwise, if pi.y ≤ q.y < pi+1.y,
then the number of red points dominated by q lies in
[ik/b, (i+ 1)k/b+ 0.05εk) ⊆ [ik/b, ik/b+ 0.1εk), and we
add ik/b to the total count.

Observe that each bad blue point dominates at least
k red points. Thus, if the number of bad blue points
exceed n/2, then K∗ > nk/2 = K and we can quit.
Otherwise, we recurse over all bad blue points and all
red points, with ε← 0.8ε and the colors swapped (and
all coordinates negated).

Analysis. The additive error incurred by the non-
bad blue points is at most 0.1εkn ≤ 0.2εK. The
additive error from the recursive call is at most 0.8εK

by hypothesis. So, the total error is indeed at most εK
as claimed.

The running time satisfies the recurrence

T (m,n, ε) ≤ T (n/2,m, 0.8ε) +O((m+ n)/ε)

≤ T (m/2, n/2, 0.64ε) +O((m+ n)/ε),

which expands to a decreasing geometric series, yielding
T (m,n, ε) = O((m+ n)/ε). 2

Corollary 5.1. Given a permutation π over [n] and
any constant ε > 0, we can compute a factor-(1 + ε)
approximation to the number of inversions in O(n)
time.

Proof. It is known that the quantity
∑

i |π(i) − i|
gives a factor-2 approximation on the number of inver-
sions [DG77], and can be found in linear time. Thus, we
can find aK such thatK∗ ≤ K < 2K∗. We can then ap-
ply Theorem 5.1 (with the red point set and blue point
set being {(i,−π(i)) : i ∈ [n]}) to get a factor-(1+O(ε))
approximation. 2

We have not optimized the ε-dependencies in the
running time, to keep the algorithm simple. It is not
difficult to get O(n lg(1/ε)) time by using extra data
structures to maintain the approximate quantiles (we
can even get O(n) time for ε = Ω(1/polylog n) with
more effort, by using fusion trees). We can also obtain
randomized (1 + ε)-approximation results for other
related problems, for example, dynamic approximate
rank queries. These results will be deferred to the full
version of the paper.

References

[AAL09] Peyman Afshani, Lars Arge, and Kasper Dalgaard
Larsen. Orthogonal range reporting in three and
higher dimensions. In Proc. 50th IEEE Symposium
on Foundations of Computer Science (FOCS), page to
appear, 2009.

[ABR00] Stephen Alstrup, Gerth S. Brodal, and Theis
Rauhe. New data structures for orthogonal range
searching. In Proc. 41st IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 198–207,
2000.

[ABR01] Stephen Alstrup, Gerth S. Brodal, and Theis
Rauhe. Optimal static range reporting in one dimen-
sion. In Proc. 33rd ACM Symposium on Theory of
Computing (STOC), pages 476–482, 2001.

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric
range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors, Advances
in Discrete and Computational Geometry, pages 1–56.
American Mathematical Society, 1999.



[AHNR98] Arne Andersson, Torben Hagerup, Stefan Nils-
son, and Rajeev Raman. Sorting in linear time? Jour-
nal of Computer and System Sciences, 57(1):74–93,
1998. See also STOC’95.

[AJKS02] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. Approximate counting of inversions in a
data stream. In Proc. 34th ACM Symposium on Theory
of Computing (STOC), pages 370–379, 2002.

[AP98] Arne Andersson and Ola Petersson. Approximate
indexed lists. Journal of Algorithms, 29(2):256–276,
1998. See also SODA’95.

[Arg03] Lars Arge. The buffer tree: A technique for de-
signing batched external data structures. Algorithmica,
37(1):1–24, 2003. See also WADS’95.
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