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Abstract. We show that linear probing requires 5-independent hash
functions for expected constant-time performance, matching an upper
bound of [Pagh et al. STOC’07]. For (1 + ε)-approximate minwise inde-
pendence, we show that Ω(lg 1

ε
)-independent hash functions are required,

matching an upper bound of [Indyk, SODA’99]. We also show that the
multiply-shift scheme of Dietzfelbinger, most commonly used in practice,
fails badly in both applications.

1 Introduction

The concept of k-wise independence was introduced by Wegman and Carter [20]
in FOCS’79 and has been the cornerstone of our understanding of hash func-
tions ever since. Formally, a family H = {h : [u] → [b]} of hash functions
is k-independent if (1) for any distinct keys x1, . . . , xk ∈ [u], the hash codes
h(x1), . . . , h(xk) are independent random variables; and (2) for any fixed x, h(x)
is uniformly distributed in [b].

As the concept of independence is fundamental to probabilistic analysis, k-
independent functions are both natural and powerful in algorithm analysis. They
allow us to replace the heuristic assumption of truly random hash functions
with real (implementable) hash functions that are still “independent enough” to
yield provable performance guarantees. We are then left with the natural goal
of understanding the independence required by algorithms.

The canonical construction of a k-independent family is based on polynomials
of degree k−1. Let p ≥ u be prime. Picking random a0, . . . , ak−1 ∈ {0, . . . , p−1},
the hash function is defined by:

h(x) =
((
ak−1x

k−1 + · · ·+ a1x+ a0

)
mod p

)
mod b

For p� b, the hash function is statistically close to k-independent.
In simple cases, 2-independence suffices. For instance, if one implements a

hash table by chaining, the time it takes to query x is proportional to the number
of keys y colliding with x (i.e. h(x) = h(y)). Thus, pairwise independence of h(x)
and h(y) is all we need to understand the expected query time.

At the other end of the spectrum, O(lg n)-independence suffices in a vast
majority of applications. One reason for this is the Chernoff bounds of [15] for k-
independent events, whose probability bounds differ from the full-independence



Chernoff bound by 2−Ω(k). Another reason is that random graphs with O(lg n)-
independent edges [1] share many of the properties of truly random graphs.

In this paper, we study two compelling applications in which independence
2 < k < lg n is currently needed: linear probing and minwise-independent hash-
ing. (The reader unfamiliar with these applications will find more details below.)
For linear probing, Pagh et al. [11] showed that 5-independence suffices, thus giv-
ing the first realistic implementation of linear probing with formal guarantees.
For minwise-independence, Indyk [9] showed that ε approximation can be ob-
tained using O(lg 1

ε )-independence.
In both cases, it was known that 2-independence does not suffice [11, 3], and,

indeed, the simplest family x 7→ (ax + b) mod p provides a counterexample.
However, a significant gap remained to the upper bounds.

In this paper, we close this gap, showing that both upper bounds are, in
fact, tight. We do this by exhibiting carefully constructed families for which
these algorithms fail: for linear probing, we give a 4-independent family that
leads to Ω(lg n) query time; and for minwise independence, we give an Ω(lg 1

ε )-
independent family that leads to 2ε approximation.

Concrete schemes. Our results give a powerful understanding of a natural com-
binatorial resource (independence) for two important algorithmic questions. In
other words, they are limits on how far the paradigm of independence can bring
us. Note, however, that independence is only one property that concrete hash
schemes have. In a particular application, a hash scheme can behave much bet-
ter that its independence guarantees, if it has some other probabilistic property
unrelated to independence.

In practice, the most popular hash function is not x 7→
(
(ax+b) mod p

)
mod

u, but Dietzfelbinger’s multiply-shift scheme [6], which can be twice as fast [17].
To hash w-bit integers to the range b = 2`, the scheme picks a random a of 2w
bits, and computes (ax) >> (2w − `), where >> denotes unsigned shift.

In Appendix B, we prove that linear probing with multiply-shift hashing
suffers from Ω(lg n) expected running times. Similarly, minwise independent
hashing has a very large approximation, of ε = Ω(lg n). While these results are
not surprising, given the “moral similarity” of multiply-shift and ax+b schemes,
they do require rather involved arguments. We feel this effort is justified, as it
brings the theoretical lower bounds in line with programming reality.

In the same vein, one could ask to replace our lower bounds, which construct
artificial families of high independence, by a proof that the family of polyno-
mials fails. While this is an intriguing algebraic question, we do note that it is
far less pressing from a practical viewpoint. Even with the best known imple-
mentation tricks (such as computing modulo Mersenne primes), higher degree
polynomials make rather slow hash functions, and are not widely used. For in-
stance, the fastest known 5-independent family is tabulation based [18, 19], and
it outperforms polynomials by a factor of 5 or more. In a recent manuscript, we
show [13] that tabulation-based hash functions do, in fact, behave better than
their independence would suggest: for instance, 3-independent tabulation yields
O(1) running times for linear probing.



1.1 Technical Discussion: Linear Probing

Linear probing uses a hash function to map a set of keys into an array of size b.
When inserting x, if the desired location h(x) is already occupied, the algorithm
scans h(x) + 1, h(x) + 2, . . . until an empty location is found, and places x there.
The query algorithm starts at h(x) and scans either until it finds x, or runs into
an empty position, which certifies that x is not in the hash table. We assume
constant load of the hash table, e.g. the number of keys is n ≤ 2

3b.
This classic data structure is the most popular implementation of hash ta-

bles, due to its unmatched simplicity and efficiency. On modern architectures,
access to memory is done in cache lines (of much more than one element), so
inspecting a few consecutive values typically translates into just one memory
probe. Even if the scan straddles a cache line, the behavior will still be better
than a second random memory access on architectures with prefetching. Empir-
ical evaluations [2, 8, 12] confirm the practical advantage of linear probing over
other known schemes, while cautioning [8, 19] that it behaves quite unreliably
with weak hash functions (such as 2-independent). Taken together, these findings
form a strong motivation for theoretical analysis.

Linear probing was first shown to take expected constant time per operation
in 1963 by Knuth [10], in a report now considered the birth of algorithm analysis.
However, this required truly random hash functions.

A central open question of Wegman and Carter [20] was how linear probing
behaves with k-independence. Siegel and Schmidt [14, 16] showed that O(lg n)-
independence suffices. Recently, Pagh et al. [11] showed that even 5-independent
hashing works. We now close this line of work, showing that 4-independence is
not enough.

Review of the 5-independence upper bound. To better situate our lower bounds,
we begin by reviewing the upper bound of [11]. The main probabilistic tool
featuring in this analysis is a 4th moment bound. Consider throwing n balls into
b bins uniformly. Let Xi be the probability that ball i lands in the first bin, and
X =

∑n
i=1Xi the number of balls in the first bin. We have µ = E[X] = n

b .
Then, the kth moment of X is defined as E[(X − µ)k].

As long as our placement of the balls is k-independent, the kth moment is
identical to the case of full independence. For instance, the 4th moment is:

E[(X−µ)4] = E
[(∑

i

(Xi− 1
b )
)4]

=
∑
i,j,k,l

E
[
(Xi− 1

b )(Xj− 1
b )(Xk− 1

b )(Xl− 1
b )
]
.

The only question in calculating this quantity is the independence of sets of at
most 4 items. Thus, 4-independence preserves the 4th moment of full randomness.

Moments are a standard approach for bounding the probability of large de-
viations. Let’s say that we expect µ items in the bin, but have capacity 2µ; what
is the probability of overflow? A direct calculation shows that the 4th moment
is E[(X − µ)4] = O(µ2). Then, by a Markov bound, the probability of over-
flow is Pr[X ≥ 2µ] = Pr[(X − µ)4 ≥ µ4] = O(1/µ2). By contrast, if we only



have 2-independence, we can use the 2nd moment E[(X − µ)2] = O(µ) and ob-
tain Pr[X ≥ 2µ] = O(1/µ). Observe that the 3rd moment is not useful for this
approach, since (X − µ)3 can be negative, so Markov does not apply.

To apply moments to linear probing, we consider a perfect binary tree span-
ning the array. For notational convenience, let us assume that the load is at most
n ≤ b/3. A node on level ` has 2` array positions under it, and we expect 2`/3
keys to be hashed to one of them (but more or less keys may actually appear in
the subtree, since items are not always placed at their hash position). Call the
node dangerous if at least 2

32` keys hash to it.

In the first stage, we will bound the total time it takes to construct the
hash table (the cost of inserting n distinct items). If the table consists of runs
of k1, k2, . . . elements (

∑
ki = n), the cost of constructing it is bounded from

above by O(k2
1 + k2

2 + . . . ). To bound these runs, we make the following crucial
observation: if a run contains between 2` and 2`+1 elements, then some node at
level `− 2 above it is dangerous.

For a proof, assume the run goes from positions i to j. The interval [i, j]
is spanned by 4 to 9 nodes on level ` − 2. Assume for contradiction that none
are dangerous. The first node, which is not completely contained in the interval,
contributes less than 2

32`−2 elements to the run (it the most extreme case, this
many elements hashed to the last location of that node). But the subsequent
nodes all have more than 2`−2/3 free locations in their subtree, so 2 more nodes
absorb all excess elements. Thus, the run cannot go on for 4 nodes, contradiction.

This observation gives an upper bound on the cost: add O(22`) for each
dangerous node at some level `. Denoting by p(`) the probability that a node on
level ` is dangerous, the expected cost is thus

∑
`(n/2

`) ·p(`) ·22` =
∑
` n ·2`p(`).

Using the 2nd moment to bound p(`), one would obtain p(`) = O(2−`), so the
total cost would be O(n lg n). However, the 4th moment gives p(`) = O(2−2`),
so the cost at level ` is now O(n/2`). In other words, the series starts to decay
geometrically and is bounded by O(n).

To bound the running time of one particular operation (query or insert q),
we actually use the stronger guarantee of 5-independence. If the query lands at
a uniform place conditioned on everything else in the table, then at each level it
will pay the “average cost” of O(1/2`), which sums up to O(1).

Our results. Two intriguing questions pop out of this analysis. First, is the
independence of the query really crucial? Perhaps one could argue that the query
behaves like an average operation, even if it is not completely independent of
everything else. Secondly, one has to wonder whether 3-independence suffices (by
using something other than 3rd moment): all that is needed is a bound slightly
stronger than 2nd moment in order to make the series decay geometrically!

We answer both questions in strong negative terms. The complete under-
standing of linear probing with low independence is summarized in Table 1. Ad-
dressing the first question, we show that 4-independence cannot give expected
time per operation better than Ω(lg n), even though n operations take O(n). Our
proof demonstrates an important phenomenon: even though most bins have low



Independence 2 3 4 ≥ 5

Query time Θ̃(
√
n) Θ(lgn) Θ(lgn) Θ(1)

Construction time Θ(n lgn) Θ(n lgn) Θ(n) Θ(n)
Table 1. Expected time bounds with a bad family of k-independent hash functions.
Construction time refers to the total time over n different insertions.

load, a particular element’s hash code could be correlated with the (uniformly
random) choice of which bins have high load.

An even more striking illustration of this fact happens for 2-independence:
the query time blows up to Ω(

√
n) in expectation, since we are left with no

independence at all after conditioning on the query’s hash. This demonstrates a
very large separation between linear probing and collision chaining, which enjoys
O(1) query times even for 2-independent hash functions.

Addressing the second question, we show that 3-independence is not enough
to guarantee even a construction time of O(n). Thus, in some sense, the 4th

moment analysis is the best one can hope for.

1.2 Technical Discussion: Minwise Independence

This concept was introduced by two classic algorithms: detecting near-duplicate
documents [3, 4] and approximating the size of the transitive closure [5]. The
basic step in these algorithms is estimating the size of the intersection of pairs

of sets, relative to their union: for A and B, we want to find |A∩B||A∪B| (the Jaccard

similarity coefficient). To do this efficiently, one can choose a hash function h
and maintain minh(A) as the sketch of an entire set A. If the hash function is

truly random, we have Pr[minh(A) = minh(B)] = |A∩B|
|A∪B| . Thus, by repeating

with several hash functions, or by keeping the bottom k elements with one hash
function, the Jaccard coefficient can be estimated up to a small approximation.

To make this idea work, the property that is required of the hash function
is minwise independence. Formally, a family of functions H = {h : [u] → [u]} is
said to be minwise independent if, for any set S ⊂ [u] and any x /∈ S, we have
Prh∈H[h(x) < minh(S)] = 1

|S|+1 . In other words, x is the minimum of S ∪ {x}
only with its “fair” probability 1

|S|+1 .

As good implementations of exact minwise independent functions are not
known, the definition is relaxed to ε-minwise independent, where Prh∈H[h(x) <
minh(S)] = 1±ε

|S|+1 . Using such a function, we will have Pr[minh(A) =

minh(B)] = (1± ε) |A∩B||A∪B| . Thus, the ε parameter of the minwise family dictates

the best approximation achievable in the algorithms (which cannot be improved
by repetition).

Indyk [9] gave the only implementation of minwise independence with prov-
able guarantees, showing that O(lg 1

ε )-independent functions are ε-minwise in-
dependent.



His proof uses another tool enabled by k-independence: the inclusion-
exclusion principle. Say we want to bound the probability that at least one
of n events is “good.” We can define p(k) =

∑
S⊂[n],|S|=k Pr[all S are good].

Then, the probability that at least one event is good is, by inclusion-exclusion,
p(1)− p(2) + p(3)− p(4) + . . . . If we only have k-independence (k odd), we can
upper bound the series by p(1)− p(2) + · · ·+O(p(k)). In the common scenario
that p(k) decays exponentially with k, the trimmed series will only differ from
the full independence case by 2−Ω(k). Thus, k-independence achieves bounds ex-
ponentially close to full independence, whenever probabilities can be computed
by inclusion-exclusion. This turns out to be the case for minwise independence:
we can express the probability that at least some element in S is below x by
inclusion-exclusion.

In this paper, we show that, for any ε > 0, there exist Ω(lg 1
ε )-independent

hash functions that are no better than (2ε)-minwise independence. Thus, ε-
minwise independence requires Ω(lg 1

ε ) independence.

2 Time Θ(
√
n) with 2-Independence

We define a 2-independent hash family such that the expected query time is
Θ(
√
n). The main idea of the proof is that the query can play a special role:

even if most portions of the hash table are lightly loaded, the query can be
correlated with the portions that are loaded. We assume that b is a power of
two, and we store n = b/2 keys. We also assume that

√
n is a power of two.

We can think of the stored keys and the query key as fixed, and we want
to find bad ways of distributing them k-independently into the range [b]. To
extend the hash function to the entire universe, all other keys are hashed totally
randomly. We consider unsuccessful searches, i.e. the search key q is not stored
in the hash table. The query time for q is the number of cells considered from
h(q) up to the first empty cell. If, for some d, the interval Q = (h(q) − d, h(q)]
has 2d keys, then the search time is Ω(d).

Let d = 2
√
n; this is a power of two dividing b. In our construction, we first

pick the hash h(q) uniformly. We then divide the range into
√
n intervals of

length d, of the form (h(q) + i · d, h(q) + (i + 1)d], wrapping around modulo b.
One of these intervals is exactly Q.

We prescribe the distribution of keys between the intervals; the distribution
within each interval will be fully random. To place 2d = 4

√
n keys in the query

interval with constant probability, we mix among two strategies with constant
probabilities (to be determined):

S1: Spread keys evenly, with
√
n keys in each interval.

S2: Pick 4 intervals including the query interval, and gather all 4
√
n keys in a

random one of these. All other intervals get
√
n keys. With probability 1/4,

it is the query interval that gets overfilled, and the search time is Ω(
√
n).

To prove that the hash function is 2-independent, we need to consider pairs of
two stored keys, and pairs involving the query and one stored key. In either case,



we can just look at the distribution into intervals, since the position within an
interval is truly random. Furthermore, we only need to understand the probabil-
ity of the two keys landing in the same interval (which we call a “collision”). By
the above process, if two keys do not collide, they will actually be in uniformly
random distinct intervals.

Since store keys are symmetric, the probability of q and x colliding is given by
the expected number of items in Q, which is exactly d/2. Thus h(q) and h(x) are
independent. To analyze pairs of the form (x, y), we will compute the expected
number of collisions among stored keys. This will turn out to be

(
n
2

)
/
√
n, proving

that x and y collide with probability 1/
√
n, and thus, are independent.

In strategy S1, we get the smallest possible number of collisions:
√
n
(√

n
2

)
=

1
2n

1.5− 1
2n. Compared to

(
n
2

)
/
√
n = 1

2n
1.5− 1

2

√
n, this is too few by almost n/2.

In S2, we get (
√
n− 4)

(√
n

2

)
+
(

4
√
n

2

)
= 1

2n
1.5 + 11

2 n, which is too large by almost
5.5n. To get the right expected number of collisions, we use S2 with probability

5.5n+o(n)
(0.5+5.5)n+o(n) = 11

12 ± o(1).

It is not hard to prove an upper bound of O(
√
n) on the expected query cost:

a higher query time implies too many collisions for 2-independence. Formally,
divide into

√
n intervals of length d = 2

√
n. If the query cost is td, it must pass

at least (t−2)d keys in intervals filled with at least d keys. Also, if we have k keys
in such full intervals, the number of collisions is Ω(k

√
n) above the minimum

possible. Thus, if the expected query cost is ω(d), the the expected number of
extra collisions is ω(n), contradicting 2-universality.

3 Construction Time Ω(n lgn) with 3-Independence

We will now construct a 3-independent family of hash functions, such that the
time to insert n items into a hash table is Ω(n lg n). As before, we assume the
array size b is a power of two; also, n is a power of two exceeding 2

3b. Since we
are looking at the total cost of n insertions, if some interval of length d gets
d+ s keys (overflow of s), then these d+ s insertions cost Ω(s2). We will add up
such squared overflow costs over disjoint intervals, and demonstrate a total cost
of Ω(n lg n). Our proof and notations are in a more general form than needed,
laying the ground for our work on 4-independence.

We imagine a perfect binary tree spanning the array. Our hash function will
recursively distribute keys from a node to its two children, starting at the root.
Nodes run independent random distribution processes. Then, if each node makes
a k-independent distribution, overall the function is k-independent.

For a node, will mix between two strategies:

S1: Distribute the keys evenly between the two children (always possible, as n
is a power of 2).

S2: Give all the keys to one of the children.

Our first goal is to determine the correct probability for the second strategy,
pS2, such that the distribution process is 3-independent. Then we will calculate
the cost it induces on linear probing.



To prove 3-independence, we will reason about moments. Our random-
ized procedure treats keys symmetrically, and ignores the distinction between
left/right children. Say the current node has to distribute m keys to its two
children, u and v. We want to look at the moments of the number of elements
given to u. Formally, let Xa be the indicator random variable for key a ending
in u; by symmetry, E[Xa] = 1

2 . Let X =
∑
aXa be the number of keys assigned

to u. Then µ = E[X] = m/2 and the kth moment is Fk = E[(X −µ)k]. We have
the following characterization of 3-independent distributions:

Lemma 1. The distribution is 3-independent iff µ = m/2 and F2 = m/4.

Proof. We first observe that, when distributing items into two bins, any odd
moment is necessarily zero, as Pr[X = µ + δ] = Pr[X = µ − δ] for any δ. If
the distribution is 2-independent or more, the 2nd moment is F2 =

∑
aE[(Xa −

1
2 )2] = m

4 . This shows the “only if” part.
Now consider arbitrary distinct keys a, b, c. Since our process treats keys

symmetrically, to show it is 3-independent we only need to show that Pr[Xa ∧
Xb ∧Xc] = 1

8 and Pr[Xa ∧Xb ∧ ¬Xc] = 1
8 . Note, furthermore, that

Pr[Xa ∧Xb] = Pr[Xa ∧Xb ∧Xc] + Pr[Xa ∧Xb ∧ ¬Xc]

Thus, it is equivalent to show the pair of conditions: Pr[Xa ∧Xb ∧Xc] = 1
8 and

Pr[Xa ∧Xb] = 1
4 . For notational convenience, let pk = Pr[X1 ∧ · · · ∧Xk]; this is

defined for any distinct keys X1, . . . , Xk, since keys are symmetric. Our goal is
thus to show that p2 and p3 have the correct values.

We will show a stronger statement: in general, p2, . . . , pk are determined
by F2, . . . , Fk. In this case, any distribution that has the same moments as a
3-independent distribution must have the same p2 and p3 as a 3-independent
distribution, i.e. it must be 3-independent!

Let mk̄ = m(m−1) . . . (m−k+ 1) be the falling factorial. Our precise claim:

Fact 1 For any k, mk̄pk = Fk + fk(m,F2, .., Fk−1), for some function fk.

For the proof, note that Fk = E[(X − µ)k] = E[Xk] +
f
(
µ,E[X2], . . . ,E[Xk−1]

)
. Thus, the goal is to write all E[Xj ], j = 2 to k,

as a function of p2, . . . , pk. For this, note that E[Xk] = mk̄pk + f1(m, k)pk−1 +
f2(m, k)pk−2 + . . . ut

With this characterization, we can decide on the right mix of S1 and S2
to make the process 3-independent. In strategy S1 (balanced distribution), X =
µ±1, so FS1

2 ≤ 1. In S2 (all to one child), |X−µ| = m/2 so FS2
2 = m2/4. Hence,

the proper balancing is pS2 = 1
m±O( 1

m2 ), yielding the desired 2nd moment m/4.
By Lemma 1, this distribution is 3-independent.

We now calculate the cost in terms of squared overflows. As long as the
recursive steps spread the keys evenly, the load stays unchanged above 2/3.
However, a first time we collect m keys into one child, that interval of the array
will get a load of 4/3. This is an overflow of Ω(m) keys, thus a cost of Ω(m2).
Since pS2 = Θ(1/m), the expected cost induced by the node is Θ(m).



However, to avoid double charging, we may only consider the node if there
has been not collection in one of his ancestors. As long as S1 applies, the number
of keys at depth i is m ≈ n/2i, so the probability of the collection strategy is
pS2 = Θ(1/m) = Θ(2i/n). The probability that a node at depth i is still relevant

(no collection among his ancestors) is at least 1−
∑i−1
j=0Θ(2j/n) = 1−Θ(2i/n) ≥

1
2 for i� lg n. We conclude that the expected cost of each node is linear in the
size of its subtree. Hence, the total expected cost is Ω(n lg n).

4 Expected Query Time Ω(lgn) with 4-Independence

The proof is a combination of the ideas for 2-independence and 3-independence,
plus the (severe) complications that arise. As for 2-independence, we will first
choose h(q) and then make the stored keys cluster preferentially around h(q).
This clustering will actually be the 3-independent type of clustering from before,
but done only on the path from the root to h(q). Since this is used for so few
nodes, we can balance the 4th moment to give 4-independence, by doing a slightly
skewed distribution in the nodes off the query path. Full details appears in
Appendix A.

5 Minwise Independence via k-Independence

We will show that it is limited how good minwise independence we can as-
sume based on k-independent hashing. For a given k, our goal is to construct a
k-independent scheme over n regular keys and a query key q such that the prob-
ability that q gets the minimal hash value is too large by a factor of 1 + 2−Ω(k).

The construction of the distribution is as follows. We assume that k divides
n and that k is even. The hash values are going to be uniformly distributed
in the unit interval [0, 1). For our construction we divide the unit interval into
subintervals of length k/n, that is subintervals of the form [ik/n, (i+ 1)k/n) for
i = 0, .., n/k − 1.

The regular keys are distributed totally randomly between the above subin-
tervals. Each subinterval I gets an expected number of k regular keys. We say
that I is “exact” if it gets exactly k regular keys. If I is not exact, the regular
keys are placed totally randomly within I.

For exact intervals I, we introduce a “parity distribution” based on a parity
parameter P = {0, 1}. The distribution of the k regular keys in I is random
subject to the constraint that P determines the parity of the number of keys
landing in the first half of I. This means that any k − 1 keys are totally inde-
pendent, but then P determines whether or not the last key should go in the
first half. It follows that the overall distribution of the regular keys is (k − 1)-
independent regardless of the parities. It also follows that the overall distribution
is k-independent if each exact interval has parity P with probability 1/2. This
does not require independendence of parities for different exact intervals.

The query is generated independently, landing in some subinterval, called
the “query interval”. The distribution of parities will be determined by this



event. If a given exact interval I gets the query key, its parity is set to even
(PI = 0). The probability of this event is k/n. If I does not get the query, its
parity is only set to even with probability (1/2− k/n)/(1− k/n). It follows that
the overall probability that the parity of I is even is exactly 1/2. Since this is
the case for every exact interval, we conclude that the distribution of regular
keys is k-independent. Moreover, since the distribution of the regular keys is
(k− 1)-independent regardless of the parities, hence regardless of the query key,
we conclude that the distribution of all keys is k-independent, as required.

To understand the effect of the parity, consider an exact interval I with k
regular keys plus the query key. We are interested in the “min-probability” that
the query becomes smallest in I. With the parity P as a parameter, we denote the
min-probability pPmin. With a totally random distribution, the min-probability is
the average of p0

min and p1
min, but in our special distribution the min-probability

is p0
min. Our goal is therefore to show that p0

min is larger than p1
min.

For our analysis, we generate the distribution with parity P as follows. First
we distribute k− 1 keys randomly. Let j be the number of keys in the first half.
If j has parity P , we place the last key in the last half. Otherwise, we place it
in the first half, which then gets j′ = j + 1 keys.

For given P , consider some i > 0 with parity P . The probability pi that we
get i regular keys in the first half is

pi =

(
k−1
i−1

)
+
(
k−1
i

)
2k−1

=

(
k−1
i−1

)
(1 + k−i

i )

2k−1
=

(
k
i

)
2k−1

.

When the first half has i > 0 keys, the min-probability is the probability that
the query is in the first half and that it is smaller than the i regular keys in the
first half, so the min-probability is 1/(i+ 1)/2. The case of i regular keys in the
first half therefore contributes

ri = pi/(i+ 1)/2 =

(
k

i

)
/(i+ 1)/2k,

to pPmin. We shall also use this formal definition of ri when i = 0, so r0 = 1/2k.
If P = 0, we also need to consider the case of i = 0 regular keys in the first

half. The probability of this event is 1/2k−1. Then the query is smallest if either
it ends in the first half, or it ends in the second half as smaller than the k regular
keys there. The min-probability when i = P = 0 is therefore 1/2 + 1/(k + 1)/2,
so this case contributes 1/2k + 1/(k + 1)/2k = r0 + 1/(k + 1)/2k to p0

min.
Summing up over all cases, we get that p0

min =
∑
i even ri+1/(k+1)/2k while

it for odd distributions is p1
min =

∑
i odd ri.

Now for i < k, using the formal definition of ri, we get that

ri =

(
k

i

)
/(i+ 1)/2k = kī/i!/(i+ 1)/2k

=

(
k

i+ 1

)
/(k − i)/2k =

(
k

k − i− 1

)
/(k − i)/2k

= rk−i−1.



The important point here is that if k is even, then k − i − 1 is odd. Moreover,
for i = 0, 2, .., k− 2, we have k− i− 1 = k− 1, k− 3, ..., 1. Therefore we conclude
that

∑
i∈{0,2,...,k−2} ri =

∑
i odd ri. This gives us the desired difference between

p0
min and p1

min:

p0
min = p1

min + rk + 1/(k + 1)/2k = p1
min + 2/(k + 1)/2k.

With our special distribution, the min-probability is p0
min. With a totally random

distribution, the min-probability prandmin = 1/(k + 1) is the average of p0
min and

p1
min. It follows that

p0
min = prandmin + 1/(k + 1)/2k = prandmin (1 + 1/2k).

We are now almost done. For the query to be smallest in either distribution,
it has to be in the smallest non-empty interval. If this interval is exact, then
our even parity increases the chance that the query is smallest by a factor (1 +
1/2k); otherwise our special distribution does not change the probability. All
that remains is to show the exact case happens with probability Ω(1/

√
k).

The probability that there are no regular keys in [0, 3(lnn)/n) is (1 −
3(lnn)/n)n < 1/n3, so we can ignore this case. We now condition on the query
key being in the smallest non-empty subinterval Q. Then all smaller subintervals
are empty, so the regular keys are distributed randomly between the intervals
from Q and up. If µ < 3(lnn)/n is the start of Q, then each of the n regular
keys ends in Q with independent probability k/n/(1 − µ). The number land-
ing in Q therefore follows a binomial distribution with mean very close to k,
so the probability that the number is exactly k is Ω(1/

√
k). Thus, overall, we

conclude that the probability that the query gets the minimum value is a factor
1 +Ω(1/(

√
k2k)) larger than it should be.

References

1. Noga Alon and Asaf Nussboim. k-wise independent random graphs. In Proc. 49th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 813–822,
2008.

2. John R. Black, Charles U. Martel, and Hongbin Qi. Graph and hashing algorithms
for modern architectures: Design and performance. In Proc. 2nd International
Workshop on Algorithm Engineering (WAE), pages 37–48, 1998.

3. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
Min-wise independent permutations. Journal of Computer and System Sciences,
60(3):630–659, 2000. See also STOC’98.

4. Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks, 29:1157–1166, 1997.

5. Edith Cohen. Size-estimation framework with applications to transitive closure
and reachability. Journal of Computer and System Sciences, 55(3):441–453, 1997.
See also STOC’94.

6. Martin Dietzfelbinger. Universal hashing and k-wise independent random variables
via integer arithmetic without primes. In Proc. 13th Symposium on Theoretical
Aspects of Computer Science (STACS), pages 569–580, 1996.



7. Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.
A reliable randomized algorithm for the closest-pair problem. Journal of Algo-
rithms, 25(1):19–51, 1997.

8. Gregory L. Heileman and Wenbin Luo. How caching affects hashing. In Proc. 7th
Workshop on Algorithm Engineering and Experiments (ALENEX), page 141154,
2005.

9. Piotr Indyk. A small approximately min-wise independent family of hash functions.
Journal of Algorithms, 38(1):84–90, 2001. See also SODA’99.

10. Donald E. Knuth. Notes on open addressing. Unpublished memorandum. See
http://citeseer.ist.psu.edu/knuth63notes.html, 1963.

11. Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear probing with constant inde-
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A Expected Query Time Ω(lgn) with 4-Independence

For the first i0 = d2/3 log2 ne levels, we just do a perfectly random recursive
distributions, which in particular is 4-independent, and now all intervals are
of length Θ(n1/3). On the subsequent levels, we will apply the 3-independent
distribution from the last subsection on the query interval. This will have a too
high 4th moment. To balance it, on the non-query intervals, we will apply another
3-independent distribution with a too low 4th moment, arguing that the overall
distribution becomes 4-independent. If we reach level d0.9 log2 ne or if at some
level, the query interval gets all keys collected on one side, then on all remaining
levels, we revert to perfectly random distributions.

As described above, our expected asymptotic cost for the search is Ω(lg n)
as it was for insertions in the last section. More precisely, after the first i0, the



intervals still have a fill tightly concentrated around 2/3, and in particular we can
assume this to be the case for the query interval. On level i, i0 ≤ i < 0.9 log2 n,
the probability that the query interval has not yet been collected is O(2i/n) =
o(1). In the non-collected case, we have roughly n/2i keys that get clustered
with probability Θ(1/m) leading to an overflow and cost of Ω(m). The expected
cost on level i is thus Ω(1). We have Θ(lg n) such levels, so our expected search
cost is Ω(lg n).

As described above, however the query key is placed, we distributed the stored
keys 3-independently. This means that any set of 3 stored keys plus the query
key are distributed independently. Hence, for 4-independence, it only remains to
prove that any four stored keys are distributed independently. We will achieve
this inductively, one level at the time, observing the following condition:

Property 1. For any set K of at most 4 keys, conditioned on them all being in the
same interval on level i, they distribute fully randomly on the two subintervals
on level i+ 1.

As stated in the construction, we will ascertain that all recursive calls are 3-
independent, implying that Property 1 is satisfied when |K| ≤ 3.

We now argue that assuming 3-independence, we only have to worry about
the probability P4 = P({a,b,c,d},∅) that any four keys a, b, c, d, all end on the left
side. This is because P({a,b,c},{d}) = P({a,b,c},∅)−P({a,b,c,d},∅), and P({a,b},{c,d}) =
P({a,b},{c}) − P({a,b,d},{c}). From 3-independence, we know that P({a,b,c},∅) and
P({a,b},{c}) have the correct value of 2−3, so if P({a,b,c,d},∅) has the correct value
of 2−4, then so does P({a,b,c},{d}) and P({a,b},{c,d}). Thus

Lemma 2. If a symmetric distribution on two subintervals is 3-independent and
P(4,0) = 2−4, then the distribution is 4-independent.

We will now seek to get the correct probability P(4,0) = 1/24 of clustering the
four keys, conditioned only on them being in a given interval on level i. The
intervals on level i are of the form (q + jt/2i, q + (j + 1)t/2i] (mod t). For the
location of the intervals, we only care about the offset o = q mod t/2i. For the
distribution we see on level i, we can think of q as a random number conditioned
on the offset. Thus, from level i, it is random which interval is the query interval.
Moreover, our distribution of stored keys is immune to permutations. On level
i, we end up with a certain number of quadruples in the query interval and a
certain number of quadruples that are together in other intervals. This means
conditioned on the set K being in a certain interval I = (o+jt/2i, o+(j+1)t/2i],
there is a certain probability pquery that I is the query interval. In that case we
will get a certain probability P query

(4,0) > 1/24 that they end in the left interval.

Otherwise, there will be a smaller probability P non−query
(4,0) < 1/24 designed to

satisfy that pqueryP
query
(4,0) + (1− pquery)P non−query

(4,0) = 1/24. It would be tempting

to try to do the above balancing directly via the 4th moment, but because the
different intervals on level i have different number of keys, there is no simple
relation between balancing the 4th moment and balancing P(4,0). Nevertheless,

we shall use the 4th moment to control P(4,0).



From Fact 1 we get that mk̄Pk = Fk + fk−1(m,F2, .., Fk−1). Let Crandom
k−1

be the value of fk−1(m,F2, .., Fk−1)/mk̄ when the distribution is truly random.
Then

P(k,0) = Fk/m
k̄ + Crandom

k−1

for any k − 1 universal function. We are interested in the case where k = 4. To
compute Crandom

3 , we derive the truly random values of P random
(4,0) and F random

4 .

Trivially P random
(4,0) = 1/24 and

F random
4 = m/24 +

(
4

2

)
m2̄/24 = (6m2 − 5m)/24.

Hence

Crandom
3 = F random

4 /m4̄ − P random
(4,0) = 1/24(1− (6m2 − 5m)/m4̄).

We will now compute P query
(4,0) for the case of the query interval. Here we

collected all keys on one side with probability pcollect = 1/m − O(1/m2), and
then we get a 4th moment of F collect

4 = (m/2)4; otherwise we had an even split,

which including rounding has F even−split
4 < 1. Thus

F query
4 = pcollectF

collect
4 + (1− pcollect)F

even−split
4 = m3/24 −O(m2).

We know the combined distribution is 3-independent, so

P query
(4,0) = F query

4 /m4̄ + Crandom
3

= (m3/24 −O(m2))/m4̄ + 1/24(1− (6m2 − 5m)/m4̄)

= 1/24(1 + (m3 −O(m2))/m4̄))

= 1/24(1 + 1/m−O(1/m2)).

Next we design a 3-independent scheme with a small skew putting m/2 + δ
on one side and m/2 − δ on the other side. Here δ ≈

√
m/4 is rounded up to

make m/2+δ integer. Now F small−skew
2 = δ2 = m/4+O(

√
m). We want a second

moment of exactly m/4. To get rid of the O(
√
m) term, we do an even split with

probability O(1/
√
m). From Lemma 1 it follows that combined distribution is

3-independent. Including the small probability of an even split, we get a 4th

moment of
F small−skew

4 = δ4 = m2/16±O(m3/2).

We know the combined distribution is 3-independent, so

P small−skew
(4,0) = F small−skew

4 /m4̄ + Crandom
3

= (m2/24 ±O(m3/2))/m4̄) + 1/24(1− (6m2 − 5m)/m4̄)

= 1/24(1− (5m2 ±O(m3/2))/m4̄))

= 1/24(1− 5/m2 ±O(1/m5/2)).



We would get a 4-independent combination of our small skew scheme and our
previous query interval scheme if we pick the query scheme with a the probability
p satisfying

(1− p)P small−skew
(4,0) + pP query = 1/24

implying that p = 5/m ± O(1/m2). However, this balancing would ignore the
special role of the query interval on which we always apply the query scheme.

We now return to the full combination including the special query interval.
The distributions happen 4-independently level by level. If at some level we see
we have an unlikely “bad” distribution, we can finish the remaining levels with
purely random distributions. As long as the overall probability of a bad event is
less than 1/2, this will not affect our expected Θ(lg n) query time.

On any level i, the expected number of keys is mi = n/2i. An interval is
fair if it has mi ± 10

√
mi keys. Recall that for the first i0 = d2/3 log2 ne levels,

we just did perfectly random recursive distributions, which in particular are 4-
independent. With high probability, all intervals are fair with Θ(n1/3); otherwise
we are in a rare bad event.

On each remaining levels i ≤ 0.9 log2 n, on any fair interval, we will either
use the query scheme or the small skew scheme. However, if the query interval
is fair, we always use the query scheme. We note that if an interval is fair,
then the subintervals will be good except if we collect all keys on one side with
the query scheme. In particular, our small skew cannot destroy fairness. Also,
recall that if ever the query interval got collected on one side, we continued with
fully-random distributions on the remaining levels. Also, recall that even if all
ancestor of an interval used the query scheme, then the probability of a one-sided
collection is 0(1/mi). We can therefore dismiss it as a bad event if more than a
fraction O(1/

√
mi) of the intervals are not fair. With all this nice structure, we

can bound the probability pquery that a given quadruple of stored keys is in the
query interval. We have roughly the same number of keys in each fair interval,
hence roughly the same number of quadruples (within a factor 1 ± O(

√
1/mi)

where mi = Ω(n1/10)). We know the query interval is fair, and we know we have
(1−o(1)n/mi) other intervals, so pquery = O(mi/n) = O(1/m2

i ). When the query
scheme is applied to the query interval, it has a given probability P query

4 [query]
of collecting the quadruple. Hence, for a non-query intervals with m ≈ mi keys,
we need the collection probability to be

P ′4 = (P random
4 − pqueryP

query
4 [query])/(1− pquery) = (1/24 −O(1/m2

i )).

Thus for the fair non-query intervals, we should use the query scheme with a
probability p′ satisfying

(1− p′)P small−skew
(4,0) + p′P query = P ′4

which is easily possible because P small−skew
(4,0) < P ′4.



B Multiplication-Shift Schemes

We show that the simplest and fastest known universal hashing schemes have bad
expected performance when used for linear probing on some of the most realistic
structured data. This result is inspired by negative experimental findings from
[19]. The essential form of the schemes considered have the following basic form:
we want to hash `in-bit keys into `out-bit indices. Here `in ≥ `out, and the indices
are used for the linear probing array. For the typical case of a half full table, we
have 2`out = m ≈ 2 log2 n.

Depending on details of the scheme, for some ` ≥ `in, `out, we pick a random
multiplier a ∈ [2`], and compute

ha(x) = (ax mod 2`)÷ 2`−`out

If ` ∈ {8, 16, 32, 64}, the mod-operation is performed automatically as discarded
overflow. The ÷ operation is just a right shift by s = ` − `out, so in C we get
the simple code (a*x)>>s and the cost is dominated by a single multiplication.
For the plain universal hashing in [7], it suffices that ` ≥ `in but then a should
be odd. For 2-independent hashing as in [6], we need ` ≥ `in + `out − 1. Also we
need to add a random number b, but as we shall discuss in the end, these details
have no essential impact on the derivation below.

Our basic bad example will be where the keys form the dense interval [n] =
{0, ..., n − 1}. However, the problem will not go away this interval is shifted or
not totally full, or replaced by an arithmetic progression.

When analyzing the scheme, it is convenient to first consider it as first a
mapping into the unit interval [0, 1) via

h0
a(x) = (ax mod 2`)/2`.

Then ha(x) = bh0
a(x)2`outc. We think of the unit interval as circular, and for any

x ∈ [0, 1), we define

‖x‖ = min{x mod 1,−x mod 1}.

This is really the absolute value of x considering numbers above 1/2 negative.
The basic negative example is in itself very simple. We consider the hashing

of [n]. Suppose for some x ≤ n that ‖h0
a(x)‖ ≤ 1/(2m). The case is illustrated in

Figure 1. Then for each k ∈ [x], the q = bn/xc keys y from [n] with y mod x = k
map to an interval of length (q − 1)/(2m), which means that the ha spreads
them on at most dq/2e+ 1 consecutive array locations. This interval of locations
is roughly double full so the keys in them have an average insert cost of Ω(q) =
Ω(n/x). However, the same clustering holds for every other z ∈ [x], that is, the
roughly n/x keys y from [n] with y mod x = z map to an interval of Ω(n/x)
double full buckets, leading to an average insert cost of Ω(n/x) per key. The
above average costs only measures the interaction between keys from the same
equivalence class modulo x. If some of these classes overlap, the average cost will
only grow. Since every key is in an equivalence class with average cost Ω(n/x),
hence that this lower bound holds on the average for all keys.
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Fig. 1. Case where h0
a(5) ≤ ε.

Note that ‖h0
a(x)‖ ≤ 1/(2m) implies that h0

a(x) is contained in an interval of
size 1/m. From the universality arguments of [7, 6] we know that the probability
of this event is roughly 1/m (we shall return with an exact statement later).
We would like to conclude that the expected average cost is

∑n
x=1Ω(n/x)/m =

Ω(lg n). The answer is correct, but the calculation cheats in the sense that we
may have many different x such that ‖h0

a(x)‖ ≤ 1/(2m), and they should not all
be added up.

For any a, let µa denote the minimal value such ‖h0
a(µa)‖ ≤ 1/(2m). For a

correct accounting, we only pay the average cost of at Ω(n/x) if x = µa. We
will be dealing with negative and positive contributions of similar sizes, so we
will have to be careful in the use O-notation. We define C(x) = n/x. Then our
expected average cost is lower bounded by

Ω

(
n∑
x=1

C(x) Pr
a

[x = µa]

)
. (1)

We are going to lower bound
∑n
x=1 C(x) Pra[x = µa] without use of O/Ω-

notation.

Lemma 3. Consider any x ≤ n such that ‖h0
a(x)‖ ≤ 1/(2m). Then x 6= µa if

and only if for some prime factor p of x, ‖h0
a(x/p)‖ ≤ 1/(2pm).

Proof. The “if” part is trivial. For any integer i ≤ m, we have ‖h0
a(iµa)‖ =

i‖h0
a(µa)‖, so ‖h0

a(iµa)‖ ≤ 1/(2m) ⇐⇒ ‖h0
a(µa)‖ ≤ 1/(2im). Moreover, if y

is not a multiple of µa, then ‖h0
a(y)‖ ≤ 1/(2m) requires that y ≥ 2m. This is

because we will not get ‖h0
a(y)‖ ≤ 1/m before we have filled the cyclic unit

interval with values that are at most 1/(2m) apart (c.f. Figure 1). However,
m ≥ n, and we only consider keys x ≤ n. Thus it suffices to consider the above
case where x = iµa and ‖h0

a(µa)‖ ≤ 1/(2im). Let p be any prime factor of i.
Then ‖h0

a(i/p µa)‖ = i/p ‖h0
a(µa)‖ ≤ 1/(2pm).

Note that ‖h0
a(x)‖ ≤ ε implies that h0

a(x) is contained in an interval of size 2ε.
To illustrate the basic argument, we first assume a false but simplifying perfect



uniformity on h0
a(x) for random a:

Pr
a

[‖h0
a(x)‖ ≤ ε/2] = ε. (2)

Now

Pr
a

[x = µa] ≥ Pr
a

[‖h0
a(x)‖ ≤ 1/(2m)]−

∑
p prime factor of i

Pr
a

[‖h0
a(x/p)‖ ≤ 1/(2pm)]

> (1−
∑

p prime factor of x

1/p)/m (3)

We note that the lower-bound (3) may be very negative since there are values
of x for which

∑
p prime factor of x 1/p = Θ(lg lg x). Nevertheless (3) suffices with

an appropriate reordering of terms, as described below:

n∑
x=1

C(x) Pr
a

[x = µa] =

n∑
x=1

n/(xm)

1−
∑

p prime factor of x

1/p


≥

n∑
x=1

n/(xm)

1−
∑

prime p=2,3,5,..

1/p2


Above we simply moved terms of the form −n/(xmp) where p is a prime factor of
x to x′ = x/p in the form −n/(x′mp2). Conservatively, we include −n/(x′mp2)
for all primes p even if px′ > n. Since

∑
prime p=2,3,5,.. 1/p

2 < 0.453, we get

n∑
x=1

C(x) Pr
a

[x = µa] >

n∑
x=1

0.547n/(xm)

= Ω(n/m lg n).

We would now be done if ha(x) was uniform and satisfied the equality (2), which
is false. For every ε < 1/2, we will establish

Pr[‖h0
a(x)‖ ≤ ε/2] ≤ 2ε (4)

Moreover, we will have:

Pr[‖h0
a(x)‖ ≤ 1/(2m)] ≥ 1/m. (5)

To satisfy (4)-(5), we will only consider cases where both x and a are odd.
Assuming that the random number a is odd can only double the expected cost,
and in fact, this is already part of the plain universal hashing from [7]. When x
is odd and a is a uniformly distributed odd `-bit number, then a ∗ x mod 2` is
uniformly distributed odd random number. To get h0

a(x), we divide by 2`, turning
the number into a fraction, and now we have a uniform distribution on the odd
multiples of 1/2`. As to extreme cases, we note that Pr[‖h0

a(x)‖ < 1/2`] = 0 while
Pr[‖h0

a(x)‖ ≤ 1/2`] = 4/2`. Generally, for any ε < 1/2, we have Pr[‖h0
a(x)‖ ≤



ε/2] ≤ 2ε, as stated in (4). Our distribution is uniformly distributed on the
centers of the intervals [i/2`−1, (i + 1)/2`−1]. Therefore Pr[‖h0

a(x)‖ ≤ ε/2] = ε
whenever ε = 2j−` for some integer j ≥ 2. We also had Pr[‖h0

a(x)‖ ≤ ε/2] = 2ε
for ε = 2/2`. Recall that m = 2`out . Hence (5) follows when

`out < `. (6)

Using the true statements (4) and (5), we recompute the expected cost. Note
that even though we only consider odd x = µa, we still hash all the odd and
even keys in [0, n), so our cost C(x) = n/x is unchanged. Using that the prime
2 cannot divide an odd x, we get

n∑
odd x=1

C(x) Pr
a

[x = µa] =

n∑
odd x=1

n/(xm)

1− 2
∑

p prime factor of x

1/p


≥

n∑
odd x=1

n/(xm)

1− 2
∑

prime p>2

1/p2


≥

n∑
odd x=1

0.595n/(xm)

= Ω(n/m lg n).

This completes our lower-bound proof for the plain universal hashing from [7]
when `out < `. Note that if `out = ` then the plain universal hashing scheme
with an odd multiplier is just a permutation, and then linear probing will work
perfectly.

For the 2-universal hashing [6] there are two differences. One is that the
multiplier may also be even, but restricting it to be odd can only double the cost.
The other difference is that we add an additional `-bit parameter b, yielding a
scheme of the form:

ha,b(x) = b((ax+ b) mod 2`)/2`−`outc.

The only effect of b is a cyclic shift of the double full buckets, and this has
no effect on the linear probing cost. For the 2-independent hashing, we have
` ≥ `in + `out − 1, so (6) is trivially satisfied. Hence again we have an expected
average linear probing cost of Ω(n/m lg n).

Finally, we sketch some variations of our bad input. Currently, we just con-
sidered the set [n] of input keys, but it makes no essential difference if instead
for some integer constants α and β, we consider the input set X = α[n] + β =
{iα+β |x ∈ [n]} for . The β is just adds a cyclic shift like the b in 2-independent
hashing. The α is essentially absorbed in the random multiplier a. What we get
now is that if for some x ∈ [n], we have ‖h0

a(αx)‖ ≤ 1/(2m), then again we get
an average cost Ω(n/x). A consequence is that no odd multiplier a is universally
safe because there always exists an inverse α (with aα mod 2` = 1) leading to



a linear cost. It is not hard to also construct bad examples for even multipliers
since they essentially just drop some of the least significant bits.

Another more practical concern is if the input set X is an ε-fraction of [n].
Our worry now is if for some x ≤ n that ‖h0

a(x)‖ ≤ ε/(2m). In that case, for each
k ∈ [x], the q = bn/xc potential keys y from [n] with y mod x = k map would
map to an interval of length ε(q − 1)/(2m). This means that ha spreads these
potential keys on at most dεq/2e+ 1 consecutive array locations. A ε-fraction of
these keys are real, so on the average, these intervals become double full, leading
to an average cost of Ω(εn/x). Strengthening (6) to assume ε ≥ 2`out−`, we
essentially get that all probabilities are reduced by ε. Thus we end with a cost
of Ω(ε2n/m lg n) = Ω(ε|X|/m lg n).

C Minwise Independence

We now consider the lack of minwise independence with a hashing scheme

ha,b(x) = ((ax+ b) mod 2`).

Shifting out less significant bits does not make much sense since we are not
hashing to entries in an array. The analysis will be very similar to the one done
for linear probing in Section B, and we will only sketch it. Now the added b
is necessary to get anything meaningful, for without it, zero would always get
the minimal hash value ha,0(0) = 0. The effect of adding b is to randomly spin
the wheel from Figure 1. As in Section, it is convenient to divide by 2` to get
fractions in the cyclic unit interval. We thus define h0

a,b(x) = ha,b(x)/2`.
The bad case will be the interval [n] versus a random query key q. We assume

that n is a power of two. To see the parallels to Section B, think of m = n. For any
a, we define µa > 0 to be the smallest value such that h0

a,0(µa) ≤ 1/(2n). Then
h0
a,0([n]) falls in µa equidistant intervals, each of length at most 1/(2µa). This

leaves us with µa equidistant empty intervals, each of length at least ≤ 1/(2µa).
Together these empty intervals cover half the cyclic unit interval. When we add
b it has the effect of placing 0 randomly on the cycle. Having chosen a and b,
a random q is also hashed to random place on the cycle. The probability that
q and 0 end in the same empty interval and with q after 0 in the interval is
1/(23µa). In this case, q has the minimal hash value, but that should only have
happened with probability 1/n. Thus, relatively speaking, the probability is to
high by a factor Ω(n/µa), matching the linear probing cost from Section B. As
a result we will also end up concluding that the expected min-probability is to
high by a factor Ω(lg n).

As in Section B, there are some details to consider. It is convenient to restrict
ourselves to odd values of a, b, x = µa and q. As a result, all our hash values are
odd, and at odd multiples of 1/2` in the cyclic unit interval. The analysis goes
through as long as ` > dlog2 ne, and in fact, we can shit our all but the dlog2 ne
most significant bits and yet have the same lower bound that the min-probability
is too high by a factor Ω(lg n).


