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Abstract. We develop a new technique for proving cell-probe lower bounds on dynamic data
structures. This technique enables us to prove an amortized randomized Ω(lg n) lower bound per
operation for several data structural problems on n elements, including partial sums, dynamic con-
nectivity among disjoint paths (or a forest or a graph), and several other dynamic graph problems
(by simple reductions). Such a lower bound breaks a long-standing barrier of Ω(lg n/ lg lg n) for any
dynamic language membership problem. It also establishes the optimality of several existing data
structures, such as Sleator and Tarjan’s dynamic trees. We also prove the first Ω(logB n) lower bound
in the external-memory model without assumptions on the data structure (such as the comparison
model). Our lower bounds also give a query-update trade-off curve matched, e.g., by several data
structures for dynamic connectivity in graphs. We also prove matching upper and lower bounds for
partial sums when parameterized by the word size and the maximum additive change in an update.
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1. Introduction. The cell-probe model is perhaps the strongest model of com-
putation for data structures, subsuming in particular the common word-RAM model.
We suppose that the memory is divided into fixed-size cells (words), and the cost of
an operation is just the number of cells it reads or writes. Typically we think of the
cell size as being around lg n bits long, so that a single cell can address all n elements
in the data structure. (Refer to Section 4 for a precise definition of the model.) While
unrealistic as a model of computation for actual data structures, the generality of the
cell-probe model makes it an important model for lower bounds on data structures.

Previous cell-probe lower bounds for data structures fall into two categories of ap-
proaches. The first approach is based on communication complexity. Lower bounds
for the predecessor problem [Ajt88, MNSW98, BF02, SV] are perhaps the most suc-
cessful application of this idea. Unfortunately, this approach can only be applied to
problems that are hard even in the static case. It also requires queries to receive a pa-
rameter of ω(lg n) bits, which is usually interpreted as requiring cells to have ω(lg n)
bits. For problems that are hard only in the dynamic case, all lower bounds have
used some variation of the chronogram method of Fredman and Saks [FS89]. By de-
sign, this method cannot prove a trade-off between the query time tq and the update
time tu better than tq lg tu = Ω(lg n), which was achieved for the marked-ancestor
problem (and consequently many other problems) in [AHR98]. This limitation on
trade-off lower bounds translates into an Ω(lg n/ lg lg n) limitation on lower bounds
for both queries and updates provable by this technique. The Ω(lg n/ lg lg n) barrier
has been recognized as an important limitation in the study of data structures, and
was proposed as a major challenge for future research in a recent survey [Mil99].

This paper introduces a new technique for proving cell-probe lower bounds on
dynamic data structures. With this technique we establish an Ω(lg n) lower bound for
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either queries or updates in several natural and well-studied problems, in particular,
maintaining partial (prefix) sums in an array and dynamic connectivity among disjoint
paths (or a forest or a graph). (We detail the exact problems we consider, and
all results we obtain, in Section 2; we summarize relevant previous results on these
problems in Section 3.) These lower bounds establish the optimality of several data
structures, including the folklore O(lg n) balanced tree data structure for partial sums,
and Sleator and Tarjan’s dynamic trees data structure (which in particular maintains
dynamic connectivity in a forest).

We also prove a trade-off lower bound of tq lg tu

tq
= Ω(lg n).1 This trade-off turns

out to be the right answer for our problems, and implies the Ω(lg n) bound on the worst
of queries and updates. In addition, we can prove a symmetric trade-off tu lg tq

tu
=

Ω(lg n). As mentioned above, it is fundamentally impossible to achieve such a trade-off
using the previous techniques.

We also refine our analysis of the partial-sums problem beyond just the depen-
dence on n. Specifically, we parameterize by n, the number b of bits in a word, and
the number δ of bits in an update. Naturally, δ ≤ b, but in some applications, δ is
much smaller than b. We prove tight upper and lower bounds of Θ( lg n

lg(b/δ) ) on the
worst of queries and updates. This result requires improvements in both the upper
bounds and the lower bounds. In addition, we give a tight query/update trade-off:
tq

(
lg b

δ + lg tu

tq

)
= Θ(lg n). The tightness of this characterization is particularly un-

usual given its dependence on five variables.
The main idea behind our lower-bound technique is to organize time (the sequence

of operations performed on the data structure) into a complete tree. The heart of the
analysis is an encoding/decoding argument that bounds the amount of information
transferred between disjoint subtrees of the tree: if few cell are read and written,
then little information can be transferred. The nature of the problems of interest
requires at least a certain amount of information transfer from updates to queries,
providing a lower bound on the number of cells read and written. This main idea
is developed first in Section 5 in the context of the partial-sums problem, where we
obtain a short (approximately three-page) proof of an Ω(lg n) lower bound for partial
sums. Compared to the lower bounds based on previous techniques, our technique
leads to relatively clean proofs with minimal combinatorial calculation.

We generalize this basic approach in several directions to obtain our further lower
bounds. In Section 6, we show how our technique can be extended to handle queries
with binary answers (such as dynamic connectivity) instead of word-length answers
(such as partial sums). In particular, we obtain an Ω(lg n) lower bound for dynamic
connectivity in disjoint paths. We also show how to use our lower-bound technique
in the presence of nondeterminism or Monte Carlo randomization. In Section 7, we
show how our technique can be further extended to handle updates asymptotically
smaller than the word size, in particular obtaining lower bounds for the partial-sums
problem when δ < b and for dynamic connectivity in the external-memory model.
This last section develops the most complicated form of our technique.

The final few sections contain complementary results to this main flow of the
lower-bound technique. In Section 8, we give tight upper bounds for the partial-sums
problem. The data structure is based on a few interesting ideas that enable us to
eliminate the precomputed tables from previous approaches. In Section 9, we prove

1Throughout this paper, lg x denotes log2(2 + x), which is positive for all x ≥ 0 (an important
property in this bound and several others).
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some easy reductions from dynamic connectivity to other dynamic graph problems,
transferring our lower bounds to these problems. Finally, we conclude in Section 10
with a list of open problems.

2. Results. In this section we give precise descriptions of the problems we con-
sider, our results, and a brief synopsis of how these results compare to previous work.
(Section 3 gives a more detailed historical account.)

2.1. The Partial-Sums Problem. This problem asks to maintain an array
A[1 . . n] of n integers subject to the following operations:

update(k,∆): modify A[k]← ∆.
sum(k): returns the partial sum

∑k
i=1 A[i].

select(σ): returns an index i satisfying sum(i − 1) < σ ≤ sum(i). To guarantee
uniqueness of the answer, we require that A[i] > 0 for all i.

Besides n, the problem has several interesting parameters. One parameter is b,
the number of bits in a cell (word). We assume that every array element and sum
fits in a cell. Also, we assume that b = Ω(lg n). Another parameter is δ, the number
of bits needed to represent an argument ∆ to update. Naturally, δ is bounded above
by b; however, it is traditional (see, e.g. [RRR01]) to consider a separate parameter
δ because it is smaller in many applications. We write tu for the running time of
update, tq for the running time of sum, and ts for the running time of select.

We first study the unrestricted case when δ = Ω(b):
Theorem 2.1. Consider any cell-probe data structure for the partial-sums prob-

lem that may use amortization and Las Vegas randomization. If δ = Ω(b), then the
following trade-offs hold:

tq lg(tu/tq) = Ω(lg n); tu lg(tq/tu) = Ω(lg n);
ts lg(tu/ts) = Ω(lg n); tu lg(ts/tu) = Ω(lg n).

The trade-off curves are identical for the select and sum operations. The first
branch of each trade-off is relevant when queries are faster than updates, while the
second branch is relevant when updates are faster. The trade-offs imply the long-
sought logarithmic bound for the partial-sums problem: max{tu, tq} = Ω(lg n). The
best previous bound, by Fredman and Saks [FS89], was tq lg(btu) = Ω(lg n), implying
max{tu, tq} = Ω(lg n/ lg b). The trade-off curves between tu and tq also hold in the
group model of computation, where elements of the array come from a black-box
group and time is measured as the number of algebraic operations. The best previous
bound for this model was Ω(lg n/ lg lg n), also by Fredman and Saks [FS89].

A classic result achieves tu = tq = ts = O(lg n). For the sum query, our entire
trade-off curve can be matched (again, this is folklore; see the next section on previous
work). For select, the trade-offs cannot be tight for the entire range of parameters,
because even for polynomial update times, there is a superconstant lower bound on
the query time for the predecessor problem [Ajt88, SV].

We also analyze the case δ = o(b). We first give the following lower bounds:
Theorem 2.2. Consider any cell-probe data structure for the partial-sums prob-

lem using amortization and Las Vegas randomization. The following trade-offs hold:
tq

(
lg b

δ + lg tu

tq

)
= Ω(lg n) and ts

(
lg b

δ + lg tu

ts

)
= Ω(lg n)

In this case, we cannot prove a reverse trade-off (when updates are faster than
queries). This trade-off implies the rather interesting lower bound max{tu, tq} =
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Ω( lg n
lg(b/δ) ), and similarly for ts. When δ = Θ(b), this gives the same Ω(lg n) as before.

We give new matching upper bounds:
Theorem 2.3. There exists a data structure for the partial-sums problem achiev-

ing tu = tq = ts = O
(

lg n
lg(b/δ)

)
. The data structure runs on a Random Access Machine,

is deterministic, and achieves worst-case bounds.
Our upper bounds can handle a slightly harder version of the problem, where

update(i,∆) has the effect A[i]← A[i] + ∆. Thus, we are not restricting each A[i] to
δ bits, but just mandate that they don’t grow by more than a δ-bit term at a time.
Several previous results [Die89, RRR01, HSS03] achieved O(lg n/ lg lg n) bounds for
δ = O(lg lg n). None of these solutions scale well with δ or b, because they require
large precomputed tables.

This result matches not only the previous lower bound on the hardest operation,
but actually helps match the entire trade-off of Theorem 2.2. Indeed, the trade-off
lower bound shows that there is effectively no interesting trade-off when δ = o(b):
when b

δ ≥
tu

tq
, the tight bound is tq = Θ( lg n

lg(b/δ) ), matched by our structure; when
b
δ < tu

tq
, the tight bound is tq = Θ( lg n

lg(tu/tq) ), matched by the classic result which does
not depend on δ. Thus, we obtain an unusually precise understanding of the problem,
having a trade-off that is tight in all five parameters.

2.2. Dynamic Connectivity. This problem asks to maintain an undirected
graph with a fixed set of n vertices subject to the following operations:

insert(u, v): insert an edge (u, v) into the graph.
delete(u, v): delete the edge (u, v) from the graph.
connected(u, v): test whether u and v lie in the same connected component.
We write tq for the running time of connected, and tu for the running time of

insert and delete. It makes the most sense to study this problem in the cell-probe
model with O(lg n) bits per cell, because every quantity in the problem occupies
O(lg n) bits.

We prove the following lower bound:
Theorem 2.4. Any cell-probe data structure for dynamic connectivity satisfies

the following trade-offs: tq lg(tu/tq) = Ω(lg n) and tu lg(tq/tu) = Ω(lg n). These
bounds hold under amortization, nondeterministic queries, and Las Vegas random-
ization, or under Monte Carlo randomization with error probability n−Ω(1). These
bounds hold even if the graph is always a disjoint union of paths.

This lower bound holds under very broad assumptions. It allows for nondeter-
ministic computation or Monte Carlo randomization (with polynomially small error),
and holds even for paths (and thus for trees, plane graphs etc.). The trade-offs
we obtain are identical to the partial-sums problem. In particular, we obtain that
max{tu, tq} = Ω(lg n).

An upper bound of O(lg n) for trees is given by the famous dynamic trees data
structure of Sleator and Tarjan [ST83]. In addition, the entire trade-off curve for
tu = Ω(tq) can be matched for trees. For general graphs, Thorup [Tho00] gave an
almost-matching upper bound of O(lg n(lg lg n)3). For any tu = Ω(lg n(lg lg n)3), his
data structure can match our trade-off.

Dynamic connectivity is perhaps the most fundamental dynamic graph problem.
It is relatively easy to show by reductions that our bounds hold for several other
dynamic graph problems. Section 9 describes such reductions for deciding connec-
tivity of the entire graph, minimum spanning forest, and planarity testing. Many
data structural problems on undirected graphs have polylogarithmic solutions, so our



LOGARITHMIC LOWER BOUNDS 5

bound is arguably interesting for these problems. Some problems have logarithmic
solutions for special cases (such as plane graphs), and our results prove optimality of
those data structures.

We also consider dynamic connectivity in the external-memory model. Let B be
the page (block) size, i.e., the number of (lg n)-bit cells that fit in one page. We prove
the following lower bound:

Theorem 2.5. A data structure for dynamic connectivity in the external-memory
model with page size B must satisfy tq

(
lg B + lg tu

tq

)
= Ω(lg n). This bound allows

for amortization, Las Vegas randomization, and nondeterminism, and holds even if
the graph is always a disjoint union of paths.

Thus we obtain a bound of max{tu, tq} = Ω(logB n). Although bounds of this
magnitude are ubiquitous in the external-memory model, our lower bound is the
first that holds in a general model of computation, i.e., allowing data items to be
manipulated arbitrarily and just counting the number of page transfers. Previous
lower bounds have assumed the comparison model or indivisibility of data items.

It is possible to achieve an O(logB n) upper bound for a forest, by combining
Euler tour trees with buffer trees [Arg03]. As with the partial-sums problem, this
result implies that our entire trade-off is tight for trees: for B ≥ tu/tq, this solution
is optimal; if the term in tu/tq dominates, we use the classic trade-off, which foregoes
the benefit of memory pages.

3. Previous Work. In this section we detail the relevant history of cell-probe
lower bounds in general and the specific problems we consider.

3.1. Cell-Probe Lower Bounds. Fredman and Saks [FS89] were the first to
prove cell-probe lower bounds for dynamic data structures. They developed the
chronogram technique, and used it to prove a lower bound of Ω(lg n/ lg b) for the
partial-sums problem in Z/2Z (integers modulo 2, where elements are bits and ad-
dition is equivalent to binary exclusive-or). This bound assumes b ≥ lg n so that an
index into the n-element array fits in a word; for the typical case of b = Θ(lg n), it
implies an Ω(lg n/ lg lg n) lower bound. Fredman and Saks also obtain a trade-off of
tq = Ω( lg n

lg b+lg tu
).

There has been considerable exploration of what the chronogram technique can
offer. Ben-Amram and Galil [BAG01] reprove the lower bounds of Fredman and Saks
in a more formalized framework, centered around the concepts of problem and output
variability. Using these ideas, they show in [BAG02] that the lower bound holds even
if cells have infinite precision, but the set of operations is restricted.

Miltersen et al. [MSVT94] observe that there is a trivial reduction from the partial-
sums problem in Z/2Z to dynamic connectivity, implying an Ω(lg n/ lg lg n) lower
bound for the latter problem. Independently, Fredman and Henzinger [FH98] observe
the same reduction, as well as some more complex reductions applying to connectivity
in plane graphs and dynamic planarity testing. Husfeldt and Rauhe [HR03] show
slightly stronger results using the chronogram technique. They prove that the lower
bound holds even for nondeterministic algorithms, and even in a promise version of
the problem in which the algorithm is told the requested sum to a ±1 precision. These
improved results make it possible to prove reductions to various other problems [HR03,
HRS96].

Alstrup, Husfeldt, and Rauhe [AHR98] give the only previous improvement to the
bounds of Fredman and Saks, by proving a stronger trade-off of tq lg tu = Ω(lg n). This
bound is the best trade-off provable by the chronogram technique. However, it still
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cannot improve beyond max{tu, tq} = Ω(lg n/ lg lg n). The problem they considered
was the partial-sums problem generalized to trees, where a query asks for the sum of a
root-to-leaf path. (This is a variation of the more commonly known marked-ancestor
problem.) Their bound is tight for balanced trees; for arbitrary trees, our lower bound
shows that Θ(lg n) is the best possible.

Miltersen [Mil99] surveys the field of cell-probe complexity, and advocates “dy-
namic language membership” problems as a standardized framework for comparing
lower bounds. Given a language L that is polynomial-time decidable, the dynamic
language membership problem for L is defined as follows. For any given n (the prob-
lem size), maintain a string w ∈ {0, 1}n under two operations: flip the ith bit of w,
and report whether w ∈ L. Through its minimalism, this framework avoids several
pitfalls in comparing lower bounds. For instance, it is possible to prove very high
lower bounds in terms of the number of cells in the problem representation (which,
misleadingly, is often denoted n), if the cells are large [Mil99]. However, these lower
bounds are not very interesting because they assume exponential-size cells. In terms
of the number of bits in the problem representation, all known lower bounds do not
exceed Ω(lg n/ lg lg n).

Miltersen proposes several challenges for future research, two of which we solve in
this paper. One such challenge was to prove an Ω(lg n) lower bound for the partial-
sums problem. Another such challenge, listed as one of three “big challenges”, was to
prove a lower bound of ω(lg n/ lg lg n) for a dynamic language membership problem.
We solve this problem because dynamic connectivity can be phrased as a dynamic
language membership problem [Mil99].

3.2. The Partial-Sums Problem in Other Models. The partial-sums prob-
lem has been studied since the dawn of data structures, and has served as the proto-
typical problem for the study of lower bounds. Initial efforts concentrated on algebraic
models of computation. In the semigroup or group models, the elements of the array
come from a black-box (semi)group. The algorithm can only manipulate the ∆ inputs
through additions and, in the group model, subtractions; all other computations in
terms of the indices touched by the operations are free.

In the semigroup model, Fredman [Fre81] gives a tight logarithmic bound. How-
ever, this bound is generally considered weak, because updates have the form A[i]←
∆. Because additive inverses do not exist, such an update invalidates all memory
cells storing sums containing the old value of A[i]. When updates have the form
A[i]← A[i] + ∆, Yao [Yao85] proved a lower bound of Ω(lg n/ lg lg n). Finally, Ham-
papuram and Fredman [HF98] proved an Ω(lg n) lower bound for this version of
the problem; their bound holds even for the offline problem. In higher dimensions,
Chazelle [Cha97] gives a lower bound of Ω((lg n/ lg lg n)d), which also holds even for
the offline problem.

In the group model, the best previous lower bound of Ω(lg n/ lg lg n) is by Fredman
and Saks [FS89]. A tight logarithmic bound (including the lead constant) was given
by [Fre82] for the restricted class of “oblivious” algorithms, whose behavior can be
described by matrix multiplication. For the offline problem, Chazelle [Cha97] gives
a lower bound of Ω(lg lg n) per operation; this is exponentially weaker than the best
known upper bound. No better lower bounds are known in higher dimensions.

3.3. Upper Bounds for the Partial-Sums Problem. An easy O(lg n) up-
per bound for partial sums is to maintain a balanced binary tree with the ele-
ments of A in the leaves, augmented to store partial sums for each subtree. A
simple variation of this scheme yields an implicit data structure occupying exactly



LOGARITHMIC LOWER BOUNDS 7

n memory locations [Fen94]. For the sum query, it is easy to obtain good trade-
offs. Using trees with branching factor B, one can obtain tq = O(logB n) and
tu = O(B logB n), or tq = O(B logB n) and tu = O(logB n). These bounds can
be rewritten as tq lg tu

tq
= O(lg n), or tu lg tq

tu
= O(lg n), respectively, which matches

our lower bound for the case δ = Θ(b), and for the group model. For select queries,
one cannot expect to achieve the same trade-offs, because even for a polynomial up-
date time, there is a superconstant lower bound on the predecessor problem [BF02].
Exactly what trade-offs are possible remains an open problem.

Dietz [Die89] considers the partial-sums problem with sum queries on a RAM,
when δ = o(b). He achieves O(lg n/ lg lg n) running times provided that δ = O(lg lg n).
Raman, Raman, and Rao [RRR01] show how to support select in O(lg n/ lg lg n),
again if δ = O(lg lg n). For tu = Ω(lg n/ lg lg n), the same δ, and sum queries, they give
a trade-off of tq = O(logtu

n). They achieve the same trade-off for select queries,
when δ = 1. Hon, Sadakane, and Sung [HSS03] generalize the trade-off for select

when δ = O(lg lg n). All of these results do not scale well with b or δ because of their
use of precomputed tables.

3.4. Upper Bounds for Dynamic Connectivity. For forests, Sleator and
Tarjan’s classic data structure for dynamic trees [ST83] achieves an O(lg n) up-
per bound for dynamic connectivity. A simpler solution is given by Euler tour
trees [HK99]. This data structure can achieve a running time of tq = O( lg n

lg(tu/tq) ),
matching our lower bound.

For general graphs, the first to achieve polylogarithmic time per operation were
Henzinger and King [HK99]. They achieve O(lg3 n) per update, and O(lg n/ lg lg n)
per query, using randomization and amortization. Henzinger and Thorup [HT97]
improve the update bound to O(lg2 n). Holm, de Lichtenberg, and Thorup [HdLT01]
give a simple deterministic solution with the same amortized running time: O(lg2 n)
per update and O(lg n/ lg lg n) per query. The best known result in terms of updates is
by Thorup [Tho00], achieving nearly logarithmic running times: O(lg n(lg lg n)3) per
update and O(lg n/ lg lg lg n) per query. This solution is only a factor of (lg lg n)3 away
from our lower bound. Interestingly, all of these solutions are on our trade-off curve.
In fact, for any tu = Ω(lg n(lg lg n)3), Thorup’s solution can achieve tq = O( lg n

lg(tu/qt)
),

showing that our trade-off curve is optimal for this range of tu.
For plane graphs, Eppstein et al. [EIT+92] give a logarithmic upper bound. Plane

graphs are planar graphs with a given topological planar embedding, specified by the
order of the edges around each vertex. Our lower bound holds for such graphs, proving
the optimality of this data structure.

4. Models. The cell-probe model is a nonuniform model of computation. The
memory is represented by a collection of cells. Operations are handled by an algorithm
which can read and write cells from the memory; all computation is free, and the
internal state is unbounded. However, the state is lost at the end of an operation.
Because state is not bounded, it can be assumed that all writes happen at the end of
the operation. If cells have b bits, we restrict the number of cells to 2b, ensuring that
a pointer can be represented in one cell. This restriction is a version of the standard
transdichotomous assumption frequently made in the context of the word RAM, and
is therefore natural in the cell-probe model as well.

We extend the model to allow for nondeterministic computation, in the spirit
of [HR03]. Boolean queries can spawn any number of independent execution threads;
the overall result is an accept (“yes” answer) precisely if at least one thread accepts.
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The running time of the operation is the running time of the longest thread. Rejecting
threads may not write any cells; accepting threads may, as long as all accepting threads
write exactly the same values. Because of this restriction, and because updates are
deterministic, the state of the data structure is always well-defined.

All lower bounds in this paper hold under Las Vegas randomization, i.e., zero-
error randomization. We consider a model of randomization that is particularly easy
to reason about in the case of data structures. When the data structure is created,
a fixed subset of, say, 2b−1 cells is initialized to uniformly random values; from that
point on, everything is deterministic. This model can easily simulate other models
of randomization, as long as the total running time is at most 2b−1 (which is always
the case in our lower bounds); the idea is that the data structure maintains a pointer
to the next random cell, and increments the pointer upon use. For nondeterministic
computation, all accepting threads increment the pointer by the largest number of
coins that could be used by a thread (bounded by the running time). Using this model,
one can immediately apply the easy direction of Yao’s minimax principle [Yao77].
Thus, for any given distribution of the inputs, there is a setting of the random coins
such that the amortized running time, in expectation over the inputs, is the same as
the original algorithm, in expectation over the random coins. Using the nonuniformity
in the model, the fixed setting of the coins can be hardwired into the algorithm.

We also consider Monte Carlo randomization, i.e., randomization with two-sided
error. Random coins are obtained in the same way, but now the data structure is
allowed to make mistakes. We do not allow the data structure to be nondeterministic.
In this paper, we are concerned only with error probabilities of n−Ω(1); that is, the data
structure should be correct with high probability. Note that by holding a constant
number of copies of the data structure and using independent coins, the exponent
of n can be increased to any desired constant. In the data-structures world, it is
natural to require that data structures be correct with high probability, as opposed
to the bounded-error restriction that is usually considered in complexity theory. This
is because we want to guarantee correctness over a large sequence of operations. In
addition, boosting the error from constant to n−c requires O(lg n) repetitions, which
is usually not significant for an algorithm, but is a significant factor in the running
time of a data-structure operation.

5. Lower Bounds, Take One. In this section, we give the intuition behind
our approach and detail a simple form of it that allows us to prove an Ω(lg n) lower
bound on the partial-sums problem when δ = Θ(b), which is tight in this case. This
proof serves as a warmup for the more complicated results in Sections 6 and 7.

5.1. General Framework. We begin with the framework for our lower bounds
in general terms. Consider a sequence of data-structure operations A1, A2, . . . , Am,
where each Ai incorporates all information characterizing operation i, i.e., the opera-
tion type and any parameters for that type of operation. Upon receiving request Ai,
the data structure must produce an appropriate response. The information gathered
by the algorithm during a query (by probing certain cells) must uniquely identify the
correct answer to the query, and thus must encode sufficient information to do so.

To establish the lower bounds of this paper, we establish lower bounds for a sim-
pler type of problem. Consider two adjacent intervals of operations: Ai, . . . , Aj−1

and Aj , . . . , Ak. At all times, conceptually associate with each memory cell a chrono-
gram [FS89], i.e., the index t of the operation At during which the memory cell was
last modified. Now consider all read instructions executed by the data structure dur-
ing operations Aj , . . . , Ak that access cells with a chronogram in the interval [i, j−1].
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In other words, we consider the set of cells written during the time interval [i, j − 1]
and read during the interval [j, k] before they are overwritten. All information trans-
fer from time interval [i, j − 1] to time interval [j, k] must be encoded in such cells,
and must be executed by such cell writes and reads. If the queries from the interval
[j, k] depend on updates from the interval [i, j − 1], all the information characteriz-
ing this dependency must come from these cell probes, because an update happening
during [i, j−1] cannot be reflected in a cell written before time i. The main technical
part of our proofs is to establish a lower bound on the amount of information that
must be transferred between two time intervals, which implies a corresponding lower
bound on the number of cells that must be written and read to execute such trans-
fer. Such bounds will stem from an encoding argument, in conjunction with a simple
information-theoretic analysis.

Next we show how to use such a lower bound on the information transfer between
two adjacent intervals of operations to prove a lower bound on the data structural
problems we consider. Consider a binary tree whose leaves represent the entire se-
quence of operations in time order. Each node in the tree has an associated time
interval of operations, corresponding to the subtree rooted at that node. We can
obtain two adjacent intervals of operations by, for example, considering the two nodes
with a common parent. For every node in the tree, we define the information transfer
through that node to be the number of read instructions executed in the subtree of the
node’s right child that read data written by (i.e., cells last written by) operations in
the subtree of the node’s left child. The lower bound described above provides a lower
bound on this information transfer, for every node. We combine these bounds into a
lower bound on the number of cell probes performed during the entire execution by
simply summing over all nodes.

To show that this sum of individual lower bounds is indeed an overall lower bound,
we make two important points. First, we claim that we are not double counting any
read instructions. Any read instruction is characterized by the time when it occurs and
the time when the location was last written. Such a read instruction is counted by only
one node, namely, the lowest common ancestor of the read and write times, because
the write must happen in the left subtree of the node, and the read must happen in the
right subtree. The second point concerns the correctness of summing up individual
lower bounds. This approach works for the arguments in this paper, because all
lower bounds hold in the average case under the same probability distribution for
the operations. Therefore, we can use linearity of expectation to break up the total
number of read instructions performed on average into these distinct components.
Needless to say, worst-case lower bounds could not be summed in this way.

The fact that our lower bounds hold in the average case of an input distribution
has another advantage: the same lower bound holds in the presence of Las Vegas
randomization. The proofs naturally allow the running time to be a random variable,
depending on the input. By the easy direction of the minimax principle, a Las Vegas
randomized data structure can be converted into a deterministic data structure that
on a given random distribution of the inputs achieves the same expected running time.

This line of argument has an important generalization that we use for proving
trade-off lower bounds. Instead of considering a binary tree, we can consider a tree of
arbitrary degree. Then we may consider the information transfer either between any
node and all its left siblings, or between any node and all its right siblings. Neither of
these strategies double counts read instructions, because a read instruction is counted
only for a node immediately below the lowest common ancestor of the read and write
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times.

5.2. An Initial Bound for the Partial-Sums Problem. We are now ready
to describe an initial lower bound for the partial-sums problem, which gives a clear
and concise materialization of the general approach from the previous section. We
will prove a lower bound of Ω( δ

b lg n), which is tight (logarithmic) for the special case
of δ = Θ(b). The bound from this section only considers sum queries, and does not
allow nondeterminism.

It will be useful to analyze the partial-sums problem over an arbitrary group with
at least 2δ elements. Our proof will not use any knowledge about the group, except
the quantity δ. Naturally, the data structure is allowed to know the group; in fact,
the data structure need only work for one arbitrary choice of group. In particular, the
lower bound will hold for the group Z/2δZ, the group of δ-bit integers with addition
modulo 2δ. A solution to the original partial-sums problem also gives a solution to
the problem over this group, as long as we can avoid overflowing a cell in the original
problem. To guarantee this, it suffices that δ + lg n < b. By definition of the model,
we always have lg n ≤ b and δ ≤ b, so we can avoid overflow by changing only constant
factors.

We consider a sequence of m = Ω( 3
√

n) operations, where m is a power of two.
Operations alternate between updates and queries. We choose the index in the array
touched by the operation uniformly at random. If the operation is an update, we also
choose the value ∆ uniformly at random. This notion of random updates and queries
remains unchanged in our subsequent lower bounds, but the pattern of alternating
updates and queries changes. Our lemmas do not assume anything about which
operations are updates or queries, making it possible to reuse them later.

Our lower bound is based on the following lemma analyzing intervals of operations.
Lemma 5.1. Consider two adjacent intervals of operations such that the left

interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n) operations. Let c be the number of read instructions executed

during the second interval that read cells last written during the first interval. Then
E[c] = Ω( δ

bL).
Before we embark on a proof of the lemma, we show how it implies our logarithmic

lower bound. As in the framework discussion, we consider a complete binary tree with
one leaf per operation. For every node v, we analyze the information transfer through
v, i.e., the read instructions executed in the subtree of v’s right child that access cells
with a chronogram in the subtree of v’s left child. If v is on the 1

3 lg n bottommost
levels, the conditions of the lemma are satisfied, with L being a quarter of the number
of leaves under v. Then, the information transfer through v is Ω(L δ

b ) on average. As
explained in the framework discussion, we can simply sum these bounds for all nodes
to get a lower bound for the execution time. The information transfer through all
nodes on a single level is Ω(m δ

b ) in expectation (because these subtrees are disjoint).
Over 1

3 lg n levels, the lower bound is Ω(m δ
b lg n), or amortized Ω( δ

b lg n) per operation.

5.3. Interleaving Between Two Intervals. The lower bound for two adjacent
intervals of operations depends on the interleaving between the indices updated and
queried in the two intervals. More precisely, we care about the indices a1, a2, . . .
touched by updates during the left interval of time, and the indices b1, b2, . . . queried
during the right interval. By relabeling, assume that a1 ≤ a2 ≤ · · · and b1 ≤ b2 ≤ · · · .
We define the interleaving number l to be the number of indices i such that, for some
index j, ai < bj ≤ ai+1. In words, the interleaving number counts transitions from
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runs of a’s to runs of b’s when merging the two sorted lists of indices.
Lemma 5.2. Consider two adjacent intervals of operations such that the left

interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n) operations. Then the interleaving between the two intervals

satisfies E[l] = Θ(L) and, with probability 1− o(1), no index is touched by more than
one operation.

Proof. By the birthday paradox, the expected number of indices touched more
than once is at most O(( 3

√
n)2) · 1

n = O(n−1/3). By Markov’s inequality, all indices
are unique with probability 1−O(n−1/3). Because l ≤ L, it suffices to prove the lower
bound. We show E[l | all indices are unique] = Ω(L). Because the condition is met
with Ω(1) probability, E[l] = Ω(L). Fix the set S of 2L relevant indices arbitrarily.
It remains to randomly designate L of these to be updates from the left interval, and
the rest of S to be queries from the right interval. Then l is the number of transitions
from updates to queries, as we read S in order. The probability that a transition
happens on any fixed position is 1

4 , so by linearity of expectation, E[l | S] = Ω(L).
Because this bound holds for any S, we can remove the conditioning.

The following information-theoretic lemma will be used throughout the paper,
by comparing the lower bound it gives with upper bounds given by various encoding
algorithms. For an introduction to information theory, we refer the reader to [CT91].
Remember that we are considering the partial-sums problem over an arbitrary group
with at least 2δ elements.

Lemma 5.3. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n) operations. Let G be the random variable giving the indices

touched by every operation, and giving the ∆ values for all updates except those in the
left interval. Let S be the random variable giving all partial sums queried in the right
interval. Then H(S | G) = Ω(Lδ).

Proof. Fix G = g to an arbitrary value, such that no index is touched twice in
the two intervals. Let l be the interleaving between the two intervals (l is a function
of g). Let U denote the set of indices updated in the left interval. By the definition
of the interleaving number, there must exist l queries in the right interval to indices
q1 < q2 < · · · < ql such that U∩[qt−1+1, qt] 6= ∅ for each t ≥ 1, where q0 is taken to be
−∞. Now let us consider the partial sums queried by these l queries, which we denote
S1, S2, . . . , Sl. The terms of these sums are elements of the array A[1 . . n] at the time
the query is made. Some elements were set by updates before the first interval, or
during the second interval, so they are constants for G = g. However, each St contains
a random term in [qt−1 + 1, qt], which comes from an update from the first interval.
This element was not overwritten by a fixed update from the second interval because,
by assumption, no index was updated twice. Then each St will be a random variable
uniformly distributed in the group: even if we condition on arbitrary values for each
but one of the random terms, the sum remains uniformly random in the group because
of the existence of inverses. Furthermore, the random variables will be independent,
because St contains at least one random term that was not present in any Sr with
r < t (namely, the term in [qt−1 + 1, qt]). Then H((S1, . . . , Sl) | G = g) = lδ. The
variable S entails S1, . . . , Sl, so H(S | G = g) ≥ lδ. By Lemma 5.2, E[l] = Ω(L).
Furthermore, with probability 1− o(1), a random G leads to no index being updated
twice in the two intervals, so the above analysis applies. Then H(S | G) = Ω(Lδ).

5.4. Proof of Lemma 5.1. We consider two adjacent intervals of time, the first
spanning operations [i, j − 1] and the second spanning operations [j, k]. We propose
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an encoding for the partial sums queried in [j, k] given the value of G, and compare
its size to the Ω(Lδ) lower bound of Lemma 5.3. Our encoding is simply the list of
addresses and contents of the cells probed in the right interval that were written in
the left interval. Thus, we are proposing an encoding of expected size E[c] · 2b bits,
proving that E[c] = Ω(L δ

b ). It should be noted that c is a random variable, because
the algorithm can make different cell probes for different update parameters.

To recover the partial sums from this encoding, we begin by running the algorithm
for the time period [1, i− 1]; this is possible because all operations before time i are
known given G. We then skip the time period [i, j − 1] and run the algorithm for
the time period [j, k], which will return the partial sums queried during this time. To
see why this is possible, notice that a read instruction issued during time period [j, k]
falls into one of three categories, depending on the time tw when the cell was written:
tw ≥ j: We can recognize this case by maintaining a list of memory locations written

during the simulation; the data is immediately available.
i ≤ tw < j: The contents of the memory location is available as part out encoding;

we can recognize this case by examining the set of addresses in the encoding.
tw < i: This is the default case, if we failed to satisfy the previous conditions. The

contents of the cell is determined from the state of the memory upon finishing
the first simulation up to time i− 1.

5.5. Obtaining Trade-Off Lower Bounds. We now show how our framework
can be used to derive trade-off lower bounds. In a nutshell, we consider instances
where the cheaper operation is performed more frequently, so that the total cost of
queries matches the total cost of updates. Then, we analyze the sequence of operations
by considering a tree with a higher branching factor.

Assume there exists a data structure with amortized expected running times
bounded by tu for updates and tq for queries. Our hard instance consists of blocks of
tu + tq operations. Each block contains tq updates and tu queries; the order inside a
block is irrelevant. We generate the arguments to updates and queries randomly as
before. Let B = 2 ·max

{
tu

tq
,

tq

tu

}
. We prove below that the expected amortized cost

of a block is Ω
(
max{tu, tq} δ

b logB n
)
. On the other hand, the expected amortized cost

of a block is at most 2tutq. This implies tutq

max{tu,tq} = Ω
(

δ
b logB n

)
, so min{tu, tq} ·

lg max{tu,tq}
min{tu,tq} = Ω

(
δ
b lg n

)
. This is the desired trade-off, which is tight when δ = Θ(b).

To prove the lower bound on blocks, consider a balanced B-ary tree in which the
leaves correspond to blocks. We let the total number of blocks be m = Θ( 6

√
n). If

max{tu, tq} = Ω( 6
√

n), our lower bound states that min{tu, tq} = Ω(1), so there is
nothing to prove. Thus, we can assume tu + tq = O( 6

√
n), which bounds the number

of operations in a block. Then, the total number of operations is O( 3
√

n), satisfying
one of the conditions of Lemma 5.1.

For the case tu ≥ tq, we are interested in the information transfer between each
node and its left siblings. The subtree of the node defines the right interval of opera-
tions, and the union of the subtrees of all left siblings defines the left interval. Let L
be the number of blocks in the right interval. We make a claim only regarding nodes
that are in the right half of their parent’s children. In this case, the number of blocks
in the left interval is at least B

2 L. Then, the number of queries in the right interval is
Ltu, while the number of updates in the left interval is at least L tu

tq
tq = Ltu. We can

then apply Lemma 5.1; having more updates in the left interval cannot decrease the
bound, because moving the beginning of the left interval earlier can only increase the
number of cell probes that are counted. Therefore, the expected number of cell probes
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associated with this node is Ω(Ltu
δ
b ). Now we sum the lower bounds for all nodes

on a level, and obtain that the number of cell probes associated with that level is
Ω(mtu

δ
b ). Summing over all levels, we get an amortized lower bound of Ω(tu δ

b logB n)
per block, as desired.

For the case tu < tq, we apply a symmetric argument. We analyze the information
transfer between any node, giving the left interval, and all its right siblings, giving
the right interval. For nodes in the first half of their parent’s children, the left inter-
val contains Ltq updates, while the right interval contains at least Ltq queries. By
Lemma 5.1, the expected number of cell probes associated with this node is Ω(Ltq

δ
b ).

Thus, the number of cell probes associated with a level is Ω(mtq
δ
b ), and the amortized

bound per block is Ω(tq δ
b logB n).

5.6. Refinements. First note that our lower bounds so far depend only on
randomness in the update parameters ∆, and not on randomness in the update or
query indices. Indeed, the value of G is irrelevant, except for the interleaving number
that it yields. It follows that the logarithmic lower bound and the trade-off lower
bound are also true for sequences of operations in which we fix everything except the
∆ parameters, as long as such sequences have a high sum of the interleaving numbers
of each node. Our application of Lemma 5.2 can be seen as a probabilistic proof that
such bad sequences exist.

The prototypical deterministic sequence with high total interleaving is the bit-
reversal permutation. For any n that is a power of two, consider the permutation
π : {0, . . . , n − 1} → {0, . . . , n − 1} that takes i to the integer obtained by reversing
i’s log2 n bits. The corresponding access sequence consists of n pairs of update and
sum, the ith pair touching index π(i). The bit-reversal permutation underlies the
Fast Fourier Transform algorithm. It also gives an access sequence that takes Ω(lg n)
amortized time for any binary search tree [Wil89]. Finally, it was used to prove an
Ω(lg n) bound for the partial-sums problem in the semigroup model [HF98]. To see
why this permutation has high total interleaving, consider the following recursive
construction. The permutation π′ of order 2n is obtained from a permutation π of
order n by the rules: π′(i) = 2 · π(i), π′(i + n) = 2 · π(i) + 1, for i ∈ {0, 1, . . . , n− 1}.
Each level of the recursion adds an interleaving of n between the left and right halves,
so the total interleaving is Θ(n lg n).

The fact that our lower bound holds for fixed sequences of operations implies the
same lower bound in the group model. A solution in the group model handles every
update and sum by executing a sequence of additions on cells containing abstract
elements from the group. The cells touched by these additions depend only on the
indices touched by queries and updates, because the data structure treats the group
as a black box, and cannot examine the ∆’s. So if we know a priori the sequence of
indices touched by queries and updates, we can implement the same solution in the
cell-probe model for the group Z/2bZ; because the ∆’s are unrestricted elements of
the group, δ = b. The group additions can be hard-wired into our solution for the
cell-probe model through nonuniformity, and cell probes are needed only to execute
the actual additions.

5.7. Duality of Lower and Upper Bounds. Recall the classic upper bound
for the partial-sums problem. We maintain a tree storing the elements of the array in
order in the leaves. Each node stores the sum of all leaves in its subtree. An update
adds ∆ to the subtree sums along the root-to-leaf path of the touched element. A
query traverses the root-to-leaf path of the element and reports the sum of all subtrees



14 M. PǍTRAŞCU AND E. D. DEMAINE

to the left of the path.
Our lower bound can be seen as a dual of this natural algorithm. To see this, we

describe what happens when we apply the lower bound analysis to the algorithm. We
argue informally. Consider two intervals of 2k operations. The information transfer
between the intervals is associated with a node of height k in the lower-bound tree. On
the other hand, the indices of the operations will form a relatively uniformly spaced
set of O(2k) indices. Thus, the distance in index space between a query from the right
interval and the closest update from the left interval will usually be around n/2k. The
algorithm’s tree passes information between the update and the query through the
lowest common ancestor of the two indices. Because of the separation between the
indices, this will usually be a node at level around lg n−k. Thus, we can say that our
lower bound is roughly an upside-down view of the upper bound. The information
passed through the kth level from the bottom of one tree is roughly associated with
the kth level from the top of the other tree.

6. Handling Queries with Low Output Entropy. The lower bound tech-
nique as presented so far depends crucially on the query answers having high entropy:
the information transfer through a node is bounded from below by the entropy of all
queries from the right subtree of the node. However, in order to prove lower bounds
for dynamic language membership problems (such as dynamic connectivity), we need
to be able to handle queries with binary answers. To prove lower bounds for a pair of
adjacent intervals, it is tempting to consider the communication complexity between
a party holding the updates from the left interval, and a party holding the queries
from the right interval. Many bounds for communication complexity hold even for
decision problems, so queries with binary output should not be a problem. However, a
solution for the data structure does not really translate well into the communication-
complexity setting. The query algorithm probes many cells, only a few of which
(a logarithmic fraction) are in the left interval. If the party with the right interval
communicates all these addresses, just to get back the answer “not written in the
left interval” for most of them, the communication complexity blows up considerably.
One could also imagine a solution based on approximate dictionaries, where the party
holding the left interval sends a sketch of the cells that were written, allowing the
other party to eliminate most of the uninteresting cell probes. However, classic lower
bounds for approximate dictionaries [CFG+78] show that it is impossible to send a
sketch that is small enough for our purposes. The solution developed in this section
is not based on communication complexity, although it can be rephrased in terms of
nondeterministic communication complexity. While this solution is not particularly
hard, we find it to be quite subtle.

6.1. Setup for the Lower Bound. Our approach is to construct hard se-
quences of operations that will have a fixed response, and the data structure need
only confirm that the answer is correct. Such predictable answers do not trivialize
the problem: the data structure has no guarantee about the sequence of operations,
and the information it gathers during a query (by probing certain cells) must provide
a certificate that the predicted answer is correct. In other words, the probed cells
must uniquely identify the answer to the query, and thus must encode sufficient in-
formation to do so. As a consequence, our lower bounds hold even if the algorithm
makes nondeterministic cell probes, or if an all-powerful prover reveals a minimal set
of cells sufficient to show that a certain answer to a query is correct.

The machinery developed in this section is also necessary in the case of the partial-
sums problem, if we want a lower bound for sequences of update and select oper-
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ations. Even though select returns an index in the array, i.e., lg n bits, it is not
clear how more than one bit of information can be used for a lower-bound argu-
ment. Instead, we consider a verify-sum operation, which is given a sum Σ and
an index i, and tests whether the partial sum up to i is equal to Σ. In principle,
this operation can be implemented by two calls to select, namely by testing that
i = select(Σ) = select(Σ− 1) + 1.

Below we give a single lower-bound proof that applies to both the partial-sums
problem with verify, and dynamic connectivity. We accomplish this by giving a proof
for the partial-sums problem over any group G with at least 2δ elements, and then
specializing G for the two problems we consider.

For the partial-sums problem with select, we use G = Z/2δZ. This introduces a
slight complication, because verify-sum in modulo arithmetic can no longer be imple-
mented by a constant number of calls to select. To work around this issue, remember
that our lower bound for verify-sum also holds for nondeterministic computation. To
implement verify-sum(i, Σ) nondeterministically, we guess a b-bit quantity Σ′ such
that Σ′ mod2δ = Σ, and verify the old condition i = select(Σ′) = select(Σ′−1)+1.
We have implicitly assumed that select is deterministic, which is natural because
select does not return a binary answer. Note that only one thread accepts, so there
is no problem if select updates memory cells (the updates made by the sole accepting
thread are the ones that matter).

For the dynamic-connectivity problem, we use G = S√
n, i.e., the permutation

group on
√

n elements. Notice that now we have δ =
√

n lg
√

n−Θ(
√

n), a very large
quantity, unlike in the partial-sums problem where it was implied that δ < b. Our
proof never actually assumes any particular relation between δ and b.

To understand the relation between this problem and dynamic connectivity, refer
to Figure 6.1. We consider a graph whose vertices form an integer grid of size

√
n by√

n. Edges only connect vertices from adjacent columns. Each vertex is incident to
at most two edges, one edge connecting to a vertex in the previous column and one
edge connecting to a vertex in the next column. These edges do not exist only when
they cannot because the vertex is in the first or last column. The edges between two
adjacent columns of vertices thus form a perfect matching in the complete bipartite
graph K√

n,
√

n, describing a permutation of order
√

n. More precisely, point (x, y1)
in the grid is connected to point (x + 1, y2) exactly when πx(y1) = y2 for a permu-
tation πx. Another way to look at the graph is in terms of permutation networks.
We can imagine that the graph is formed by

√
n horizontal wires, going between

permutation boxes. Inside each box, the order of all wires is changed arbitrarily.
Our graph is always the disjoint union of

√
n paths. This property immediately

implies that the graph is plane, because any embedding maintains planarity (though
the edges may have to be routed along paths with several bends).

The operations required by the partial-sums problem need to be implemented in
terms of many elementary operations, so they are are actually “macro-operations”.
Macro-operations are of two types, update and verify-sum, and all receive as param-
eters a permutation and the index x of a permutation box. To perform an update, all
the edges inside the named permutation box are first deleted, and then reconstructed
according to the new permutation. This translates to

√
n delete’s and

√
n insert’s

in the dynamic connectivity world. Queries on box x test that point (1, y) is con-
nected to point (x+1, π(y)), for all y ∈ {1, 2, . . . ,

√
n}. This requires

√
n connectivity

queries. The conjunction of these tests is equivalent to testing that the composition
of π1, π2, . . . , πx (the permutations describing the boxes to the left) is identical to the
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π2π1

√
n

π√n

Fig. 6.1. Our graphs can be viewed as a sequence of permutation boxes (dashed). The horizontal
edges between boxes are in fact contracted in the actual graphs.

given permutation π — the verify-sum in the partial-sums world.
As stated before, the lower bound we obtain is Ω( δ

b lg n). For dynamic con-
nectivity, we are interested in b = Θ(lg n), which is the natural word size for this
problem. As we saw already, δ = Θ(

√
n lg n). Thus, our lower bound translates

into Ω(
√

n lg n). This is a lower bound for the macro-operations, though, which are
implemented through O(

√
n) elementary operations. Therefore, the lower bound for

dynamic connectivity is Ω(lg n), as desired. The same calculation applies to the trade-
off expressions, which essentially means that the δ

b term should be dropped to obtain
the true bound for dynamic connectivity.

6.2. Proof of the Lower Bound. As before, the sequence of operations al-
ternates between update or verify-sum. The index queried or updated is chosen
uniformly at random. If the operation is an update, we select a random element of
G for the value ∆. If the operation is verify-sum, we give it the composition of the
elements before the queried index. This means that the data structure will be asked
to prove a tautology, involving the partial sum up to that index.

Because of this construction of the hard sequence, at least one nondeterministic
thread for each query should accept. For every random input, let us fix one accepting
thread for each operation. When we mention cells that are “read”, we mean cells read
in this chosen execution path; by definition of the model, writes are the same for all
accepting threads. As in the framework discussion, we are interested in lower bounds
for the information transfer between adjacent intervals of operations. The following
lemma is an analog of Lemma 5.1.

Lemma 6.1. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right intervals contains L queries, and overall the
intervals contain O( 3

√
n) operations. Let w be the number of write instructions exe-

cuted during the first interval, and let r be the number of read instructions executed
during the second interval. Also let c be the number of read instructions executed
during the second interval that read cells last written during the first interval. Then
E[c] = Ω

(
L δ

b

)
−O

(
E[s]

b

)
, where s = lg

(
r+w

r

)
.

Note that the lower bound of this lemma is weaker than that of Lemma 5.1,
because of the additional term E[s]

b . Before we prove this lemma (in the next section),
let us see that this term ends up being inconsequential, and we can still prove the
same bounds and trade-offs.

Consider a sequence of m = Θ( 3
√

n) operations, and let T be the total running
time of the data structure. We construct a complete binary tree over these operations.
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Consider a node v that is a right child, and let L be the number of leaves in its
subtree. By Lemma 6.1, we have E[c] = Ω

(
L δ

b

)
−O

(
E[s]

b

)
, where c is the number of

cell probes associated with v. Note that s = lg
(
r+w

r

)
≤ r + w; thus, s is bounded by

the number of read instructions in v’s subtree, plus the number of write instructions
in the subtree of v’s left sibling. Summing for all nodes on a level, s counts all read
and write instructions at most once, so we obtain E[

∑
ci] = Ω

(
m · δ

b

)
− O

(
E[T ]

b

)
.

We sum up the lower bounds for each level to obtain a lower bound on E[T ]. We
obtain that E[T ] = Ω

(
m · δ

b lg n
)
−O

(
lg n · E[T ]

b

)
. Because lg n ≤ b, this means that

E[T ] = Ω
(
m · δ

b lg n
)
. This result implies an average-case amortized lower bound per

operation of Ω
(

δ
b lg n

)
.

To obtain trade-off lower bounds, we apply the same reasoning as in Section 5.5.
The only thing we have to do is verify that the new term depending on E[s] does not
affect the end result. When we sum the lower bounds for one level in the tree, we lose
a term of O

(∑ E[si]
b

)
compared to the old bound. Here i ranges over all nodes at

that level. We must understand
∑

si = lg
∏ (

ri+wi

ri

)
in terms of T , the total running

time for the entire sequence of operations.
The quantity

∏ (
ri+wi

ri

)
counts the total numbers of ways to choose ri elements

from a set ri + wi, where we have a different set for each i. This is bounded from
above by the number of ways to choose

∑
ri elements from a single set of

∑
(ri + wi)

objects. Thus,
∑

si ≤ lg
(P

(ri+wi)P
ri

)
. Assume we have upper bounds

∑
ri ≤ Ur and∑

wi ≤ Uw. Then, we can write
(P

(ri+wi)P
ri

)
≤

(
Ur+UwP

ri

)
≤

(
2(Ur+Uw)P

ri

)
≤

(
2(Ur+Uw)

Ur

)
.

The last inequality holds because
(
n
k

)
increases with k for k ≤ n

2 . We entered this
regime by artificially doubling Ur + Uw. Because ri and wi are symmetric, we also
have

(P
(ri+wi)P

ri

)
=

(P
(ri+wi)P

wi

)
≤

(
2(Ur+Uw)

Ur

)
.

Now we need to develop the upper bounds Ur and Uw. For the case tu ≤ tq,
our proof considered intervals formed by a node and all its left siblings. Thus,

∑
ri

counts each read instruction once, for the node it is under; so
∑

ri ≤ T . On the other
hand,

∑
wi ≤ B · T , because a write instruction is counted for every right sibling of

its ancestor on the current level. For the case tu > tq, we consider intervals formed
by a node, and all its right siblings. Thus,

∑
wi ≤ T and

∑
ri ≤ B · T .

Using these bounds, we see that
∑

si ≤ lg
(
2(B+1)T

T

)
= O(T lg B). Because this

upper bound holds in any random instance, it also holds in expectation: E[
∑

si] =
O(E[T ] lg B). So our lower bound loses O

(
E[T ] lg B

b

)
per level, which, over all levels,

sums to O
(

E[T ] lg B
b logB n

)
= O

(
E[T ] lg n

b

)
. Because lg n ≤ b, our lower bound on

E[T ] is equal to the old lower bound minus O(E[T ]). Thus, we lose only a constant
factor in the lower bound, and the results of Section 5.5 continue to hold.

6.3. Proof of Lemma 6.1. The proof is an encoding argument, which is similar
in spirit to the proof of Lemma 5.1, but requires a few significant new ideas. The
difference from the previous proof is that the partial sums that we want to encode are
no longer returned by queries, but rather they are given as parameters. Our strategy
is to recover the partial sums by simulating each query for all possible parameters,
and see which one leads to an accept. However, these simulations may read a large
number of cells, which we cannot afford in the encoding. Instead, we add a new part
to the encoding which enables us to stop simulations that try to read cells we don’t
know. The difficulty is making this new component of the encoding small enough.
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As before, we consider two adjacent intervals of operations, the first spanning
[i, j− 1] and the second [j, k]. We propose an encoding for the partial sums passed to
the verify-sum operations during [j, k], given the variable G defined in Lemma 5.3.
By this lemma, such an encoding must have size Ω(Lδ) bits.

The encoder first simulates the entire execution of the data structure. Each query
is given the correct partial sum, so it must accept. We choose arbitrarily one of the
accepting threads. Consider the following sets of cells, based on this computation
history:
W = cells which are updated by the data structure during the interval of time [i, j−1],

and never read during [j, k].
R = cells which are read by the data structure during [j, k] and their last update

before the read happened before time i.
C = cells which are read by the data structure during [j, k] and their last update

before the read happened during [i, j − 1].
These are simple sets, so, for example, cells written multiple times during [i, j−1]

are only included once in W . We have |C| = c, |W | ≤ w, |R| ≤ r. Note that all
of c, |W |, w, |R| and r are random variables, because the data structure can behave
differently depending on the ∆’s passed to the updates. We will give an encoding for
the queried partial sums that uses O(b)+c·2b+O(s) bits, where s = lg

(
r+w

r

)
. Because

the expected size of our encoding must be Ω(Lδ), we obtain that E[c]+ E[s]
Θ(b) = Ω

(
L δ

b

)
and therefore E[c] = Ω

(
L δ

b

)
−O

(
E[s]

b

)
.

Our encoding consists of two parts. The first encodes all information about the
interesting cell probes (the information transfer): for each cell in C, we encode the
address of the cell and its contents at time j. This uses O(b) bits to write the size of
C, and c·2b for the information about the cells. The second part is concerned with the
“uninteresting” cell probes, i.e., those in R. This accounts for a covert information
transfer: the fact that a cell was not written during [i, j − 1] is a type of information
transmitted to [j, k]. The part certifies that W and R are disjoint, by encoding a
set S, such that R ⊂ S and W ⊂ S. We call S a separator between R and W . To
efficiently encode a separator, we need the following result:

Lemma 6.2. For any integers a, b, u with a + b ≤ u, there exists a system of
sets S with lg |S| = O(lg lg u + lg

(
a+b

a

)
) such that, for all A,B ⊂ {1, 2, . . . , u} with

|A| ≤ a, |B| ≤ b, A ∩B = ∅, there exists an S ∈ S satisfying A ⊂ S and B ⊂ S.
Proof. It suffices to prove the lemma for |A| = a and |B| = b, because we

can simply add some elements from {1, 2, . . . , u} \ (A ∪ B) to pad the sets to the
right size. We use the probabilistic method to show that a good set system exists.
Select a set S randomly, by letting every element x ∈ {1, 2, . . . , u} be in the set
with probability p = a

a+b . Then, for any pair A,B, the probability that A ⊂ S

and B ⊂ S is pa(1 − p)b. The system S will be formed of sets chosen indepen-
dently at random, so the probability that there is no good S for some A and B is(
1− pa(1− p)b

)|S| ≤ exp
(
−pa(1− p)b|S|

)
. The number of choices for A and B is(

u
a

)(
u−a

b

)
≤ ua+b. So the probability that there is no good set in S for any A,B

is at most ua+b exp
(
−pa(1− p)b|S|

)
= exp

(
(a + b) ln u− pa(1− p)b|S|

)
. As long as

this probability is less than 1, such a system S exists. So we want (a + b) lnu <

pa(1 − p)b|S| =
(

a
a+b

)a (
b

a+b

)b

|S|. We want to choose a system of size greater than
(a+b)a+b+1 ln u

aabb . Then lg |S| = Θ((a+ b+1) log2(a+ b)+ lg lg u−a log2 a− b log2 b). As-
sume by symmetry that a ≤ b. Then lg |S| = Θ

(
lg lg u + a lg b

a + a · b
a log2

(
1 + a

b

))
.
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Let t = b
a ; then t log2(1 + 1

t ) = log2

(
(1 + 1

t )
t
)
→ log2 e as t → ∞. We then have

b
a log2

(
1 + a

b

)
= Θ(1), so our result simplifies to lg |S| = Θ(lg lg u + a lg(b/a)). It is

well known that a lg(b/a) = Θ(lg
(
a+b

a

)
), for a ≤ b.

We apply this lemma with parameters r, w and 2b. First, we encode r and w,
using O(b) bits. The encoding and decoding algorithms can simply iterate over all
possible systems S for the given r and w, and choose the first good one (in the
sense of the lemma). Given this unique choice of a system, a separator between R
and W is the index of an appropriate set in the system. This index will occupy
O(lg lg(2b) + lg

(
r+w

r

)
) = O(lg b + s) bits.

It remains to show that this information is enough to encode the sequence of
queried partial sums. We simulate the data structure for the interval [j, k], and
prove by induction on time steps that all cell writes made by these operations are
correctly determined, and all partial sums appearing in verify-sum’s are recovered.
Updates are easy to handle, because their parameters are known given G, and they are
deterministic. Thus, we can simply simulate the update algorithm. We are guaranteed
that all cells that are read and have a chronogram in [i, j − 1] appear in C, so we can
identify these cells and recover their contents. All other cells have a known content
given G, so we can correctly simulate the update.

In the case of verify-sum, we do not actually know the sum passed to it, so we
cannot simply simulate the algorithm. Instead, we try all partial sums that could
be passed to the query, and for each one try all possible execution paths that the
data structure can explore through nondeterminism. The cell probes made while
simulating such a thread fall in one of the following cases:

• the cell was written by the data structure after time j. This case can be
identified by looking at the set of cells written during the simulation. By the
induction hypothesis, we have correctly determined the cell’s contents.
• the cell is in C. We recover the contents from the encoding.
• the cell is on R’s side of the separator between R and W . Then, it was not

written during [i, j − 1], and thus it has the old value before time i. Given
G, everything is fixed before time i, so we know the cell’s contents.
• the cell is on W ’s side of the separator. Then this thread of execution cannot

be in the computation history chosen by the encoding algorithm. We abort
the thread.

For each query, there exists a unique partial sum for which is should accept. Fur-
thermore, one accepting thread is included in the computation history of the encoder.
Thus, we identify at least one thread which accepts and is not aborted because of
the last case above. Because the data structure is correct, all accepting threads must
be for the same partial sum, so we correctly identify the sum. By definition of the
nondeterministic model, the cell writes are identical for all accepting threads, so we
correctly determine the cell writes, as well.

It should be noted that, even though the size of the encoding only depends on the
characteristics of one accepting thread per query, the separator allows us to handle
an arbitrary number of rejecting threads. All such threads (including all threads for
incorrect partial sums) are either simulated until they reject, or they are aborted.

6.4. Handling Monte Carlo Randomization. This section shows that the
logarithmic lower bound for dynamic connectivity is also true if we allow Monte Carlo
randomization with two-sided error probability at most n−c, for constant c (that is,
the data structure must be correct with high probability). The idea is to make the
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decoding algorithm from the previous section use only a polynomial number of calls
to data structure operations.

Assume for now that the data structure is deterministic. The previous decoding
algorithm simulates a large number of primitive connectivity operations for every
query. A partial sum is recovered by simulating verify-sum for all possible sums.
Remember that a partial sum in the dynamic connectivity problem is a permutation
in S√

n, obtained by composition of the permutations up to a certain column k. Thus,
there are (

√
n)! partial sums to try – a huge quantity. However, we can recover the

partial-sum permutation by simulating at most (
√

n)2 connected queries: it suffices
to test connectivity of every point in the first column with every point on the kth

column. First, the decoder simulates connected queries between the first node in
column one, and every node in column k. Exactly one of these queries was executed
by the encoder, so that query should accept. The other queries will reject or be
aborted. Now the writes made by the accepting query are incorporated in the data
structure. The decoder continues to simulate query calls between the second node in
column one, and all nodes in column k, and so on.

Now assume that the data structure makes an error with probability at most n−c,
for a sufficiently large constant c. We make the encoding randomized; the random
bits are those used to initialize the memory of the data structure. We assume both
the encoder and the decoder receive the same random bits, so they can both simulate
the same behavior of the data structure. By the minimax principle, we can fix that
random bits if we are only interested in the expected size of the encoding for a known
input distribution (which is the case).

The decoding algorithm described above will work if all correct queries accept,
and all incorrect queries would reject if they were executed instead of the correct one.
We can simulate the execution of any query, or abort it only if it is not one of the
correct queries. So if all incorrect queries reject, their simulation will either reject or
be aborted. Because we only consider polynomial sequences of operations, we simulate
at most poly(n) queries (including the incorrect ones). The probability that any of
them will fail is at most n−c′

, for some arbitrarily large constant c′ (depending of
c). Because the decoder has the same coins as the encoder, the encoder can predict
whether the decoder will fail. Thus, it can simply add one bit saying whether the old
encoding is used (when the decoder works), or the entire input is simply included in
the encoding (if the old decoder would fail). The expected size of the encoding grows
by at most 1+n−c′ ·poly(n) < 2 for sufficiently large c′. So the bounds of Lemma 6.1
remain the same. Then, the bounds and trade-offs derived for dynamic connectivity
hold even if the data structure answers correctly with high probability.

7. Handling a Higher Word Size. For the partial-sums problem, it is natural
and traditional to consider the case δ = o(b). For ease of notation, we will let B = b

δ .
For dynamic connectivity, our motivation comes from external-memory models. For
this problem, a “memory cell” is actually an entire page, because that is the unit of
memory that can be accessed in constant time. In this case, B is what is usually
referred to as “page size”; the number of bits in a page is b = B · lg n. For both
problems, the lower bound we obtain is Ω(logB n).

We note that the analysis from the previous sections gives a tight bound on the
number of bits that must be communicated: Ω(δ lg n). Given that we can pack b bits
in a word, it is straightforward to conclude that Ω( δ

b lg n) = Ω( lg n
B ) read instructions

must be performed. Our strategy for achieving Ω( lg n
lg B ) is to argue that an algorithm

cannot make efficient use of all b bits of a word, if future queries are sufficiently



LOGARITHMIC LOWER BOUNDS 21

unpredictable. Intuitively speaking, if we need δ bits of information from a certain
time epoch to answer a query, and there are t· bδ possible future queries that would also
need δ bits of information from the same epoch (t > 1), a cell probe cannot be very
effective. No matter what information the cell probe gathers, we have a probability
of at most 1/t that it has gathered all the information necessary for a random future
query, so with constant probability the future query will need another cell probe. The
reader will recognize the similarity, at an intuitive level, with the round-elimination
lemma from communication complexity [MNSW98, SV]. Also note that our proof
strategy hopelessly fails with any deterministic sequence of indices, such as the bit-
reversal permutation. Thus, we are identifying another type of hardness hidden in
our problems.

Unfortunately, there are two issues that complicate our lower bounds. The first
is that, for dynamic connectivity, we need to go beyond the verify-sum abstraction,
and deal with connected queries directly. To see why, remember that a verify-sum

macro-query accesses a lot of information (Θ(
√

n lg n) bits) in a very predictable fash-
ion, depending on just one query parameter. Thus, we do not have the unpredictability
needed by our lower bound. The second complication is that, for the partial-sums
problem, we can handle verify-sum only when δ = Ω(b). When δ = o(lg n), the in-
formation per query is not enough to hide the cost of the separators from Lemma 6.2.
However, we can still obtain lower bounds for sum and select, without nondetermin-
ism, using a rather simple hack.

In Section 7.1, we describe a new analysis for adjacent intervals of operations,
which is the gist of our new lower bounds. In Section 7.2, we show how this new lower
bound can be used for the partial-sums problems, whereas in Section 7.3, we show
how to apply it to dynamic connectivity.

7.1. A New Lower Bound for Adjacent Intervals. We now consider an
abstract data-structure problem with two operations, update and query. We do
not specify what update does, except that it receives some parameters, and behaves
deterministically based on those. A query receives two parameters i and q, and
returns a boolean answer. We refer to i as an index. For any admissible i, there
exists a unique q which makes the query accept. The parameter q is a δ-bit value,
where δ is a parameter of the problem; we let B = b/δ. The implementation of
query can be nondeterministic. We assume that the hard instance of the problem
comes from some random distribution, but that the pattern of updates and queries
is deterministic. In the hard instance, each query receives the q which makes it
accept. We will assume that the random features of each operation are chosen by
the distribution independently of the choices for other operations. Though we do not
really need this assumption, it is true in both problems we consider, and assuming
independence simplifies exposition.

Now consider two intervals of operations [i, j−1] and [j, k], and let L be the num-
ber of queries in the second interval. We make an information-theoretic assumption,
which we will later prove for both the partial-sums and dynamic-connectivity prob-
lems. To describe this assumption, pick a random t ∈ [j, k] such that the tth operation
is a query. Also pick a set Q of BL random queries that could have been generated
as query t. Now, imagine simulating each such query starting with the state of the
data structure at time t− 1. Our assumption is essentially that the correct q’s for all
original queries from [j, k], plus the simulated queries in Q, have high entropy. More
specifically, let Z be the random variable specifying all updates outside [i, j − 1] and
the indices for all queries, including those in Q. We assume that the vector of q’s has
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entropy Ω(BLδ) given Z.
Let w be the number of write instructions executed during the first interval, and

let r be the number of read instructions executed during the second interval. Also let
c be the number of read instructions executed during the second interval that read
cells last written during the first interval. Under the assumptions above, we prove
E[c] = Ω(L)−O( s

b ), where s = (B · E[r]) log2

(
1 + E[w]

B·E[r]

)
.

We now outline the proof strategy. The probability that query t reads at least
one cell from [i, j − 1] is at most E[c]

L . If E[c] were small, so would this probability.
That would mean that a large fraction of the queries from Q (random queries that
could be executed at time t) would not need to read any cell written during [i, j]. On
the other hand, the queries recover Ω(BLδ) = Ω(Lb) bits of information about the
updates in the left interval. Because most queries don’t need to read another cell,
most of this information must have already been recovered by the cell probes made
in [j, t− 1]. There are at most E[c] probes in expectation, each reading b bits, so the
recovered information is not enough when E[c] is small.

Encoding Algorithm. As the first step of the formal proof, we describe the al-
gorithm encoding the correct q’s. First simulate the entire execution of the data
structure, with the real query at time t. For each query, include an arbitrary accept-
ing thread in the computation history. Based on this computation history, consider
the following sets:
C = cells that are written during [i, j − 1] and read during [j, k].
W = cells that are written during [i, j − 1] but not read during [j, k].
R1 = cells that are read during [j, k], but never written during [i, j − 1].

Now simulate the queries in Q starting from the state of the data structure at
time t − 1. As before, we only pass correct parameters to these queries. Call easy
queries the queries for which there exists an accepting thread which does not read
any cell in W ; call such a thread a good thread. The rest of the queries are hard
queries; let h be the number of hard queries. Let R2 be the union of the cells read
by a arbitrary good thread of every easy query, from which we exclude the cells in
C. By definition of easy queries, R2 is disjoint from W . Let R = R1 ∪ R2; R is also
disjoint from W .

The encoding has four parts:
1. encode c and for each cell in C, the address and contents of the cell;
2. a separator (as given by Lemma 6.2) between R and W ;
3. encode h, and the set of hard queries. The set takes lg

(|Q|
h

)
= lg

(
BL
h

)
bits.

4. the correct q for each hard query, as an array of size h. This takes hδ bits.
The third part of the encoding could be avoided for our current problem, because

the separator can be used to recognize hard queries. However, we will later consider
a variation in which we discard the separator, and then encoding which queries are
hard could no longer be avoided.

Decoding Algorithm. We now describe how to recover the correct q’s given Z and
the previous encoding. By definition, a separator of R and W is also a separator for
R1 and W . Given this separator and complete information about C, we can simulate
the real operations in the second interval, as argued in Lemma 6.1, and recover their
correct q’s. Now we have to recover the correct parameters for the queries in Q. For
hard queries, this is included in the encoding. For each easy query, each possible q,
and all threads, we try to simulate the thread starting with what we know about the
data structure at time t− 1. Each cell that is probed falls in one the following cases:
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• the cell was written during [j, t−1]. Because we simulated the data structure
in this interval, we can identify this condition and recover the cell contents.

• the cell is in C. We recover the contents from the encoding.
• the cell is on R’s side of the separator between R and W . Then, it was

not written during [i, j − 1], and we can recover the cell contents because Z
includes perfect information before time i.
• the cell is on W ’s side of the separator. Then, this thread of execution cannot

be among the chosen good threads for the easy queries, so we abort it.
For the chosen good thread of an easy query, the encoder included its probes

outside of C in the set R2, so simulation of this thread is never aborted. Thus, for
each easy query, we find at least one accepting thread, and recover the correct q.

Analysis. We want to bound the size of the separator. We have |W | ≤ w, |R1| ≤ r,
so it remains to bound |R2|. In expectation over a random t and a random choice of
the queries in the second interval, the number of cells read by query t is at most E[r]

L .
We are simulating a set of BL queries as if they happened at time t. In expectation,
the total number of cell probes performed by these is at most BLE[r]

L = B · E[r],
which also bounds E[|R2|]. Then E[|R|] ≤ E[|R1|] + E[|R2|] = O(B)E[r]. To specify
the separator, we need O(b) bits to write |W | and |R|, and then, by Lemma 6.2,
O

(
lg b + log2

(|W |+|R|
|R|

))
bits for the index into the system of separators. The total

size is O
(
b + |R| log2

(
1 + |W |

|R|

))
bits. The function (x, y) 7→ x log2(1+ y

x ) is concave,
so the expected size is upper bounded by moving expectations inside. Then, the
expected size of the separator is O

(
b + (B · E[r]) lg

(
1 + E[w]

B·E[r]

))
= O(b + s).

To analyze the rest of the encoding, we need to bound h. For a random t, the
expected number of cell probes from the first interval that are made by query t is at
most E[c]

L . This means that a random query at position t is bad with probability at
most E[c]

L . Thus, E[h] = BLE[c]
L = B ·E[c]. Explicitly encoding the correct q’s for the

hard queries takes E[h]δ = b · E[c] bits in expectation. This is the same as the space
taken to encode the contents of cells in C. Encoding which queries are hard takes space
O(b) + lg

(
BL
h

)
= O

(
b + h lg BL

h

)
. The function x→ x lg γ

x is concave for constant γ,

so the expected size is at most O
(
b + E[h] lg BL

E[h]

)
= O

(
b + B · E[c] lg L

E[c]

)
.

We have shown an upper bound of O
(
E[c]b + s + B · E[c] lg L

E[c]

)
on the expected

total size of the encoding. Let ε > 0 be an absolute constant to be determined. If
E[c] ≥ εL, there is nothing to prove. Otherwise, observe that x 7→ x log2(2+ γ

x ) grows
with x for constant γ, so the last term of the encoding size becomes O

(
BεL lg 1

ε

)
.

The assumed lower bound on the size of the encoding is Ω(BLδ) = Ω(bL), so we
obtain E[c] = Ω(L) − O

(
ε
δ L lg 1

ε

)
− O

(
s
b

)
. Note that ε lg 1

ε goes to zero as ε goes
to zero. Then, assuming δ ≥ 2, there is an absolute constant ε such that the second
term of the lower bound is a constant fraction of the first term. We thus obtain
E[c] = Ω(L)−O

(
s
b

)
.

Deterministic queries. Now we consider a variation of our original problem, in
which queries are deterministic, and they return q, as opposed to verifying a given q.
The only change in our analysis is that we do not need the separator. Indeed, each
query can be simulated unambiguously, because it only receives a known index, and
it is deterministic. Then, the separator term in our lower bound disappears, and we
obtain E[c] = Ω(L).
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7.2. The Partial-Sums Problem. Our hard instance is the same as in Sec-
tion 5.5: we consider blocks of tq random updates and tu queries to random indices.
We begin by showing a lower bound for two intervals based on the analysis from the
previous section. Let c, r, w be as defined in the previous section.

Lemma 7.1. Consider two adjacent intervals of operations such that the left
interval contains B · L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n) operations. The following lower bounds hold:

• In the case of sum queries, E[c] = Ω(L).
• In the case of verify-sum queries, E[c] = Ω(L) − O

(
s
b

)
, where we define

s = (B · E[r]) log2

(
1 + E[w]

B·E[r]

)
.

Proof. This follows from the analysis in the previous section, as long as we can
show the information-theoretic assumption made there. Specifically, we pick a query
from the second interval, and imagine simulating BL random queries in its place. We
need to show that the partial sums of the original queries and these virtual queries
have entropy Ω(BLδ), given the indices of all queries, and the indices and ∆ values
for all queries outside the left interval (the variable Z from the previous section). To
prove this, we apply Lemma 5.3. Because that lemma only deals with the partial
sums (a feature of the problem instance) and not with computation, it doesn’t matter
that we are simulating the BL queries at the same time. The partial sums would
be the same if the queries were ran consecutively. Then, the lemma applies, and
shows our entropy lower bound. Note that the variable G in Lemma 5.3 describes all
queries, including the simulated ones (which the lemma thinks are consecutive). This
is exactly the variable Z.

We now show how to use this lemma to derive our lower bounds. Our analysis
is similar to that of Section 6.2, with two small exceptions. The first is that there is
an inherent asymmetry between the left and right interval in Lemma 7.1. Because of
this, we can only handle the case tq = O(tu). The second change is that the definition
of s is somewhat different from that in Lemma 6.1; roughly, s is larger because E[r] is
multiplied by B. We will show lower bounds of the form tq

(
lg B + lg tu

tq

)
= Ω(lg n).

We consider a balanced tree with branching factor β = 2B tu

tq
, over m = Θ( 6

√
n)

blocks. Because for max{tq, tu} = Ω( 6
√

n), our trade-off states min{tq, tu} = Ω(1), we
may assume tu + tq = O( 6

√
n). Then there are O( 3

√
n) operations in total, as needed.

We will consider right intervals formed by a node of the tree, and left intervals formed
by all its left siblings. The choice of β gives the right proportion of updates in the left
interval compared to queries in the right interval, for any node which is in the right
half of its siblings. Then, we can apply Lemma 7.1.

First, consider the case of sum queries, so there is no term depending on s. Note
that the Ω(L) term is linear in the number of queries, so summing it up over the
entire tree yields a lower bound on the total time of E[T ] = Ω(mtu logβ n). By the
definition of the blocks, E[T ] = m · 2tutq, so tq = Ω(logβ n), which is equivalent to

tq

(
lg B + lg tu

tq

)
= Ω(lg n).

Now we consider nondetermistic verify-sum queries, assuming δ = Ω(lg n).
There is a new term in the lower bound on E[T ], given by the sum of the s terms
over all nodes. First consider the sum for all nodes on one level:

∑
si =

∑
(B ·

E[ri]) log2

(
1 + E[wi]

B·E[ri]

)
. We have

∑
ri ≤ T , because each read is counted for the

node it is under, and
∑

wi ≤ βT , because each write is counted for the siblings of the
node it is under. These inequalities must also hold in expectation, so

∑
B · E[ri] ≤
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B · E[T ] and
∑

E[wi] ≤ βE[T ]. Because the function (x, y) 7→ x log2(1 + y
x ) is

concave,
∑

si is maximized when E[ri] and E[wi] are equal. Then
∑

si ≤ B ·
E[T ] log2

(
1 + βE[T ]

B·E[T ]

)
= O(E[T ]B lg(tu/tq)). When we sum this over O(logβ n) lev-

els, we obtain E[T ] ·O
(
B lg(tu/tq) lg n

lg(Btu/tq)

)
= E[T ] ·O(B lg n).

Thus, our overall lower bound becomes E[T ] = Ω(mtu logβ n)−O( 1
b E[T ]B lg n).

Expanding B, E[T ] = Ω(mtu logβ n) − O(E[T ] lg n
δ ). For δ = Ω(lg n), we obtain

E[T ] = Ω(mtu logβ n), which is the same lower bound as for sum queries. This bound
holds for verify-sum queries, even with nondeterminism, and, as shown in Section 6.1,
also for select queries.

For the case δ = O(lg n), we can obtain the same lower bound on select by a
relatively simple trick. This means that the trade-off lower bound for select holds for
any δ, though we cannot prove it in general for verify-sum. The trick is to observe
that for small δ (e.g. δ < 1

3 lg n), we can stretch (polynomially) an instance of sum

into an instance of select. Because we already have a lower bound for sum, a lower
bound for select follows by reduction.

Consider the sum problem on an array A[0 . . 3
√

n − 1], where each element has δ
bits. This implies 0 ≤ A[i] < 3

√
n, and any partial sum is less than n2/3. Now we

embed A into an array A′[0 . . n−1] by A′[i·n2/3] = A[i]. The n2/3−1 spacing positions
between elements from A are set to 1 in the initialization phase, and never changed
later. An update in A translates into an update in A′ in the appropriate position.
Now assume we want to find σ =

∑k
i=0 A[i]. We run select((k + 1)(n2/3 − 1)) in

A′. We have
∑t+k·n2/3

j=0 A[j] = t + σ + k(n2/3 − 1), for any t < n2/3. Then, if select
returns t + k · n2/3, we know that t + σ = n2/3 − 1, so we find σ.

7.3. Dynamic Connectivity. The graph used in the hard sequence is the same
as the one before (Figure 6.1):

√
n permutation boxes, each permuting

√
n “wires”.

Let tu be the running time of an update (edge insertion or deletion), and tq the
running time of a query. We only handle tq ≤ tu. Our hard sequence consists of
blocks of operations. Each block begins with a macro-update: for an index k (chosen
as described below), remove all edges in the kth permutation box, and insert edges
for a random permutation. Then, the block contains tu

tq

√
n connected queries. Each

query picks a random node in the first column and a random index k, and calls
connected on the node in the first column and the node on the kth column which is
on the same path. This means that all queries should be answered in the affirmative;
the information is contained in the choice of the node from the kth column.

We still have to specify the sequence of indices of the macro-updates. We use
a deterministic sequence to ensure that updates which occur close in time touch
distant indices. This significantly simplifies the information-theoretic analysis. Our
hard sequence consists of exactly

√
n block. Each macro-update touches a different

permutation box; the order of the boxes is given by the bit-reversal permutation (see
Section 5.6) of order

√
n. Now consider a set of indices S = {i1, i2, . . . } sorted by

increasing ij . We say S is uniformly spaced if ij+1 − ij =
√

n/(|S| − 1) for every j.
Lemma 7.2. Consider two adjacent intervals of operations, such that the sec-

ond one contains L queries, and the indices updated in the first interval contain a
uniformly-spaced subset of cardinality Θ(BL/

√
n). Then E[c] = Ω(L)−O

(
s
b

)
, where

s = B · E[r] lg
(
1 + E[w]

B·E[r]

)
.

Proof. This lemma follows from Section 7.1, if we show the information-theoretic
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assumption used there. For our problem, δ = Θ(lg n). Imagine picking a random
query from the right interval and simulating BL random queries in its place. The
variable Z denotes the random choices for all queries, and for updates outside the left
interval. We need to show that the entropy of the correct parameters for all queries
in the right interval, including the simulated ones, given Z, is Ω(BL lg n).

Remember that all updates are to different boxes, so an update is never over-
written. For this reason, our proof will not care about the precise order of updates
and queries in the right interval, and there will be no difference between the real and
simulated queries. Let the uniformly-spaced set of update indices be S = {i1, i2, . . . }.
We let Bj be the set of queries from the right interval (either real or simulated) whose
random column is in [ij , ij+1−1]. For notational convenience, we write H(Bj) for the
entropy of the correct parameters to the set of queries Bj . Basic information theory
states that H(

⋃
j Bj | Z) =

∑
j H(Bj | B1, . . . , Bj−1, Z). Thus, to prove our lower

bound, it suffices to show H(Bj | B1, . . . , Bj−1, Z) = Ω(
√

n lg n) for all j.
Let Zj be a random variable describing Z and, in addition, the random permu-

tations for all updates in the left interval with indices below ij . Also, if there are
any updates with indices in [ij + 1, ij+1 − 1], include their permutation in Zj (these
are updates outside the uniformly-spaced set). Note that H(Bj | B1, . . . , Bj−1, Z) ≥
H(Bj | Zj), because conditioning on Zj also fixes the correct parameters for queries
in B1, . . . , Bj−1.

Now let us look at a query from Bj . The query picks a random node in the first
column. All permutations before column ij are fixed through Zj , so we can trace
the path of the random node until it enters box ij . Assume we have the correct
parameter of the query, i.e., the node from column k to which the initial node is
connected. Permutations between column ij and ij+1 are also fixed by Zj , so we can
trace back this node until the exit of box ij . Thus, knowing the correct parameter
is equivalent to knowing some point values of the permutation ij . As long as the
nodes chosen in the first column are distinct, we will learn new point values. If we
query d distinct point values of the random permutation, the entropy of the correct
parameters is Ω(d lg n), for any d.

Now imagine an experiment choosing the queries sequentially. This describes a
random walk for d. In each step, d may remain constant or it may be incremented.
Becuase of the uniform spacing, the probability that a query ends up in Bj is Ω(

√
n

BL ).
If d ≤

√
n/2, with probability at least a half, the node chosen in the first column is

new. Then, for d ≤
√

n/2, the probability that d is incremented in Ω(
√

n
BL ). We do

BL independent random steps, and we are interested in the expected value of d at
the end. The waiting time until d is incremented is O(BL√

n
). For a sufficiently small

constant ε, the expected time until d reaches ε
√

n is 1
2BL. Then, with probability at

least a half, d ≥ ε
√

n after BL steps. This is implies the expected value of d after BL
steps is Ω(

√
n), so H(Bj | Zj) = Ω(

√
n lg n).

To use this lemma, we construct a tree with a branching factor β ≥ 2B tu

tq
, rounded

to the next power of two. The right interval is formed by a node, and the left interval
by the node’s left siblings. We only consider the case when the node is among the
right half of its siblings. Now we argue there is a uniformly-spaced subset among the
indices updated in the left interval. Note that these include all indices from the first
half of siblings. Because β is a power of two, a root-to-leaf path in the tree is tracing a
bit representation of the leaf’s index, in chunks of log2 β bits. Because update indices
are the reverse of the leaf’s index, all the leaves in the subtrees of the first half of the
children have the same low order bits in the indices. On the other hand, the high
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order bits assume all possible values. So the indices from the first half of the children
are always a uniformly-spaced subset of indices.

Now we can apply Lemma 7.2, and we sum over all nodes of the tree to obtain
our lower bound. By the analysis in the previous section, the sum of the s terms
only changes the bound by a constant factor. The Ω(L) term of the lower bound
is linear in the number of queries, so summing over all levels we obtain E[T ] =
Ω(
√

n · tu

tq

√
n · logβ n). Because E[T ] =

√
n

(
tu
√

n + tq
tu

tq

√
n
)

= O(
√

n · tu
√

n), we
obtain tq = Ω(logβ n), which is our desired lower bound.

8. Upper Bounds for the Partial Sums Problem. As mentioned before, our
partial-sums data structure can support a harder variant of updates. We will allow
the A[i]’s to be arbitrary b-bit integers, while update(i, ∆) implements the operation
A[i]← A[i] + ∆, where ∆ is a δ-bit (signed) integer.

Our data structure is based on a balanced tree of branching factor B (to be
determined) with the elements of the array A[1 . . n] in the leaves. Assume we pick B
such that we can support constant-time operations for the partial-sums problem in an
array of size B. Then, we can hold an array of size B in every node, where each element
is the total of the leaves in one of the B subtrees of our node. All three operations
in the large data structure translate into a sequence of operations on the small data
structures of the nodes along a root-to-leaf path. Thus, the running time is O(logB n).
We will show how to handle B = Θ(min{b/δ, b1/5}). Then lg B = Θ(lg(b/δ)), which
implies our upper bound.

It remains to describe the basic building block, i.e., a constant-time solution for
arrays of B elements. We now give a simple solution for update and sum. In the
next section, we develop the ideas necessary to support select. We will conceptually
maintain an array of partial sums S[1 . . B], where S[k] =

∑k
i=1 A[i]. To make it

possible to support update in constant time, we maintain the array as two separate
components, V [1 . . B] and T [1 . . B], such that S[i] = V [i] + T [i]. The array V will
hold values of S that were valid at some point in the past, while more recent updates
are reflected only in T . We can use Dietz’s incremental rebuilding scheme [Die89] to
maintain every element of B relatively up-to-date: on the tth update, we set V [t mod
B] ← V [t mod B] + T [t mod B] and T [t mod B] ← 0. This scheme guarantees that
every element in T is affected by at most B updates, and thus is bounded in absolute
value by B · 2δ.

The key idea is to pack T in a machine word. We represent each T [i] by a range
of O(δ + lg n) bits from the word, with one zero bit of padding between elements.
Elements in T can also be negative; in this case, each value will be represented in the
standard two’s complement form on its corresponding range of bits. Packing T in a
word is possible as long as B = O

(
b

δ+lg b

)
. We can read and write an element of

T using a constant number of standard RAM operations (bitwise boolean operations
and shift operations).

To complete our solution, we need to implement update in constant time. Using
the packed representation, we can add a given value to all elements V [i], i ≥ k, in
constant time. Refer to Figure 8.1. First, we create a word with the value to be
added appearing in all positions corresponding to the elements of V that need to be
changed. We can compute this word using a multiplication by an appropriate binary
pattern. The result is then added to the packed representation of V ; all the needed
additions are performed in one step, using word-level parallelism. Because we are
representing negative quantities in two’s complement, additions may carry over, and
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V [4] 0 V [3] 0 V [2] 0 V [1] 0 V [0] old packed representation of V
00001 0 00001 0 00001 0 00001 0 00001 constant pattern
00001 0 00001 0 00001 0 00000 0 00000 shift right, then left by same amount

∆ argument given to update

∆ 0 ∆ 0 ∆ 0 00000 0 00000 multiply the last two values
V ′[4] ? V ′[3] ? V ′[2] ? V [1] ? V [0] add to the packed representation of V
11111 0 11111 0 11111 0 11111 0 11111 constant cleaning pattern
V ′[4] 0 V ′[3] 0 V ′[2] 0 V ′[1] 0 V ′[0] final value of V , obtained by bitwise and

Fig. 8.1. Performing update(2, ∆) at the word level. Here V has 5 elements, each 5 bits long.

set the padding bits between elements; we therefore force these buffer bits to zero
using a bitwise and with an appropriate constant mask.

8.1. Selecting in Small Arrays. To support select, we use the classic result
of Fredman and Willard [FW93] that forms the basis of their fusion-tree data struc-
ture. Their result has the following black-box functionality: for B = O(b1/5), we can
construct a data structure that can answer successor queries on a static array of B
integers in constant time. As demonstrated in [AMT99], the lookup tables used by
the original data structure can be eliminated, if we perform a second query in the
sketch representation of the array. The data structure can then be constructed in
O(B4) time.

As before, we break partial sums into the arrays V and T . We store a fusion
structure that can answer successor queries in V . Because the fusion structure is static,
we abandon the incremental rebuilding of V , in favor of periodic global rebuilding.
By the standard deamortization of global rebuilding [dBSvKO00], we can then obtain
worst-case bounds. Our strategy is to rebuild the data structure completely every
B4 operations: we set V [i] ← V [i] + T [i] and T [i] ← 0, for all i, and rebuild the
fusion structure over V . While servicing a select that doesn’t occur immediately
after a rebuild, the successor in V found by the fusion structure might not be the
appropriate answer to the select query, because of recent updates. We will describe
shortly how the correct answer can be computed by also examining the array T ; the
key realization is that the real successor must be close to the successor in V in terms
of their partial sums.

Central to our solution is the way we rebuild the data structure every n4 opera-
tions. We begin by splitting S into runs of elements satisfying S[i+1]−S[i] < B4 ·2δ;
recall that we must have S[i] < S[i + 1] for the select problem. We denote by
rep(i) the first element of the run containing i (the representative of the run); also
let len(i) be the length of the run containing i. Each of these arrays can be packed
in a word, because we already limited ourselves to B = O(b1/5). Finally, we let every
V [i]← V [rep(i)] and T [i]← S[i]−V [rep(i)]. Conveniently, T can still be packed in a
word. Indeed, the value stored in an element after a rebuild is at most B ·

(
B4 · 2δ

)
,

and it can subsequently change by less than B4 · 2δ. Therefore, it takes O(lg B + δ)
bits to represent an element of C, so we only need to impose the condition that
B = O(min{b/δ, b1/5}).

It remains to show how select(σ) can be answered. Let k denote the successor
in V identified by the fusion structure; we have V [k − 1] < σ ≤ V [k]. We know that
k is the representative of a run, because all elements of a run have equal values in V .
By construction, runs are separated by gaps of at least B4 ·2δ, which cannot be closed
by B4 updates. Thus, the answer to the query must be either an index in the run
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starting at k, or an index in the run ending at k−1, or exactly equal to k+len(k). We
can distinguish between these cases in constant time, using two calls to sum followed
by comparisons. If we identify the correct answer as exactly k + len(k), we are done.

Otherwise, assume by symmetry that the answer is an index in the run starting
at k. Because elements of a run have equal values of V , our task is to identify the
unique index i in the run satisfying T [i − 1] < σ − V [k] ≤ T [i]. Now we can employ
word-level parallelism to compare all elements in T with σ − V [k] in constant time.
This is similar to a problem discussed by Fredman and Willard [FW93], but we must
also handle negative quantities. The solution is to subtract σ − V [k] in parallel from
all elements in T ; if elements of T are oversized by 1 bit, we can avoid overflow. The
sign bits of every element then give the results of the comparisons. The answer to
the query can be found by summing up the sign bits corresponding to elements in
our run, which indicates how many elements in the run were smaller than σ − V [k].
Because these bits are separated by more than lg b zeroes, we can sum them up using
a multiplication with a constant pattern, as described in [FW93].

9. Reductions To Other Dynamic Graph Problems. It is relatively easy
to dress up dynamic connectivity as other dynamic graph problems, obtaining log-
arithmic lower bounds for these. Most problems on undirected graphs admit poly-
logarithmic solutions, so such lower bounds are interesting. The problems discussed
in this section are only meant as examples, and not as an exhaustive list of possible
reductions.

9.1. Connectivity of the Entire Graph. The problem is to maintain a dy-
namic graph along with the answer to the question “is the entire graph connected?”.
We obtain a lower bound of Ω(lg n) even for plane graphs, which implies the same
lower bound for counting connected components. The dynamic connectivity algo-
rithms mentioned in the introduction can also maintain the number of connected
components, so the same almost-tight upper bounds hold for this problem.

We use the same graph as in the dynamic connectivity lower bound, except that
we add a new vertex s which is connected to all nodes from the first column. The
updates in the connectivity problem translate to identical updates in our current
problem. The hard instance of connectivity asks queries between a vertex u on the
first column, and an arbitrary vertex v. To simulate these, we disconnect u from s,
connect v to s, and ask whether the entire graph is connected; after this, we undo
the two changes to the graph. If u and v were on distinct paths, u’s path will now be
disconnected from the rest of the graph. Otherwise, the edge (v, s) will reconnect the
path to the rest of the graph.

The graph we consider is a tree, so it is plane regardless of the embedding of the
vertices. During a query, if u and v are on the same path, we create an ephemeral
cycle. However, the (v, s) edge can simply be routed along the old path s → u  v,
so the graph remains plane.

9.2. Dynamic MSF. The problem is to maintain the cost of the minimum
spanning forest in a weighted dynamic graph. The problem can be solved in O(lg4 n)
time per operation [HdLT01]. In plane graphs, the problem admits a solution in time
O(lg n) [EIT+92]. We obtain a lower bound of Ω(lg n), which holds even for plane
graphs with unit weights. Our bound follows immediately from the previous bound.
If all edges have unit weight and the graph is connected, the weight of the MSF is
n− 1. If the graph is disconnected, the weight of the MSF is strictly smaller.
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9.3. Dynamic Planarity Testing. The problem is to maintain a dynamic
plane graph, and test whether inserting a given edge would destroy planarity. Actual
insertions always maintain planarity; an edge (u, v) is given along with an order inside
the set of edges adjacent to u and v. The problem can be solved in O(lg2 n) time per
operation [IPH93]. A lower bound of Ω(lg n/ lg lg n) appears in [FH98]. We obtain a
lower bound of Ω(lg n).

Because the graph from our lower bound proof is always a collection of disjoint
paths, it is plane under any embedding. Consider on the side the complete bipartite
graph K3,3, from which an edge (s, t) is removed. Without that edge, this annex
graph is also planar. To implement connectivity queries between two nodes u and v,
we first insert the edge (u, s) temporarily, and then query whether inserting the edge
(v, t) would destroy planarity. If u and v are on distinct paths, the graph created by
adding (u, s) and (v, t) is planar, and can be embedded for any relative order of these
two edges (the edges of K3,3 \ {(s, t)} can simply go around the two paths containing
u and v). If u and v are on the same path, we would be creating a subdivision
(graph expansion) of K3,3, so the graph would no longer be planar (by Kuratowski’s
theorem).

10. Open Problems. This paper provides powerful techniques for understand-
ing problems which have complexity around Θ(lg n). The chronogram technique had
already proven effective for problems with complexity Θ( lg n

lg lg n ). However, current
techniques seem helpless either below or above these thresholds. Below this regime,
we have integer search problems, such as priority queues. Looking at higher complexi-
ties, we find many important problems which seem to have polylogarithmic complexity
(such as range queries in higher dimensions) or even nΩ(1) complexity (dynamic prob-
lems on directed graphs). It is also an important complexity theoretic challenge to
obtain an ω(lg n) lower bound for a dynamic language membership problem.

It is also worth noting that our bounds do not bring a complete understanding
of the partial-sums problem when δ = o(b). First, we cannot prove a tight bound for
verify-sum. A bound of Ω(lg n/ lg b), for any δ, is implicit in [HR03], and can also
be reproved using our technique. Second, we do not have a good understanding of the
possible trade-offs. For select, this seems a thorny issue, because of the interaction
with the predecessor problem. Even for sum, we do not know what bounds are possible
in the range tu < tq. It is tempting to think that the right bound is tu(lg tq

tu
+ lg b

δ ) =
Θ(lg n), by symmetry with the case tu > tq. However, buffer trees [Arg03] give better
bounds for some choices of parameters, e.g. when b = Ω(lg1+ε n). This problem seems
to touch on a fundamental issue: a good lower bound apparently needs to argue that
the data structure has to recover a lot of information about the indices of updates, in
addition to the ∆ values.

It would be very interesting to obtain a logarithmic upper bound for dynamic
connectivity, matching our lower bound. It would also be interesting to determine the
complexity of decremental connectivity. For this problem, at least our trade-off lower
bound cannot hold, because [HK99] gave a solution with polylogarithmic updates and
constant query time.
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