Logarithmic Lower Bounds in the Cell-Probe Model

Mihai Pătraşcu

MIT CSAIL

This talk is based on two papers appearing in SODA’04 and STOC’04 by Mihai Pătraşcu and Erik Demaine.
Setup for the Problems

- only dynamic data structures (t_u vs t_q)
- cell-probe model
- dynamic language membership problems
 - $n =$ size of problem representation in bits
 - updates take input of $O(\lg n)$ bits
 - queries take no input, return boolean answer

Ways to cheat:
- large input/output can amplify hardness
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n
Setup for the Problems

- only dynamic data structures (t_u vs t_q)
- cell-probe model
- dynamic language membership problems
 - $n =$ size of problem representation in bits
 - updates take input of $O(\lg n)$ bits
 - queries take no input, return boolean answer

Ways to cheat:
- large input/output can amplify hardness
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n
only dynamic data structures \((t_u \text{ vs } t_q)\)

cell-probe model

dynamic language membership problems

- \(n\) = size of problem representation in bits
- updates take input of \(O(\lg n)\) bits
- queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "\(n\)" denotes some other parameter; the size of the problem in bits is sometimes exponential in this \(n\).
Setup for the Problems

- only dynamic data structures (t_u vs t_q)
- cell-probe model
- dynamic language membership problems
 - $n =$ size of problem representation in bits
 - updates take input of $O(\lg n)$ bits
 - queries take no input, return boolean answer

Ways to cheat:
- large input/output can amplify hardness
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n
only dynamic data structures \((t_u \text{ vs } t_q)\)

cell-probe model

dynamic language membership problems

- \(n\) = size of problem representation in bits
- updates take input of \(O(\lg n)\) bits
- queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "\(n\)" denotes some other parameter; the size of the problem in bits is sometimes exponential in this \(n\)
Setup for the Problems

- only dynamic data structures (t_u vs t_q)
- cell-probe model
- dynamic language membership problems
 - $n =$ size of problem representation in bits
 - updates take input of $O(\lg n)$ bits
 - queries take no input, return boolean answer

Ways to cheat:
- large input/output can amplify hardness
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n
Setup for the Problems

- only dynamic data structures \((t_u \text{ vs } t_q)\)
- cell-probe model
- dynamic language membership problems
 - \(n = \) size of problem representation in bits
 - updates take input of \(O(\lg n)\) bits
 - queries take no input, return boolean answer

Ways to cheat:
- large input/output can amplify hardness
- “\(n\)” denotes some other parameter; the size of the problem in bits is sometimes exponential in this \(n\)
only dynamic data structures \((t_u \ vs \ t_q)\)

cell-probe model

dynamic language membership problems

\[n = \text{size of problem representation in bits} \]

updates take input of \(O(\lg n)\) bits

queries take no input, return boolean answer

Ways to cheat:

large input/output can amplify hardness

“\(n\)” denotes some other parameter; the size of the problem in bits is sometimes exponential in this \(n\)
1989 Fredman and Saks: $\Omega\left(\frac{\log n}{\log \log n}\right)$ for partial sums problem
tradeoff: $t_q \log(t_u \log n) = \Omega(\log n)$

199* variations of [FS89] bound: Husfeldt and Rauhe, Ben-Amram and Galil, etc

1998 Alstrup, Husfeldt and Rauhe: marked ancestor problem
tradeoff: $t_q \log t_u = \Omega(\log n)$
still cannot improve bound on $\max\{t_u, t_q\}$

2004 Pătraşcu, Demaine: $\Omega(\log n)$
tradeoff: $t_q \log(\frac{t_u}{t_q}) = \Omega(\log n)$
AND symmetric: $t_u \log(\frac{t_q}{t_u}) = \Omega(\log n)$
The Partial-Sums Problem

Maintain an array $A[1..n]$ subject to:

- $\text{update}(k, \Delta)$ modify $A[k] \leftarrow A[k] + \Delta$.
- $\text{sum}(k)$ return the partial sum $\sum_{i=1}^{k} A[i]$.
- $\text{select}(\sigma)$ return i such that $\text{sum}(i) \leq \sigma < \text{sum}(i + 1)$.

Parameters:

- $n =$ size of the array
- $b =$ size of cell in bits; also size of $A[i]$
- $\delta =$ parameter Δ to update has this many bits

The optimal bound is: $\Theta\left(\frac{\lg n}{\lg(b/\delta)}\right)$
The Partial-Sums Problem

Maintain an array $A[1..n]$ subject to:

- $\text{update}(k, \Delta)$ modify $A[k] \leftarrow A[k] + \Delta$.
- $\text{sum}(k)$ return the partial sum $\sum_{i=1}^{k} A[i]$.
- $\text{select}(\sigma)$ return $i : \text{sum}(i) \leq \sigma < \text{sum}(i+1)$.

Parameters:

- $n = \text{size of the array}$
- $b = \text{size of cell in bits; also size of } A[i]$
- $\delta = \text{parameter } \Delta \text{ to update has this many bits}$

The optimal bound is: $\Theta\left(\frac{\lg n}{\lg(b/\delta)} \right)$
The Partial-Sums Problem

Maintain an array $A[1..n]$ subject to:

update(k, Δ) modify $A[k] \leftarrow A[k] + \Delta$.

sum(k) return the partial sum $\sum_{i=1}^{k} A[i]$.

select(σ) return $i : \text{sum}(i) \leq \sigma < \text{sum}(i + 1)$.

Parameters:

$n =$ size of the array
$b =$ size of cell in bits; also size of $A[i]$
$\delta =$ parameter Δ to update has this many bits

The optimal bound is: $\Theta\left(\frac{\lg n}{\lg (b/\delta)}\right)$
Will prove $\Omega(\lg n)$ for partial sums when $\delta = b$.

Ready...Steady...
Generate a random sequence of operations. Choose uniformly between:

- \texttt{update}(\text{random index}, \text{random } \Delta)
- \texttt{sum}(\text{random index})
Build a balanced tree with operations in the leaves
(considered in chronological order – “time tree”)
A cell probe is characterized by:

- time of last write to the cell
- time when cell is read
Cell probe counted as “information transfer” through LCA
Prove lower bounds on information transfer through each node
Then sum up
 - not double counting any cell probe
 - summing works for average case lower bounds
Cell probe counted as “information transfer” through LCA
Prove lower bounds on information transfer through each node
Then sum up

- not double counting any cell probe
- summing works for average case lower bounds
Cell probe counted as “information transfer” through LCA
Prove lower bounds on information transfer through each node
Then sum up

- not double counting any cell probe
- summing works for average case lower bounds
Cell probe counted as “information transfer” through LCA
Prove lower bounds on information transfer through each node
Then sum up
- not double counting any cell probe
- summing works for average case lower bounds
How to prove a lower bound on the information transfer?

Consider scenario:

- know operations from the past and right subtree
- don’t know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree
How to prove a lower bound on the information transfer? Consider scenario:

- know operations from the past and right subtree
- don’t know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree
How to prove a lower bound on the information transfer?
Consider scenario:

- know operations from the past and right subtree
- don’t know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree
How to prove a lower bound on the information transfer? Consider scenario:

- know operations from the past and right subtree
- don’t know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree
Claim: can simulate data structure for time in right subtree

To simulate read to a cell written at time t_u:

- t_u in “past” \Rightarrow have complete information about past
- t_u in left subtree \Rightarrow address and contests in information transfer list
- t_u in right subtree \Rightarrow already simulated the write
Claim: can simulate data structure for time in right subtree
To simulate read to a cell written at time t_u:

- t_u in “past” \Rightarrow have complete information about past
- t_u in left subtree \Rightarrow address and contests in information transfer list
- t_u in right subtree \Rightarrow already simulated the write

Mihai Pătraşcu
Logarithmic Lower Bounds in the Cell-Probe Model
Claim: can simulate data structure for time in right subtree

To simulate read to a cell written at time t_u:

- t_u in “past” \Rightarrow have complete information about past
- t_u in left subtree \Rightarrow address and contests in information transfer list
- t_u in right subtree \Rightarrow already simulated the write
Claim: can simulate data structure for time in right subtree

To simulate read to a cell written at time t_u:

$\begin{align*}
t_u \text{ in "past" } & \implies \text{ have complete information about past} \\
\text{in left subtree } & \implies \text{ address and contests in information} \\
\text{transfer list} \\
t_u \text{ in right subtree } & \implies \text{ already simulated the write}
\end{align*}$
Claim: can simulate data structure for time in right subtree

To simulate read to a cell written at time t_u:

t_u in “past” \Rightarrow have complete information about past

t_u in left subtree \Rightarrow address and contests in information transfer list

t_u in right subtree \Rightarrow already simulated the write
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear **interleave** between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear **interleave** between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear **interleave** between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
Can simulate data structure for time interval in right subtree
⇒ can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree
⇒ query answers encode a linear amount of information about left subtree
⇒ information transfer is linear
⇒ summing over all nodes: $\Omega(\lg n)$ per leaf (operation)
New Problem: Dynamic Connectivity

Most elementary dynamic graph problem. Maintain a dynamic graph on n vertices under:

- `insert(u, v)` insert an edge (u, v) into the graph.
- `delete(u, v)` delete the edge (u, v) from the graph.
- `connected(u, v)` u, v in the same connected component?

- partial sums was not dynamic language membership (queries had nonbinary answers)
- dynamic connectivity can be made expressed as such
New Problem: Dynamic Connectivity

Most elementary dynamic graph problem. Maintain a dynamic graph on n vertices under:

- $\text{insert}(u, v)$ insert an edge (u, v) into the graph.
- $\text{delete}(u, v)$ delete the edge (u, v) from the graph.
- $\text{connected}(u, v)$ u, v in the same connected component?

- partial sums was not dynamic language membership (queries had nonbinary answers)
- dynamic connectivity can be made expressed as such
Results for Dynamic Connectivity

Thorup \(O(\lg n (\lg \lg n)^3) \) updates, \(O(\frac{\lg n}{\lg \lg \lg n}) \) queries

Holm et al \(O(\lg^2 n) \) updates, \(O(\frac{\lg n}{\lg \lg n}) \) queries

Sleator, Tarjan \(O(\lg n) \) for trees

Eppstein et al \(O(\lg n) \) for plane graphs

several \(\Omega(\lg n / \lg \lg n) \)

new \(\Omega(\lg n) \)

- holds for paths (thus, also for trees, plane graphs)
- tradeoff matched for trees (for \(t_u > t_q \))
- Thorup and Holm et al are on tradeoff curve
Lower bound for dynamic connectivity – setup

\[\sqrt{n} \]

\[\pi \]

\[\sqrt{\pi} \]

\[\sqrt{n} \]

\[\approx \]

graph \approx \text{array of } \sqrt{n} \text{ elements in permutation group } S_{\sqrt{n}}

update \approx \text{change a position of the array}

delete \sqrt{n} \text{ edges, insert } \sqrt{n} \text{ edges}

query \approx \text{find a partial sum}

Hmmm... Really?
Lower bound for dynamic connectivity – setup

\[\sqrt{n} \]

\[
\begin{align*}
\pi_1 & \quad \pi_2 & \quad \cdots & \quad \pi_{\sqrt{n}} \\
\end{align*}
\]

- **graph** ≈ array of \(\sqrt{n} \) elements in permutation group \(S_{\sqrt{n}} \)
- **update** ≈ change a position of the array
 - delete \(\sqrt{n} \) edges, insert \(\sqrt{n} \) edges
- **query** ≈ find a partial sum

Hmmm... Really?
\[\sqrt{n} \]

\[\pi_1 \quad \pi_2 \quad \cdots \quad \pi_{\sqrt{n}} \]

- **graph** \(\approx \) array of \(\sqrt{n} \) elements in permutation group \(S_{\sqrt{n}} \)
- **update** \(\approx \) change a position of the array
 - delete \(\sqrt{n} \) edges, insert \(\sqrt{n} \) edges
- **query** \(\approx \) find a partial sum

Hmmm... Really?
Lower bound for dynamic connectivity – setup

\[\sqrt{n} \]

\[\pi \]

\[\pi_1 \]
\[\pi_2 \]
\[\pi_{\sqrt{n}} \]

Hmmm... Really?

- **graph** \(\approx \text{array of } \sqrt{n} \text{ elements in permutation group } S_{\sqrt{n}} \)
- **update** \(\approx \text{change a position of the array} \)
 - delete \(\sqrt{n} \text{ edges}, \text{insert } \sqrt{n} \text{ edges} \)
- **query** \(\approx \text{find a partial sum} \)
Lower bound for dynamic connectivity – setup

\[\sqrt{n} \]

Actually, a query can only verify a partial sum through \(\sqrt{n} \) connectivity queries

The Partial-Sums Problem with Verify

Maintain an array \(A[1..n] \) subject to:

- \(\text{update}(k, x) \): modify \(A[k] \leftarrow x \).
- \(\text{verify}(k, x) \): test whether \(\sum_{i=1}^{k} A[i] = x \).
Lower bound for dynamic connectivity – setup

\[\sqrt{n} \]

Actually, a query can only verify a partial sum through \(\sqrt{n} \) connectivity queries

The Partial-Sums Problem with Verify

Maintain an array \(A[1..n] \) subject to:

- **update** \((k, x)\) modify \(A[k] \leftarrow x \).
- **verify** \((k, x)\) test whether \(\sum_{i=1}^{k} A[i] = x \).
Coping with boolean queries

Problem: Entropy of query answers is very low (one bit)

Idea:

- construct hard sequence, where all queries return true
- there is a unique x for which $\text{verify}(k, x)$ returns true
- information is in the parameter x, not the answer
- information is given to the algorithm for verification (not produced by the algorithm)
know everything that happened in the past
• don’t know updates from left subtree
• don’t know parameter for queries from right subtree

Strive to recover parameters for queries
knowing that answers are always true
know everything that happened in the past

don’t know updates from left subtree

don’t know parameter for queries from right subtree

Strive to recover parameters for queries knowing that answers are always true
know everything that happened in the past
don’t know updates from left subtree
don’t know parameter for queries from right subtree

Strive to recover parameters for queries knowing that answers are always true
know everything that happened in the past
don’t know updates from left subtree
don’t know parameter for queries from right subtree

Strive to recover parameters for queries
knowing that answers are always true
Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:
- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn’t quite work!
Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:
- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn’t quite work!
Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:
- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn’t quite work!
What is needed for correct decoding?

Trouble with previous scheme:

- say correct query is \(\text{verify}(k, x) \)
- when we simulate \(\text{verify}(k, x') \) it reads cell \(A \)
- \(A \) is written in left subtree, but not read by \(\text{verify}(k, x) \)
- hence \(A \) is not in our list of probed cells
- while simulating \(\text{verify}(k, x') \) we think \(A \) has an old value
- with incorrect simulation, \(\text{verify}(k, x') \) might return true!

Alternative view: covert information channel
The fact that some cell was not modified is information!
What is needed for correct decoding?

 Trouble with previous scheme:

 1. say correct query is \texttt{verify}(k, x)
 2. when we simulate \texttt{verify}(k, x') it reads cell \texttt{A}
 3. \texttt{A} is written in left subtree, but not read by \texttt{verify}(k, x)
 4. hence \texttt{A} is not in our list of probed cells
 5. while simulating \texttt{verify}(k, x') we think \texttt{A} has an old value
 6. with incorrect simulation, \texttt{verify}(k, x') might return true!

Alternative view: covert information channel
The fact that some cell was not modified is information!
What is needed for correct decoding?

Trouble with previous scheme:

- say correct query is \(\text{verify}(k, x) \)
- when we simulate \(\text{verify}(k, x') \) it reads cell \(A \)
- \(A \) is written in left subtree, but not read by \(\text{verify}(k, x) \)
- hence \(A \) is not in our list of probed cells
- while simulating \(\text{verify}(k, x') \) we think \(A \) has an old value
- with incorrect simulation, \(\text{verify}(k, x') \) might return true!

Alternative view: covert information channel
The fact that some cell was not modified is information!
What is needed for correct decoding?

Trouble with previous scheme:

- say correct query is $\text{verify}(k, x)$
- when we simulate $\text{verify}(k, x')$ it reads cell A
- A is written in left subtree, but not read by $\text{verify}(k, x)$
- hence A is not in our list of probed cells
- while simulating $\text{verify}(k, x')$ we think A has an old value
- with incorrect simulation, $\text{verify}(k, x')$ might return true!

Alternative view: covert information channel
The fact that some cell was not modified is information!
What is needed for correct decoding?

Trouble with previous scheme:

- say correct query is \(\text{verify}(k, x) \)
- when we simulate \(\text{verify}(k, x') \) it reads cell \(A \)
- \(A \) is written in left subtree, but not read by \(\text{verify}(k, x) \)
- hence \(A \) is not in our list of probed cells
- while simulating \(\text{verify}(k, x') \) we think \(A \) has an old value
- with incorrect simulation, \(\text{verify}(k, x') \) might return true!

Alternative view: covert information channel
The fact that some cell was not modified is information!
The final encoding

\[W = \text{cells written in left subtree} \]
\[R = \text{cells read in right subtree by the correct queries} \]

Encoding contains:
- complete information for \(W \cap R \)
- separator for \(W \setminus R \) and \(R \setminus W \)

This suffices for correct simulation:
- cell accessed from \(W \cap R \) – have complete information
- cell accessed from \(R \)'s side of separator
 – know it was not modified in left subtree
- cell accessed from \(W \)'s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

\[W = \text{cells written in left subtree} \]
\[R = \text{cells read in right subtree by the correct queries} \]

Encoding contains:
- complete information for \(W \cap R \)
- separator for \(W \setminus R \) and \(R \setminus W \)

This suffices for correct simulation:
- cell accessed from \(W \cap R \) – have complete information
- cell accessed from \(R \)'s side of separator
 – know it was not modified in left subtree
- cell accessed from \(W \)'s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

\[W = \text{cells written in left subtree} \]
\[R = \text{cells read in right subtree by the correct queries} \]

Encoding contains:

- complete information for \(W \cap R \)
- separator for \(W \setminus R \) and \(R \setminus W \)

This suffices for correct simulation:

- cell accessed from \(W \cap R \) – have complete information
- cell accessed from \(R \)'s side of separator
 – know it was not modified in left subtree
- cell accessed from \(W \)'s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

$W = \text{cells written in left subtree}$

$R = \text{cells read in right subtree by the correct queries}$

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ – have complete information
- cell accessed from R’s side of separator
 – know it was not modified in left subtree
- cell accessed from W’s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

\[W = \text{cells written in left subtree} \]
\[R = \text{cells read in right subtree by the correct queries} \]

Encoding contains:
- complete information for \(W \cap R \)
- separator for \(W \setminus R \) and \(R \setminus W \)

This suffices for correct simulation:
- cell accessed from \(W \cap R \) – have complete information
- cell accessed from \(R \)'s side of separator
 – know it was not modified in left subtree
- cell accessed from \(W \)'s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

\[W = \text{cells written in left subtree} \]
\[R = \text{cells read in right subtree by the correct queries} \]

Encoding contains:

- complete information for \(W \cap R \)
- separator for \(W \setminus R \) and \(R \setminus W \)

This suffices for correct simulation:

- cell accessed from \(W \cap R \) – have complete information
- cell accessed from \(R \)'s side of separator
 – know it was not modified in left subtree
- cell accessed from \(W \)'s side of separator
 – kill simulation thread; this cannot be the correct query
The final encoding

$W = \text{cells written in left subtree}$

$R = \text{cells read in right subtree by the correct queries}$

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ – have complete information
- cell accessed from R’s side of separator
 – know it was not modified in left subtree
- cell accessed from W’s side of separator
 – kill simulation thread; this cannot be the correct query
Other Stuff in the Papers

- handling higher word size b: nontrivial idea, somewhat similar to the round elimination lemma
- details: tradeoffs, randomized/nondeterministic lower bounds etc.
- reductions to other dynamic graph problems
- tight upper bound for partial sums
Questions related to dynamic connectivity:

- find $O(\lg n)$ upper bound
- optimal bound for decremental connectivity, grid graphs?
- upper bounds in external memory

General questions:

- can we go beyond $\Omega(\lg n)$?
 - long record of log barriers (\mathbb{P} vs \mathbb{L}, circuit depth)
 - some progress: $\Omega \left(\left(\frac{\lg n}{\lg \lg n} \right)^2 \right)$ in bit-probe model
- understand “reverse tradeoffs”: $t_q > t_u$ (nontrivial!)
Future Research

Questions related to dynamic connectivity:

- find $O(lg n)$ upper bound
- optimal bound for decremental connectivity, grid graphs?
- upper bounds in external memory

General questions:

- can we go beyond $\Omega(lg n)$?
 - long record of log barriers (\mathbb{P} vs \mathbb{L}, circuit depth)
 - some progress: $\Omega \left(\left(\frac{lg n}{lg lg n} \right)^2 \right)$ in bit-probe model
- understand “reverse tradeoffs”: $t_q > t_u$ (nontrivial!)
Thank you!