Logarithmic Lower Bounds in the Cell-Probe Model

Mihai Pătraşcu

MIT CSAIL

This talk is based on two papers appearing in SODA'04 and STOC'04 by Mihai Pătraşcu and Erik Demaine.

A 3 >

• only dynamic data structures $(t_u \text{ vs } t_q)$

cell-probe model

dynamic language membership problems

- n = size of problem representation in bits
- updates take input of O(lg n) bits
- queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness.
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n

(日) (四) (三) (三)

• only dynamic data structures $(t_u \text{ vs } t_q)$

cell-probe model

- dynamic language membership problems
 - n = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer
 - Ways to cheat:
 - large input/output can amplify hardness.
 - "//" denotes some other parameter; the size of the problem in bits is semetimes exponential in this r.

- only dynamic data structures $(t_u vs t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "n" denotes some other parameter; the size of the problem in bits is sometimes exponential in this n

- only dynamic data structures $(t_u vs t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "*n*" denotes some other parameter; the size of the problem in bits is sometimes exponential in this *n*

- only dynamic data structures $(t_u \text{ vs } t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "*n*" denotes some other parameter; the size of the problem in bits is sometimes exponential in this *n*

▲母▶ ▲글▶ ▲글

- only dynamic data structures $(t_u \text{ vs } t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "*n*" denotes some other parameter; the size of the problem in bits is sometimes exponential in this *n*

- only dynamic data structures $(t_u \text{ vs } t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "*n*" denotes some other parameter; the size of the problem in bits is sometimes exponential in this *n*

- only dynamic data structures $(t_u \text{ vs } t_q)$
- cell-probe model
- dynamic language membership problems
 - *n* = size of problem representation in bits
 - updates take input of O(lg n) bits
 - queries take no input, return boolean answer

Ways to cheat:

- large input/output can amplify hardness
- "*n*" denotes some other parameter; the size of the problem in bits is sometimes exponential in this *n*

Lower Bounds Timeline

- 1989 Fredman and Saks: $\Omega(\frac{\lg n}{\lg \lg n})$ for partial sums problem tradeoff: $t_q \lg(t_u \lg n) = \Omega(\lg n)$
- 199* variations of [FS89] bound: Husfeldt and Rauhe, Ben-Amram and Galil, etc
- 1998 Alstrup, Husfeldt and Rauhe: marked ancestor problem tradeoff: $t_q \lg t_u = \Omega(\lg n)$ still cannot improve bound on max{ t_u, t_q }

2004 Pătraşcu, Demaine: $\Omega(\lg n)$ tradeoff: $t_q \lg(\frac{t_u}{t_q}) = \Omega(\lg n)$ AND symmetric: $t_u \lg(\frac{t_q}{t_u}) = \Omega(\lg n)$

(四) (三) (三)

The Partial-Sums Problem

Maintain an array A[1..n] subject to: update (k, Δ) modify $A[k] \leftarrow A[k] + \Delta$. sum(k) return the partial sum $\sum_{i=1}^{k} A[i]$. select (σ) return $i : sum(i) \le \sigma < sum(i+1)$.

Parameters:

n = size of the array

- b = size of cell in bits; also size of A[i]
- $\delta =$ parameter Δ to update has this many bits

The optimal bound is:

A (10) N (10)

The Partial-Sums Problem

Maintain an array A[1..n] subject to: update (k, Δ) modify $A[k] \leftarrow A[k] + \Delta$. sum(k) return the partial sum $\sum_{i=1}^{k} A[i]$. select (σ) return $i : sum(i) \le \sigma < sum(i+1)$.

Parameters:

- n = size of the array
- b = size of cell in bits; also size of A[i]
- $\delta =$ parameter Δ to update has this many bits

The optimal bound is

The Partial-Sums Problem

Maintain an array A[1..n] subject to: update (k, Δ) modify $A[k] \leftarrow A[k] + \Delta$. sum(k) return the partial sum $\sum_{i=1}^{k} A[i]$. select (σ) return $i : sum(i) \le \sigma < sum(i+1)$.

Parameters:

- n = size of the array
- b = size of cell in bits; also size of A[i]
- δ = parameter Δ to update has this many bits

The optimal bound is:

$$\Theta(\frac{\lg n}{\lg(b/\delta)})$$

Will prove $\Omega(\lg n)$ for partial sums when $\delta = b$.

Ready...Steady...

Mihai Pătraşcu Logarithmic Lower Bounds in the Cell-Probe Model

<ロ> <問> <同> <目> <同> <目> <目</p>

Generate a random sequence of operations. Choose uniformly between:

- update(random index, random Δ)
- sum(random index)

- 4 回 ト - 4 回 ト

Build a balanced tree with operations in the leaves (considered in chronological order – "time tree")

A cell probe is characterized by:

- time of last write to the cell
- time when cell is read

17 ▶

Cell probe counted as "information transfer" through LCA Prove lower bounds on information transfer through each node Then sum up

- not double counting any cell probe
- summing works for average case lower bounds

• = • •

< 🗇 🕨

Cell probe counted as "information transfer" through LCA Prove lower bounds on information transfer through each node Then sum up

- not double counting any cell probe
- summing works for average case lower bounds

< 🗇 🕨

• = •

Cell probe counted as "information transfer" through LCA Prove lower bounds on information transfer through each node Then sum up

- not double counting any cell probe
- summing works for average case lower bounds

< 17 →

Cell probe counted as "information transfer" through LCA Prove lower bounds on information transfer through each node Then sum up

- not double counting any cell probe
- summing works for average case lower bounds

- know operations from the past and right subtree
- don't know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree

- know operations from the past and right subtree
- don't know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree

- know operations from the past and right subtree
- don't know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree

- know operations from the past and right subtree
- don't know updates from left subtree
- given the addresses and contents for cells written in left subtree, read in right subtree

Claim: can simulate data structure for time in right subtree To simulate read to a cell written at time t_{i} :

- t_u in "past" \Rightarrow have complete information about past t_u in left subtree \Rightarrow address and contests in information transfer list
- t_u in right subtree \Rightarrow already simulated the write

Mihai Pătraşcu Logarithmic Lower Bounds in the Cell-Probe Model

Claim: can simulate data structure for time in right subtree To simulate read to a cell written at time t_u :

 t_u in "past" \Rightarrow have complete information about past t_u in left subtree \Rightarrow address and contests in information transfer list

 t_u in right subtree \Rightarrow already simulated the write

Claim: can simulate data structure for time in right subtree To simulate read to a cell written at time t_u :

t_u in "past" \Rightarrow have complete information about past

 t_u in left subtree \Rightarrow address and contests in information transfer list

 t_u in right subtree \Rightarrow already simulated the write

Claim: can simulate data structure for time in right subtree To simulate read to a cell written at time t_u :

- t_u in "past" \Rightarrow have complete information about past
- t_u in left subtree \Rightarrow address and contests in information transfer list

 t_u in right subtree \Rightarrow already simulated the write

Claim: can simulate data structure for time in right subtree To simulate read to a cell written at time t_u :

- t_u in "past" \Rightarrow have complete information about past
- t_u in left subtree \Rightarrow address and contests in information transfer list
- t_u in right subtree \Rightarrow already simulated the write

Can simulate data structure for time interval in right subtree

 \Rightarrow can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree

 \Rightarrow query answers encode a linear amount of information about left subtree

 \Rightarrow information transfer is linear

Can simulate data structure for time interval in right subtree \Rightarrow can recover answer to queries from right subtree

- Expected linear interleave between update indices in left subtree and query indices in right subtree
- \Rightarrow query answers encode a linear amount of information about left subtree
- \Rightarrow information transfer is linear
- \Rightarrow summing over all nodes: $\Omega(\lg n)$ per leaf (operation)

Can simulate data structure for time interval in right subtree \Rightarrow can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree

 \Rightarrow query answers encode a linear amount of information about left subtree

 \Rightarrow information transfer is linear

Can simulate data structure for time interval in right subtree \Rightarrow can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree

 \Rightarrow query answers encode a linear amount of information about left subtree

 \Rightarrow information transfer is linear

Can simulate data structure for time interval in right subtree \Rightarrow can recover answer to gueries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree

 \Rightarrow query answers encode a linear amount of information about left subtree

 \Rightarrow information transfer is linear

Can simulate data structure for time interval in right subtree

 \Rightarrow can recover answer to queries from right subtree

Expected linear interleave between update indices in left subtree and query indices in right subtree

 \Rightarrow query answers encode a linear amount of information about left subtree

- \Rightarrow information transfer is linear
- \Rightarrow summing over all nodes: $\Omega(\lg n)$ per leaf (operation)

New Problem: Dynamic Connectivity

Most elementary dynamic graph problem. Maintain a dynamic graph on *n* vertices under:

insert(u, v) insert an edge (u, v) into the graph. delete(u, v) delete the edge (u, v) from the graph. connected(u, v) u, v in the same connected component?

- partial sums was not dynamic language membership (queries had nonbinary answers)
- dynamic connectivity can be made expressed as such

A (10) N (10)

New Problem: Dynamic Connectivity

Most elementary dynamic graph problem. Maintain a dynamic graph on *n* vertices under:

insert(u, v) insert an edge (u, v) into the graph. delete(u, v) delete the edge (u, v) from the graph. connected(u, v) u, v in the same connected component?

- partial sums was not dynamic language membership (queries had nonbinary answers)
- dynamic connectivity can be made expressed as such

A (1) > A (1) > A

Results for Dynamic Connectivity

Thorup $O(\lg n(\lg \lg n)^3)$ updates, $O(\frac{\lg n}{\lg \lg \lg n})$ queries Holm et al $O(\lg^2 n)$ updates, $O(\frac{\lg n}{\lg \lg n})$ queries Sleator, Tarjan O(lg n) for trees Eppstein et al $O(\lg n)$ for plane graphs several $\Omega(\lg n / \lg \lg n)$ new $\Omega(\lg n)$

- holds for paths (thus, also for trees, plane graphs)
- tradeoff matched for trees (for $t_u > t_q$)
- Thorup and Holm et al are on tradeoff curve

- 20

graph \approx array of \sqrt{n} elements in permutation group $S_{\sqrt{n}}$

update \approx change a position of the array delete \sqrt{n} edges, insert \sqrt{n} edges query \approx find a partial sum

graph \approx array of \sqrt{n} elements in permutation group $S_{\sqrt{n}}$ update \approx change a position of the array delete \sqrt{n} edges, insert \sqrt{n} edges

query \approx find a partial sum

graph \approx array of \sqrt{n} elements in permutation group $S_{\sqrt{n}}$ update \approx change a position of the array delete \sqrt{n} edges, insert \sqrt{n} edges guery \approx find a partial sum

graph \approx array of \sqrt{n} elements in permutation group $S_{\sqrt{n}}$ update \approx change a position of the array delete \sqrt{n} edges, insert \sqrt{n} edges guery \approx find a partial sum

Actually, a query can only verify a partial sum through \sqrt{n} connectivity queries

The Partial-Sums Problem with Verify

Maintain an array A[1..n] subject to: update(k, x) modify $A[k] \leftarrow x$. verify(k, x) test whether $\sum_{i=1}^{k} A[i] = x$.

Actually, a query can only verify a partial sum through \sqrt{n} connectivity queries

The Partial-Sums Problem with Verify

Maintain an array A[1..n] subject to: update(k, x) modify $A[k] \leftarrow x$. verify(k, x) test whether $\sum_{i=1}^{k} A[i] = x$.

< 🗇 🕨

→ Ξ →

Problem: Entropy of query answers is very low (one bit)

Idea:

- construct hard sequence, where all queries return true
- there is a unique x for which verify(k, x) returns true
- information is in the parameter *x*, not the answer
- information is given to the algorithm for verification (not produced by the algorithm)

- know everything that happened in the past
- on't know updates from left subtree
- don't know parameter for queries from right subtree

- know everything that happened in the past
- don't know updates from left subtree
- don't know parameter for queries from right subtree

- know everything that happened in the past
- don't know updates from left subtree
- don't know parameter for queries from right subtree

- know everything that happened in the past
- don't know updates from left subtree
- don't know parameter for queries from right subtree

Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:

- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn't quite work!

Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:

- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn't quite work!

Encoding: cells (address and contents) written in left subtree that are read in right subtree by the correct queries

To decode:

- simulate all possible queries for right subtree
- find the parameter setting which returns true

Doesn't quite work!

Trouble with previous scheme:

- say correct query is verify(k, x)
- when we simulate verify(k, x') it reads cell A
- A is written in left subtree, but not read by verify(k, x)
- hence A is not in our list of probed cells
- while simulating verify(k, x') we think A has an old value
- with incorrect simulation, verify(k, x') might return true!

Alternative view: covert information channel The fact that some cell was not modified **is** information!

▲□→ ▲ 三→ ▲ 三

Trouble with previous scheme:

- say correct query is verify(k, x)
- when we simulate verify(k, x') it reads cell A
- A is written in left subtree, but not read by verify(k, x)
- hence A is not in our list of probed cells
- while simulating verify(k, x') we think A has an old value
- with incorrect simulation, verify(k, x') might return true!

Alternative view: covert information channel The fact that some cell was not modified is information!

A (10) > (10) > (10)

Trouble with previous scheme:

- say correct query is verify(k, x)
- when we simulate verify(k, x') it reads cell A
- A is written in left subtree, but not read by verify(k, x)
- hence A is not in our list of probed cells
- while simulating verify(k, x') we think A has an old value
- with incorrect simulation, verify(k, x') might return true!

Alternative view: covert information channel The fact that some cell was not modified **is** information!

A (10) > (10) > (10)

Trouble with previous scheme:

- say correct query is verify(k, x)
- when we simulate verify(k, x') it reads cell A
- A is written in left subtree, but not read by verify(k, x)
- hence A is not in our list of probed cells
- while simulating verify(k, x') we think A has an old value
- with incorrect simulation, verify(k, x') might return true!

Alternative view: covert information channel The fact that some cell was not modified **is** information!

Trouble with previous scheme:

- say correct query is verify(k, x)
- when we simulate verify(k, x') it reads cell A
- A is written in left subtree, but not read by verify(k, x)
- hence A is not in our list of probed cells
- while simulating verify(k, x') we think A has an old value
- with incorrect simulation, verify(k, x') might return true!

Alternative view: covert information channel The fact that some cell was not modified **is** information!

< 回 > () >

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator – know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

|御下 |注下 |注

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

• complete information for $W \cap R$

• separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator – know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

A (10) × (10) × (10)

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator
 know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

A (10) N (10) N (10) A (10)

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator
 know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

- 4 回 2 - 4 三 2 - 4 三

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator
 know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

A (10) N (10)

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator
 - know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

Image: A matrix and a matrix

- W = cells written in left subtree
- *R* = cells read in right subtree by the correct queries

Encoding contains:

- complete information for $W \cap R$
- separator for $W \setminus R$ and $R \setminus W$

This suffices for correct simulation:

- cell accessed from $W \cap R$ have complete information
- cell accessed from R's side of separator
 - know it was not modified in left subtree
- cell accessed from W's side of separator
 - kill simulation thread; this cannot be the correct query

Other Stuff in the Papers

- handling higher word size b: nontrivial idea, somewhat similar to the round elimination lemma
- details: tradeoffs, randomized/nondeterministic lower bounds etc.
- reductions to other dynamic graph problems
- tight upper bound for partial sums

Future Research

Questions related to dynamic connectivity:

- find O(lg n) upper bound
- optimal bound for decremental connectivity, grid graphs?
- upper bounds in external memory

General questions:

• can we go beyond $\Omega(\lg n)$?

long record of log barriers (**P** vs **L**, circuit depth) some progress: $\Omega\left(\left(\frac{\lg n}{\lg \lg n}\right)^2\right)$ in bit-probe model

• understand "reverse tradeoffs": $t_q > t_u$ (nontrivial!)

(ロ) (部) (注) (注)

Future Research

Questions related to dynamic connectivity:

- find O(lg n) upper bound
- optimal bound for decremental connectivity, grid graphs?
- upper bounds in external memory

General questions:

• can we go beyond Ω(lg n)?

long record of log barriers (**P** vs **L**, circuit depth) some progress: $\Omega\left(\left(\frac{\lg n}{\lg \lg n}\right)^2\right)$ in bit-probe model

• understand "reverse tradeoffs": $t_q > t_u$ (nontrivial!)

< ロト (同) (三) (三)

Thank you!

Mihai Pătraşcu Logarithmic Lower Bounds in the Cell-Probe Model

・ロト ・ 日 ・ ・ ヨ ト ・

3