
Faster Primal-Dual Algorithms for the
Economic Lot-Sizing Problem

Dan Stratila
RUTCOR and Rutgers Business School

Rutgers University

Mihai Pătraşcu
AT&T Research

ISMP XX
25 August 2009

Acknowledgment: Thomas Magnanti, Retsef Levi



25 August 2009 ISMP XX 2

Outline

1. Models:
a. The economic lot-sizing problem.
b. An important special case: the non-speculative condition.

2. Overview of previous results.

3. Review of “wave” primal-dual algorithm of Levi et al (2006).

4. Main result: a faster algorithm for the lot-sizing problem.

5. Conclusions:
a. Connection with basic algorithms problems. O(n)?
b. Wave primal-dual applicable to other inventory problems.
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Lot-Sizing Problem with Non-Speculative Condition
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Previous Results on Lot-Sizing

Early research:
• Introduced by Manne (’58), Wagner and Whitin (’58).
• Wagner and Whitin (’58) provide O(n2) for non-speculative case.
• Zabel (’64), Eppen et al (’69) obtain O(n2) for general case.
• Results on heuristics, to be more efficient than O(n2) in ’70s-’80s.

The O(n logn) algorithms:
• Federgruen and Tzur (’91), forward algorithm.
• Wagelmans et al (’92), backward algorithm, also relate to dual.
• Aggarwal and Park (’93), using Monge arrays, generalizations.
• These 3 algorithms run in O(n) for non-speculative case.

Non-algorithmic results:
• Krarup and Bilde (’77) show that above formulation is integral.
• Polyhedral results for harder versions, e.g. multi-item lot-sizing: Production Planning 

by Mixed Integer Programming, Pochet and Wolsey (’06).
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Primal-Dual Algorithms for Lot-Sizing

Levi et al (’06) :
• Obtain primal-dual algorithm for lot-sizing problem.
• Proves above formulation is integral as a consequence.
• Primal-dual 2-approxim. algorithms for joint replenishment problem (JRP), and for 

multistage assembly problem.
• Algorithms clearly polynomial, authors do not estimate running times.

Related primal-dual algorithms for facility location:
• Primal-dual algorithms of Levi et al for inventory is rooted in primal-dual 

approximation algorithm for facility location of Jain and Vazirani (’01).
• Thorup (’03) obtains 1.62 algorithm approximation algorithm for facility location with 

running time Õ(m+n) based on Jain and Vazirani (’01) and Jain et al (’03).

Differences:
• Algorithms for facility location and lot-sizing are different.
• Input size is different: lot-sizing represented as facility would have O(n2) edges.
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Wave Primal-Dual Algorithm for Lot-Sizing
(Modified, Levi et al ’06)
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Wave Primal-Dual Algorithm for Lot-Sizing

K1 K2

K3
K4

c1 c2

c3
c4

v1 v2 v3 v4
h1 h2 h3



25 August 2009 ISMP XX 13

K1 K2

K3
K4

c1 c2

c3
c4

v1 v2 v3 v4
h1 h2 h3

General
• Start with (v,w)=0 and (x,y)=0
• Iteratively increase dual solution,
increasing dual objective

• At the same time, construct primal
solution

• When dual objective cannot be
increased, primal is feasible

• Post-processing step, O(n)

More details
• To increase dual objective, we
increase budgets vt

• At some point, some of the constraints
become tight

• To keep increasing vt we begin
increasing wst for those constraints

• At some point some of the constraints
become tight

• Open s  in the primal
• Freeze all corresponding vt
• Demands t  with wst>0
assigned to order s

Remaining free choice—order in which 
vt are increased
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The Wave

• start increasing v4
• start increasing w44
• start increasing v3
• order 4 opens, budget 4 freezes

demand 4 assigned to order 4
• start increasing w33
• start increasing v2
• start increasing w22 and w32
• order 2 opens, budgets 2 & 3 freeze

demands 2 & 3 assigned to order 2
• start increasing v1
• start increasing w11
• order 1 opens, budgets 1 freezes,

demand 1 assigned to order 1

Types of events:
• Demand point becomes active
• Budget begins contributing to Kt
• Order point becomes tight & assoc.
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Wave Time and Position

Wave time τWave position W
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Events:
• Demand point becomes active
• Budget begins contributing to Kt
• Order point becomes tight & assoc.

Algorithms for digital computers:
• Goal at end of execution to obtain
primal y and dual v.

• Execute (3) from event to event, 
instead of continuously

Step (3):
• Compute wave position W* when 
next order point becomes tight.

• Update W:=W*, then update v and w.
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One iteration of (3):
• For each unfrozen order point t,

compute position Wt when it becomes tight,
assuming no other unfrozen order points
become tight in the meantime.
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One iteration of (3):
• For each unfrozen order point t,

compute position Wt when it becomes tight,
assuming no other unfrozen order points
become tight in the meantime.

• Compute W3

+∞+∞
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One iteration of (3):
• For each unfrozen order point t,

compute position Wt when it becomes tight,
assuming no other unfrozen order points
become tight in the meantime.

• Compute W3
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One iteration of (3):
• For each unfrozen order point t,

compute position Wt when it becomes tight,
assuming no other unfrozen order points
become tight in the meantime.

• Set W' = min{ Wt : t is unfrozen }

Lemma: W' = W*, the position when the
next order point becomes tight. Wt that 
yields the minimum corresponds to the
next order point that becomes tight.

Running time O(n3):
• One computation of Wt takes O(n).
• O(n) computations before an order point

becomes tight.
• At most O(n) order points become tight.
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One iteration of (3):
• For each unfrozen order point t,

compute position Wt when it becomes tight,
assuming no other unfrozen order points
become tight in the meantime.

• Set W' = min{ Wt : t is unfrozen }

Lemma: W' = W*, the position when the
next order point becomes tight. Wt that 
yields the minimum corresponds to the
next order point that becomes tight.

Running time O(n2):
• With preprocessing Wt takes O(1) amortized.
• O(n) computations before an order point

becomes tight.
• At most O(n) order points become tight.
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Events:
• Demand point becomes active
• Budget begins contributing to Kt
• Order point becomes tight & assoc

Algorithms for digital computers:
• Goal at end of execution to obtain
primal y and dual v.

• We will have “tentative” executions
of (3), which may be incorrect.

• When we realize an execution is 
incorrect, we go back and delete it.

• Algorithm terminates => remaining
executions guaranteed correct.
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Additional data structure:
• Stack D = (ok, ok-1, …, o1) of 

provisionally tight order points.
• Stack initially empty, at end of loop (2)

will contain the correct order points.

Algorithm:
1) Start with D=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack D, and go to 2.1. 

2.3) Add t to stack D, set t:=t-1.
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Additional data structure:
• Stack D = (ok, ok-1, …, o1) of 

provisionally tight order points.
• Stack initially empty, at end of loop (2)

will contain the correct order points.

Algorithm:
1) Start with D=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack D, and go to 2.1. 

2.3) Add t to stack D, set t:=t-1.

+∞+∞
t=3
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Stack data structure:
• Stack D = (ok, ok-1, …, o1) of 

provisionally tight order points.
• Stack initially empty, at end of loop (2)

will contain the correct order points.

Algorithm:
1) Start with D=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack D, and go to 2.1. 

2.3) Add t to stack D, set t:=t-1.

Add information to stack:
• E = ((ok, sk, ek), (ok-1, sk-1, ek-1), (o1,s1,e1) of 

provisionally tight order points.
• sk, …, ek are the demand points that were

frozen when ok become tight.

s2 e2 s3=e3
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s2 e2 s3=e3

Add further information to stack:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• wk is the wave position when ok became tight.
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Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack E, and go to 2.1. 

2.3) Add t to stack E, set t:=t-1.

Stack data structure:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

Algorithm details:
• Once the wave position when t becomes tight 

is computed, inserting the record into the stack 
takes O(1).

• Deleting a record from the stack also takes O(1).
• Every record is deleted at most once, and we

make at most n insertions => at most O(n)
deletions / computations / insertions.

Remains to do computation, in O(?)
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Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack E, and go to 2.1. 

2.3) Add t to stack E, set t:=t-1.

Stack data structure:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

Computation:
• Define new set of numbers a1, …, an with

at = ct + htn.
• Only frozen demand points in segments sj,…,ej

with at ≤ h1n - wj contribute to make order point 
t tight.

• All unfrozen demand points in t, …, ok contribute.
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Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute time when order point t
becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack E, and go to 2.1. 

2.3) Add t to stack E, set t:=t-1.

Stack data structure:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

w4

Computation:
• Define new set of numbers a1, …, an with

at = ct + htn.
• Only frozen demand points in segments sj,…,ej

with at ≤ h1n - wj contribute to make order point 
t tight.

• All unfrozen demand points in t, …, ok contribute.

Key Lemma. Given min{ j : at ≤ h1n – wj }, we can
determine in O(1) if order point t becomes tight 
before ok. If t becomes tight after ok, we can compute 
in O(1) the wave position when t becomes tight.
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Key Lemma. Given j* = min{ j : at ≤ h1n – wj }, we
Can determine in O(1) if order point t becomes tight 
before ok. If t becomes tight after ok, we can compute 
in O(1) the wave position when t becomes tight.

Proof Idea. Can determine and perform the 
computation by inspecting each demand point in
t, …, ok, and each record in k, …, j*.

This would take O(n).

Can perform in O(1), by computing the running 
sums d1, d1+d2, …, d1+d2+…+dn at start of algorithm, 
as well as certain running sums in the stack.

Stack becomes E = ((ok, sk, ek, wk, Rk), 
(ok-1, sk-1, ek-1, wk, Rk-1), …,  (o1,s1,e1,w1,R1)).
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Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute j* = min{ j : at ≤ h1n – wj }.
2.2) Compute time when order point t

becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack E, and go to 2.1. 

2.3) Add t to stack E, set t:=t-1.

Stack data structure:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

Key Lemma. Given j* = min{ j : at ≤ h1n – wj }, we
Can determine in O(1) if order point t becomes tight 
before ok. If t becomes tight after ok, we can compute 
in O(1) the wave position when t becomes tight.

Running time. 
O(n) iterations.

Find j* using binary search in O(log(n))
Do the remaining computations in O(1)

Total: O(n log n)

Running time when non-speculative. 
O(n) iterations.

Find j* in O(1), since a1, …, an are monotonic.
Do the remaining computations in O(1)

Total: O(n)

Time for Data Structures

Matches best times so far



25 August 2009 ISMP XX 36

Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute j* = min{ j : at ≤ h1n – wj }.
2.2) Compute time when order point t
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1, …, t-1.
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• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

Key Lemma. Given j* = min{ j : at ≤ h1n – wj }, we
Can determine in O(1) if order point t becomes tight 
before ok. If t becomes tight after ok, we can compute 
in O(1) the wave position when t becomes tight.

Time for Data Structures

Improved running time. 
Machine: Word RAM

1) Sort a1, …, an in O(n log log n) before the start
of the algorithm.

2) Create additional stack E’ that contains only
n/log(n) entries out of the stack E. It divides E into
buckets of size log(n).

3) Whenever a record is inserted into E’, look up
the position of wk in a1, …, ak and place it in the
record. E’ = ((ok, sk, ek, wk, pk)).

4) When we have to find out j*, first look up in E’
using predecessor search, then look up in bucket
in E using binary search.
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Algorithm:
1) Start with E=(), t=n.
2) While t≥1:

2.1) Compute j* = min{ j : at ≤ h1n – wj }.
2.2) Compute time when order point t

becomes tight, taking into account
periods t, …, n but ignoring periods 
1, …, t-1.

2.2) If t becomes tight before ok, 
delete ok from stack E, and go to 2.1. 

2.3) Add t to stack E, set t:=t-1.

Stack data structure:
• E = ((ok, sk, ek, wk), (ok-1, sk-1, ek-1, wk), …, 
(o1,s1,e1,w1)) of provisionally tight order points.

• sk, …, ek are the demand points that were
frozen when ok became tight.

• wk is the wave position when ok became tight.

Time for Data Structures

Improved running time. 
Machine: Word RAM

1) Sort a1, …, an in O(n log log n) before the start
of the algorithm.

2) Create additional stack E’ that contains only
n/log(n) entries out of the stack E. It divides E into
buckets of size log(n).

3) Whenever a record is inserted into E’, look up
the position of wk in a1, …, ak and place it in the
record. E’ = ((ok, sk, ek, wk, pk)).

4) When we have to find out j*, first look up in E’
using predecessor search, then look up in bucket
in E using binary search.

Running time:
1) O(n log log n).
3) Each addition takes O(log(n)), there are 

O(n/log(n)) additions, for a total of O(n). [*]
4) Predecessor search takes O(log log n),

O(n) lookups for a total of O(n log log n).
4.1) Bucket size is O(log n), lookup takes 

O(log log n), total O(n log log n)Total: O(n log log n)
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Conclusions

1. We obtain a O(n log log n) algorithm for lot-sizing, improving upon the
O(n log n) results from 1991–1993.

2. We connect the lot-sizing problem to basic computing primitives—sorting 
and predecessor search.
a. Opportunity for further improvement in running time. 
b. Opportunity for other insights.

3. Wave primal-dual algorithms run on other inventory problems (JRP, multi-
stage assembly). 

4. O(n+sort(n))? O(n)?


