Faster Primal-Dual Algorithms for the Economic Lot-Sizing Problem

Dan Stratila
RUTCOR and Rutgers Business School
Rutgers University

Mihai Pătraşcu
AT&T Research

Acknowledgment: Thomas Magnanti, Retsef Levi

ISMP XX
25 August 2009
Outline

1. Models:
 a. The economic lot-sizing problem.
 b. An important special case: the non-speculative condition.

2. Overview of previous results.

5. Conclusions:
 a. Connection with basic algorithms problems. O(n)?
 b. Wave primal-dual applicable to other inventory problems.
The Economic Lot-Sizing Problem

\[
h_{sl} := c_s + \sum_{i=s}^{t-1} h_i
\]

\[
\begin{align*}
\min & \quad \sum_{t=1}^{n} K_t y_t + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st} d_t x_{st} \\
\text{s.t.} & \quad \sum_{s=1}^{t} x_{st} = 1, \quad 1 \leq t \leq n, \\
& \quad 0 \leq x_{st} \leq y_s, \quad 1 \leq s \leq t \leq n.
\end{align*}
\]
An Important Special Case

Non-speculative condition:

\[c_3 \leq c_2 + h_2 \]
An Important Special Case

Non-speculative condition:

\[c_3 \not\leq c_2 + h_2 \]
Lot-Sizing Problem with Non-Speculative Condition

\[
\begin{align*}
K_1 & \quad \quad c_1 \quad \quad d_1 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
K_2 & \quad \quad c_2 \quad \quad d_2 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
K_3 & \quad \quad c_3 \quad \quad d_3 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
K_4 & \quad \quad c_4 \quad \quad d_4
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_{t=1}^{n} K_t y_t + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st} d_t x_{st} \\
\text{s.t.} & \quad \sum_{s=1}^{t} x_{st} = 1, \quad 1 \leq t \leq n, \\
& \quad 0 \leq x_{st} \leq y_{s}, \quad 1 \leq s \leq t \leq n.
\end{align*}
\]

\[
c_{t+1} \leq c_t + h_t \\
\text{for } t = 1, \ldots, n - 1
\]
Outline

1. Models:
 a. The economic lot-sizing problem.
 b. An important special case: the non-speculative condition.

2. Overview of previous results.

5. Conclusions:
 a. Connection with basic algorithms problems. O(n)?
 b. Wave primal-dual applicable to other inventory problems.
Previous Results on Lot-Sizing

Early research:
- Introduced by Manne ('58), Wagner and Whitin ('58).
- Wagner and Whitin ('58) provide $O(n^2)$ for non-speculative case.
- Zabel ('64), Eppen et al ('69) obtain $O(n^2)$ for general case.
- Results on heuristics, to be more efficient than $O(n^2)$ in '70s-'80s.

The $O(n \log n)$ algorithms:
- Federgruen and Tzur ('91), forward algorithm.
- Wagelmans et al ('92), backward algorithm, also relate to dual.
- Aggarwal and Park ('93), using Monge arrays, generalizations.
- These 3 algorithms run in $O(n)$ for non-speculative case.

Non-algorithmic results:
- Krarup and Bilde ('77) show that above formulation is integral.
- Polyhedral results for harder versions, e.g. multi-item lot-sizing: Production Planning by Mixed Integer Programming, Pochet and Wolsey ('06).
Primal-Dual Algorithms for Lot-Sizing

Levi et al (’06):
• Obtain primal-dual algorithm for lot-sizing problem.
• Proves above formulation is integral as a consequence.
• Primal-dual 2-approxim. algorithms for joint replenishment problem (JRP), and for multistage assembly problem.
• Algorithms clearly polynomial, authors do not estimate running times.

Related primal-dual algorithms for facility location:
• Primal-dual algorithms of Levi et al for inventory is rooted in primal-dual approximation algorithm for facility location of Jain and Vazirani (’01).
• Thorup (’03) obtains 1.62 algorithm approximation algorithm for facility location with running time $\mathcal{O}(m+n)$ based on Jain and Vazirani (’01) and Jain et al (’03).

Differences:
• Algorithms for facility location and lot-sizing are different.
• Input size is different: lot-sizing represented as facility would have $O(n^2)$ edges.
Outline

1. Models:
 a. The economic lot-sizing problem.
 b. An important special case: the non-speculative condition.

2. Overview of previous results.

5. Conclusions:
 a. Connection with basic algorithms problems. $O(n)$?
 b. Wave primal-dual applicable to other inventory problems.
Wave Primal-Dual Algorithm for Lot-Sizing

(Modified, Levi et al ’06)

Primal LP

\[
\begin{align*}
\text{min} & \quad \sum_{s=1}^{n} K_s y_s + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st} d_t x_{st} \\
\text{s.t.} & \quad \sum_{s=1}^{t} x_{st} = 1, \quad 1 \leq t \leq n, \\
& \quad 0 \leq x_{st} \leq y_s, \quad 1 \leq s \leq t \leq n.
\end{align*}
\]
Wave Primal-Dual Algorithm for Lot-Sizing

Dual LP

\[
\begin{align*}
\max & \sum_{t=1}^{n} v_t, \\
\text{s.t.} & \quad v_t \leq h_{st} d_t + w_{st}, \quad 1 \leq s \leq t \leq n, \\
\sum_{t=s}^{n} w_{st} & \leq K_s, \quad 1 \leq s \leq n, \\
w_{st} & \geq 0, \quad 1 \leq s \leq t \leq n.
\end{align*}
\]

Intuition

- \(v_t \) called budgets
- \(w_{st} \) allocate \(K_s \) to demand points \(t \)
- Feas. sol. \(w_{st} = \max\{0, h_{st} d_t - v_t\} \)
General
- Start with \((v, w) = 0\) and \((x, y) = 0\)
- Iteratively increase dual solution, increasing dual objective
- At the same time, construct primal solution
- When dual objective cannot be increased, primal is feasible
- Post-processing step, \(O(n)\)

More details
- To increase dual objective, we increase budgets \(v_t\)
- At some point, some of the constraints become tight
- To keep increasing \(v_t\) we begin increasing \(w_{st}\) for those constraints
- At some point some of the constraints become tight
 - Open \(s\) in the primal
 - Freeze all corresponding \(v_t\)
 - Demands \(t\) with \(w_{st} > 0\) assigned to order \(s\)

Remaining free choice—order in which \(v_t\) are increased
The Wave

- start increasing v_4
- start increasing w_{44}
- start increasing v_3
- order 4 opens, budget 4 freezes
 demand 4 assigned to order 4
- start increasing w_{33}
- start increasing v_2
- start increasing w_{22} and w_{32}
- order 2 opens, budgets 2 & 3 freeze
 demands 2 & 3 assigned to order 2
- start increasing v_1
- start increasing w_{11}
- order 1 opens, budgets 1 freezes,
 demand 1 assigned to order 1

Types of events:
- Demand point becomes active
- Budget begins contributing to K_t
- Order point becomes tight & assoc.
Wave Time and Position

Wave position W

Wave time τ

K_1

K_2

K_3

K_4
Algorithm LSPD \((n \in \mathbb{Z}_+; c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1})\)

1. Start with the wave at \(W = h_{1n}\) and the dual solution \((v, w) = 0\). All orders are closed, and all demand points are unserved, i.e. \((x, y) = 0\).

2. While there are unserved demand points:

3. Decrease \(W\) continuously. At the same time increase \(v_t\) and \(w_{st}\) for unserved demand points \(t\) so as to maintain \(v_t = \max\{0, d_t(h_{1t} - W)\}\) and \(w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}\). The wave stops when an order becomes tight.

4. Open the order \(s\) that became tight. For each unserved demand point \(t\) contributing to \(s\), serve \(t\) from \(s\).

5. For each open order \(s\) from 1 to \(n\):

6. If there is a demand point \(t\) that contributes to \(s\) and to another open order \(s'\) with \(s' < s\), close \(s\). Reassign all demand points previously served from \(s\) to \(s'\).

7. Return \((x, y)\) and \((v, w)\).

Events:
- Demand point becomes active
- Budget begins contributing to \(K_t\)
- Order point becomes tight & assoc.

Algorithms for digital computers:
- Goal at end of execution to obtain primal \(y\) and dual \(v\).
- Execute (3) from event to event, instead of continuously.

Step (3):
- Compute wave position \(W^*\) when next order point becomes tight.
- Update \(W := W^*\), then update \(v\) and \(w\).
One iteration of (3):

- For each unfrozen order point t, compute position W_t when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
Algorithm LSPD (n ∈ Z_+; c, f, d ∈ Q^n, h ∈ Q^{n-1})

1. Start with the wave at W = h_1, and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.

2. While there are unserved demand points:

3. Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain
 v_t = \max\{0, d_t(h_{1t} - W)\}
 and
 w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}. The wave stops when an order becomes tight.

4. Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.

5. For each open order s from 1 to n:

6. If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.

7. Return (x, y) and (v, w).

One iteration of (3):
- For each unfrozen order point t, compute position W_t when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Compute W_3.
One iteration of (3):

- For each unfrozen order point t, compute position W_t when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Compute W_3
- Compute W_2
Algorithm LSPD \((n \in \mathbb{Z}_+; \ c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1}) \)

1. Start with the wave at \(W = h_{1n} \) and the dual solution \((v, w) = 0 \). All orders are closed, and all demand points are unserved, i.e. \((x, y) = 0 \).

2. **While** there are unserved demand points:
 - Decrease \(W \) continuously. At the same time increase \(v_t \) and \(w_{st} \) for unserved demand points \(t \) so as to maintain \(v_t = \max\{0, d_t(h_{1t} - W)\} \) and \(w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\} \). The wave stops when an order becomes tight.
 - Open the order \(s \) that became tight. For each unserved demand point \(t \) contributing to \(s \), serve \(t \) from \(s \).

3. **For** each open order \(s \) from 1 to \(n \):
 - If there is a demand point \(t \) that contributes to \(s \) and to another open order \(s' \) with \(s' < s \), close \(s \). Reassign all demand points previously served from \(s \) to \(s' \).

4. Return \((x, y) \) and \((v, w) \).

One iteration of (3):
- For each unfrozen order point \(t \), compute position \(W_t \) when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
 - Compute \(W_3 \)
 - Compute \(W_2 \)
 - Compute \(W_1 \)
One iteration of (3):
- For each unfrozen order point \(t \), compute position \(W_t \) when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Set \(W' = \min \{ W_t : t \text{ is unfrozen} \} \)

Lemma: \(W' = W^* \), the position when the next order point becomes tight. \(W_t \) that yields the minimum corresponds to the next order point that becomes tight.

Running time \(O(n^3) \):
- One computation of \(W_t \) takes \(O(n) \).
- \(O(n) \) computations before an order point becomes tight.
- At most \(O(n) \) order points become tight.
Algorithm LSPD \(n \in \mathbb{Z}_+; c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1} \)

1. Start with the wave at \(W = h_{1n} \) and the dual solution \((v, w) = 0 \). All orders are closed, and all demand points are unserved, i.e. \((x, y) = 0\).

2. **While** there are unserved demand points:

 3. Decrease \(W \) continuously. At the same time increase \(v_t \) and \(w_{st} \) for unserved demand points \(t \) so as to maintain \(v_t = \max\{0, d_t(h_{1t} - W)\} \) and \(w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\} \). The wave stops when an order becomes tight.

4. Open the order \(s \) that became tight. For each unserved demand point \(t \) contributing to \(s \), serve \(t \) from \(s \).

5. **For** each open order \(s \) from 1 to \(n \):

6. If there is a demand point \(t \) that contributes to \(s \) and to another open order \(s' \) with \(s' < s \), close \(s \). Reassign all demand points previously served from \(s \) to \(s' \).

7. Return \((x, y)\) and \((v, w)\).

One iteration of (3):

- For each unfrozen order point \(t \), compute position \(W_t \) when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Set \(W' = \min\{ W_t : t \text{ is unfrozen} \} \)

Lemma: \(W' = W^* \), the position when the next order point becomes tight. \(W_t \) that yields the minimum corresponds to the next order point that becomes tight.

Running time \(O(n^2) \):

- With preprocessing \(W_t \) takes \(O(1) \) amortized.
- \(O(n) \) computations before an order point becomes tight.
- At most \(O(n) \) order points become tight.
Outline

1. Models:
 a. The economic lot-sizing problem.
 b. An important special case: the non-speculative condition.

2. Overview of previous results.

5. Conclusions:
 a. Connection with basic algorithms problems. $O(n)$?
 b. Wave primal-dual applicable to other inventory problems.
Algorithm LSPD \((n \in \mathbb{Z}_+; c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1})\):

1. Start with the wave at \(W = h_{1n}\) and the dual solution \((v, w) = 0\). All orders are closed, and all demand points are unserved, i.e. \((x, y) = 0\).
2. **While** there are unserved demand points:
 3. Decrease \(W\) continuously. At the same time increase \(v_t\) and \(w_{st}\) for unserved demand points \(t\) so as to maintain \(v_t = \max\{0, d_t(h_{1t} - W)\}\) and \(w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}\). The wave stops when an order becomes tight.
 4. Open the order \(s\) that became tight. For each unserved demand point \(t\) contributing to \(s\), serve \(t\) from \(s\).
5. **For** each open order \(s\) from 1 to \(n\):
 6. If there is a demand point \(t\) that contributes to \(s\) and to another open order \(s'\) with \(s' < s\), close \(s\). Reassign all demand points previously served from \(s\) to \(s'\).
7. Return \((x, y)\) and \((v, w)\).

Events:
- Demand point becomes active
- Budget begins contributing to \(K_t\)
- Order point becomes tight & assoc

Algorithms for digital computers:
- Goal at end of execution to obtain primal \(y\) and dual \(v\).
- We will have “tentative” executions of (3), which may be incorrect.
- When we realize an execution is incorrect, we go back and delete it.
- Algorithm terminates \(\Rightarrow\) remaining executions guaranteed correct.
Algorithm LSPD\((n \in \mathbb{Z}_+; c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1}) \)

1) Start with the wave at \(W = h_{1n} \) and the dual solution \((v, w) = 0 \). All orders are closed, and all demand points are unserved, i.e. \((x, y) = 0 \).

2) **While** there are unserved demand points:

 2.1) Decrease \(W \) continuously. At the same time increase \(v_t \) and \(w_{st} \) for unserved demand points \(t \) so as to maintain \(v_t = \max\{0, d_t(h_{1t} - W)\} \) and \(w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\} \). The wave stops when an order becomes tight.

 2.2) Open the order \(s \) that became tight. For each unserved demand point \(t \) contributing to \(s \), serve \(t \) from \(s \).

 2.3) If there is a demand point \(t \) that contributes to \(s \) and to another open order \(s' \) with \(s' < s \), close \(s \). Reassign all demand points previously served from \(s \) to \(s' \).

3) For each open order \(s \) from 1 to \(n \):

4) While \(t \geq 1 \):

 2.1) Compute time when order point \(t \) becomes tight, taking into account periods \(t, \ldots, n \) but ignoring periods \(1, \ldots, t-1 \).

 2.2) If \(t \) becomes tight before \(o_{k'} \), delete \(o_k \) from stack \(D \), and go to 2.1.

 2.3) Add \(t \) to stack \(D \), set \(t := t-1 \).

Additional data structure:
- Stack \(D = (o_{k'}, o_{k-1}, \ldots, o_1) \) of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:
1) Start with \(D = () \), \(t = n \).
2) While \(t \geq 1 \):

 2.1) Compute time when order point \(t \) becomes tight, taking into account periods \(t, \ldots, n \) but ignoring periods \(1, \ldots, t-1 \).

 2.2) If \(t \) becomes tight before \(o_{k'} \), delete \(o_k \) from stack \(D \), and go to 2.1.

 2.3) Add \(t \) to stack \(D \), set \(t := t-1 \).
Algorithm LSPD($n \in \mathbb{Z}_+; c, f, d \in \mathbb{Q}_+^n, h \in \mathbb{Q}_+^{n-1}$)

1) Start with the wave at $W = h_{1n}$ and the dual solution $(v, w) = 0$. All orders are closed, and all demand points are unserved, i.e. $(x, y) = 0$.

2) While there are unserved demand points:

 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.

 2.2) If t becomes tight before o_k, delete o_k from stack D, and go to 2.1.

 2.3) Add t to stack D, set $t := t-1$.

3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.

4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.

5) For each open order s from 1 to n:

 6) If there is a demand point t that contributes to s and to another open order s' with $s' < s$, close s. Reassign all demand points previously served from s to s'.

7) Return (x, y) and (v, w).

Additional data structure:
- Stack $D = (o_k, o_{k-1}, \ldots, o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.
Stack data structure:
- Stack $D = (o_k, o_{k-1}, \ldots, o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:
1) Start with $D = \emptyset$, $t = n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
 2.2) If t becomes tight before o_k, delete o_k from stack D, and go to 2.1.
 2.3) Add t to stack D, set $t := t - 1$.

Add information to stack:
- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), (o_1, s_1, e_1)$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k become tight.
Stack data structure:
- Stack $D = (o_k, o_{k-1}, \ldots, o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:
1) Start with $D()$, $t=n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
 2.2) If t becomes tight before o_k, delete o_k from stack D, and go to 2.1.
 2.3) Add t to stack D, set $t:=t-1$.

Add information to stack:
- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), \ldots, (o_1, s_1, e_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.

Add further information to stack:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- w_k is the wave position when o_k became tight.
Stack data structure:
- Stack $D = (o_k, o_{k-1}, \ldots, o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:
1) Start with $D=(), \ t=n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
 2.2) If t becomes tight before o_k delete o_k from stack D, and go to 2.1.
 2.3) Add t to stack D, set $t:=t-1$.

Add information to stack:
- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), \ldots, (o_1, s_1, e_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.

Add further information to stack:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- w_k is the wave position when o_k became tight.
Algorithm:

1) Start with $E = ()$, $t=n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods 1, \ldots, $t-1$.
 2.2) If t becomes tight before o_k, delete o_k from stack E, and go to 2.1.
 2.3) Add t to stack E, set $t := t-1$.

Stack data structure:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm details:

- Once the wave position when t becomes tight is computed, inserting the record into the stack takes $O(1)$.
- Deleting a record from the stack also takes $O(1)$.
- Every record is deleted at most once, and we make at most n insertions \Rightarrow at most $O(n)$ deletions / computations / insertions.

Remains to do computation, in $O(?)$
Algorithm:
1) Start with $E = ()$, $t = n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, …, n but ignoring periods 1, …, $t-1$.
 2.2) If t becomes tight before o_k, delete o_k from stack E, and go to 2.1.
 2.3) Add t to stack E, set $t := t-1$.

Stack data structure:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Computation:
- Define new set of numbers a_1, \ldots, a_n with $a_t = c_t + h_{in}$.
- Only frozen demand points in segments s_j, \ldots, e_j with $a_t \leq h_{1n} - w_j$ contribute to make order point t tight.
- All unfrozen demand points in t, …, o_k contribute.
Algorithm:
1) Start with $E=()$, $t=n$.
2) While $t\geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods 1, \ldots, $t-1$.
 2.2) If t becomes tight before o_k delete o_k from stack E, and go to 2.1.
 2.3) Add t to stack E, set $t:=t-1$.

Stack data structure:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Computation:
- Define new set of numbers a_1, \ldots, a_n with $a_t = c_t + h_{tn}$.
- Only frozen demand points in segments s_j, \ldots, e_j with $a_t \leq h_{tn} - w_j$ contribute to make order point t tight.
- All unfrozen demand points in t, \ldots, o_k contribute.
Stack data structure:
- \(E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), \ldots, (o_1, s_1, e_1, w_1)) \) of provisionally tight order points.
- \(s_k, \ldots, e_k \) are the demand points that were frozen when \(o_k \) became tight.
- \(w_k \) is the wave position when \(o_k \) became tight.

Algorithm:
1) Start with \(E = () \), \(t = n \).
2) While \(t \geq 1 \):
 2.1) Compute time when order point \(t \) becomes tight, taking into account periods \(t, \ldots, n \) but ignoring periods \(1, \ldots, t-1 \).
 2.2) If \(t \) becomes tight before \(o_k \), delete \(o_k \) from stack \(E \), and go to 2.1.
 2.3) Add \(t \) to stack \(E \), set \(t := t-1 \).

Computation:
- Define new set of numbers \(a_1, \ldots, a_n \) with \(a_t = c_t + h_{in} \).
- Only frozen demand points in segments \(s_j, \ldots, e_j \) with \(a_t \leq h_{1n} - w_j \) contribute to make order point \(t \) tight.
- All unfrozen demand points in \(t, \ldots, o_k \) contribute.

Key Lemma. Given \(\min \{ j : a_t \leq h_{1n} - w_j \} \), we can determine in \(O(1) \) if order point \(t \) becomes tight before \(o_k \). If \(t \) becomes tight after \(o_k \), we can compute in \(O(1) \) the wave position when \(t \) becomes tight.
Algorithm:
1) Start with $E()$, $t=n$.
2) While $t \geq 1$:
 2.1) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
 2.2) If t becomes tight before o_k', delete o_k' from stack E, and go to 2.1.
 2.3) Add t to stack E, set $t := t-1$.

Stack data structure:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Key Lemma. Given $j^* = \min\{j : a_j \leq h_{1n} - w_j\}$, we can determine in $O(1)$ if order point t becomes tight before o_k'. If t becomes tight after o_k', we can compute in $O(1)$ the wave position when t becomes tight.

Proof Idea. Can determine and perform the computation by inspecting each demand point in t, \ldots, o_k', and each record in k, \ldots, j^*.

This would take $O(n)$.

Can perform in $O(1)$, by computing the running sums $d_1, d_1 + d_2, \ldots, d_1 + d_2 + \ldots + d_n$ at start of algorithm, as well as certain running sums in the stack.

Stack becomes $E = ((o_k, s_k, e_k, w_k, R_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}, R_{k-1}), \ldots, (o_1, s_1, e_1, w_1, R_1))$.
Time for Data Structures

Stack data structure:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:
1) Start with $E=(), t=n$.
2) While $t\geq 1$:
 2.1) Compute $j^* = \min\{j : a_t \leq h_{1n} - w_j\}$.
 2.2) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
 2.2) If t becomes tight before o_k, delete o_k from stack E, and go to 2.1.
 2.3) Add t to stack E, set $t:=t-1$.

Key Lemma. Given $j^* = \min\{j : a_t \leq h_{1n} - w_j\}$, we can determine in $O(1)$ if order point t becomes tight before o_k. If t becomes tight after o_k, we can compute in $O(1)$ the wave position when t becomes tight.

Running time.
$O(n)$ iterations.
- Find j^* using binary search in $O(\log(n))$.
- Do the remaining computations in $O(1)$
Total: $O(n \log n)$

Running time when non-speculative.
$O(n)$ iterations.
- Find j^* in $O(1)$, since a_1, \ldots, a_n are monotonic.
- Do the remaining computations in $O(1)$
Total: $O(n)$

Matches best times so far
Time for Data Structures

Stack data structure:

- \(E = ((o_1, s_1, e_1, w_1), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), \ldots, (o_n, s_n, e_n, w_1)) \) of provisionally tight order points.
- \(s_k, \ldots, e_k \) are the demand points that were frozen when \(o_k \) became tight.
- \(w_k \) is the wave position when \(o_k \) became tight.

Algorithm:

1) Start with \(E = () \), \(t = n \).
2) While \(t \geq 1 \):
 2.1) Compute \(j^* = \min \{ j : a_t \leq h_{1n} - w_j \} \).
 2.2) Compute time when order point \(t \) becomes tight, taking into account periods \(t \), \(\ldots \), \(n \) but ignoring periods \(1 \), \(\ldots \), \(t-1 \).
 2.2) If \(t \) becomes tight before \(o_k \), delete \(o_k \) from stack \(E \), and go to 2.1.
 2.3) Add \(t \) to stack \(E \), set \(t := t-1 \).

Key Lemma. Given \(j^* = \min \{ j : a_t \leq h_{1n} - w_j \} \), we can determine in \(O(1) \) if order point \(t \) becomes tight before \(o_k \). If \(t \) becomes tight after \(o_k \), we can compute in \(O(1) \) the wave position when \(t \) becomes tight.

Improved running time.

Machine: Word RAM

1) Sort \(a_1, \ldots, a_n \) in \(O(n \log \log n) \) before the start of the algorithm.
2) Create additional stack \(E' \) that contains only \(n/\log(n) \) entries out of the stack \(E \). It divides \(E \) into buckets of size \(\log(n) \).
3) Whenever a record is inserted into \(E' \), look up the position of \(w_k \) in \(a_1, \ldots, a_k \) and place it in the record. \(E' = ((o_k, s_k, e_k, w_k, p_k)) \).
4) When we have to find out \(j^* \), first look up in \(E' \) using predecessor search, then look up in bucket in \(E \) using binary search.
Time for Data Structures

Stack data structure:
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_{k-1}), \ldots, (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- s_k, \ldots, e_k are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:
1) Start with $E()$, $t=n$.
2) While $t\geq 1$:
 2.1) Compute $j^* = \min\{ j : a_t \leq h1n - w_j \}$.
 2.2) Compute time when order point t becomes tight, taking into account periods t, \ldots, n but ignoring periods $1, \ldots, t-1$.
2.2) If t becomes tight before o_k, delete o_k from stack E, and go to 2.1.
2.3) Add t to stack E, set $t:=t-1$.

Total: $O(n \log \log n)$

Improved running time.
Machine: Word RAM

1) Sort a_1, \ldots, a_n in $O(n \log \log n)$ before the start of the algorithm.
2) Create additional stack E' that contains only $n/\log(n)$ entries out of the stack E. It divides E into buckets of size $\log(n)$.
3) Whenever a record is inserted into E', look up the position of w_k in a_1, \ldots, a_k and place it in the record. $E' = ((o_k, s_k, e_k, w_k, p_k))$.
4) When we have to find out j^*, first look up in E' using predecessor search, then look up in bucket in E using binary search.

Running time:
1) $O(n \log \log n)$.
3) Each addition takes $O(\log(n))$, there are $O(n/\log(n))$ additions, for a total of $O(n)$. [*]
4) Predecessor search takes $O(\log \log n)$, $O(n)$ lookups for a total of $O(n \log \log n)$.
4.1) Bucket size is $O(\log n)$, lookup takes $O(\log \log n)$, total $O(n \log \log n)$.
Conclusions

1. We obtain a $O(n \log \log n)$ algorithm for lot-sizing, improving upon the $O(n \log n)$ results from 1991–1993.

2. We connect the lot-sizing problem to basic computing primitives—sorting and predecessor search.
 a. Opportunity for further improvement in running time.
 b. Opportunity for other insights.

3. Wave primal-dual algorithms run on other inventory problems (JRP, multi-stage assembly).

4. $O(n+\text{sort}(n))$? $O(n)$?