Acknowledgment: Thomas Magnanti, Retsef Levi

Faster Primal-Dual Algorithms for the Economic Lot-Sizing Problem

Mihai Pătrașcu AT&T Research

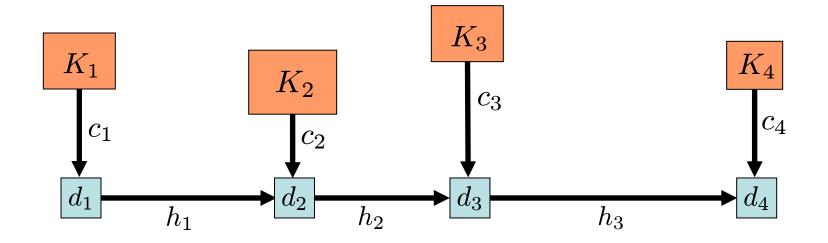
Dan Stratila RUTCOR and Rutgers Business School Rutgers University

> ISMP XX 25 August 2009

Outline

- 1. Models:
 - a. The economic lot-sizing problem.
 - b. An important special case: the non-speculative condition.
- 2. Overview of previous results.
- 3. Review of "wave" primal-dual algorithm of Levi et al (2006).
- 4. Main result: a faster algorithm for the lot-sizing problem.
- 5. Conclusions:
 - a. Connection with basic algorithms problems. O(n)?
 - b. Wave primal-dual applicable to other inventory problems.

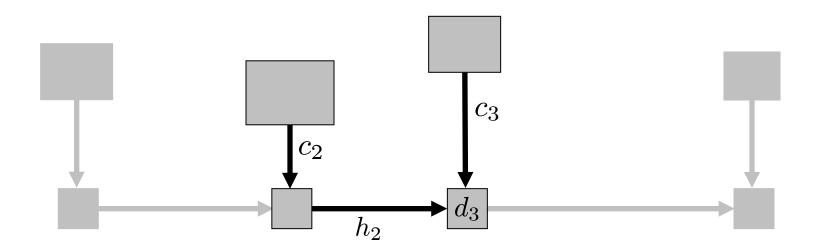
The Economic Lot-Sizing Problem



 $h_{st} := c_s + \sum_{i=s}^{t-1} h_i$

$$\begin{array}{ll} \min & \sum_{t=1}^{n} K_{t}y_{t} + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st}d_{t}x_{st} \\ \text{s.t.} & \sum_{s=1}^{t} x_{st} = 1, \quad 1 \leq t \leq n, \\ & 0 \leq x_{st} \leq y_{s}, \quad 1 \leq s \leq t \leq n. \end{array}$$

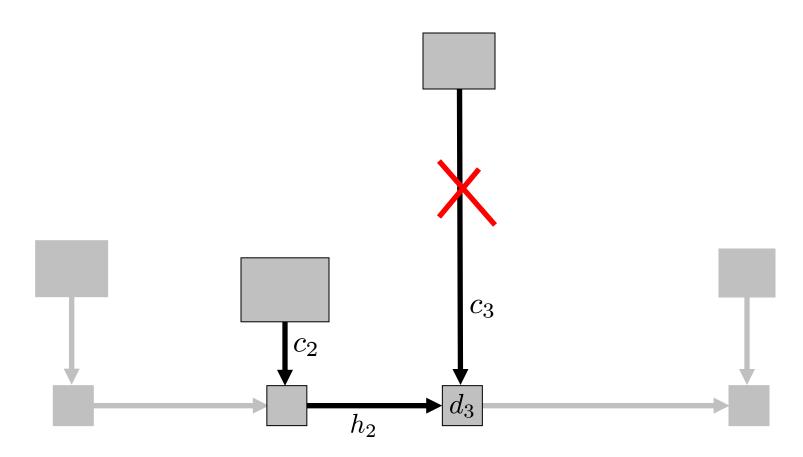
An Important Special Case



Non-speculative condition:

$$c_3 \le c_2 + h_2$$

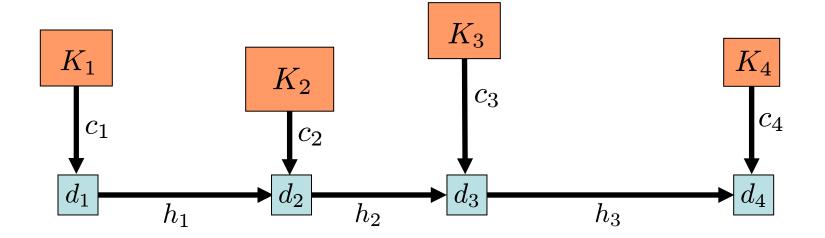
An Important Special Case



Non-speculative condition:

$$c_3 \not\leq c_2 + h_2$$

Lot-Sizing Problem with Non-Speculative Condition



$$c_{t+1} \leq c_t + h_t$$

for $t = 1, \dots, n-1$

$$\min \sum_{t=1}^{n} K_t y_t + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st} d_t x_{st}$$
s.t.
$$\sum_{s=1}^{t} x_{st} = 1, \quad 1 \le t \le n,$$

$$0 \le x_{st} \le y_s, \quad 1 \le s \le t \le n.$$

Outline

- 1. Models:
 - a. The economic lot-sizing problem.
 - b. An important special case: the non-speculative condition.
- 2. Overview of previous results.
- 3. Review of "wave" primal-dual algorithm of Levi et al (2006).
- 4. Main result: a faster algorithm for the lot-sizing problem.
- 5. Conclusions:
 - a. Connection with basic algorithms problems. O(n)?
 - b. Wave primal-dual applicable to other inventory problems.

Previous Results on Lot-Sizing

Early research:

- Introduced by Manne ('58), Wagner and Whitin ('58).
- Wagner and Whitin ('58) provide $O(n^2)$ for non-speculative case.
- Zabel ('64), Eppen et al ('69) obtain $O(n^2)$ for general case.
- Results on *heuristics*, to be more efficient than $O(n^2)$ in '70s-'80s.

The O(n logn) algorithms:

- Federgruen and Tzur ('91), forward algorithm.
- Wagelmans et al ('92), backward algorithm, also relate to dual.
- Aggarwal and Park ('93), using Monge arrays, generalizations.
- These 3 algorithms run in O(n) for non-speculative case.

Non-algorithmic results:

- Krarup and Bilde ('77) show that above formulation is integral.
- Polyhedral results for harder versions, e.g. multi-item lot-sizing: *Production Planning by Mixed Integer Programming*, Pochet and Wolsey ('06).

Primal-Dual Algorithms for Lot-Sizing

Levi et al ('06) :

- Obtain primal-dual algorithm for lot-sizing problem.
- Proves above formulation is integral as a consequence.
- Primal-dual 2-approxim. algorithms for joint replenishment problem (JRP), and for multistage assembly problem.
- Algorithms clearly polynomial, authors do not estimate running times.

Related primal-dual algorithms for facility location:

- Primal-dual algorithms of Levi et al for inventory is rooted in primal-dual approximation algorithm for facility location of Jain and Vazirani ('01).
- Thorup ('03) obtains 1.62 algorithm approximation algorithm for facility location with running time $\tilde{O}(m+n)$ based on Jain and Vazirani ('01) and Jain et al ('03).

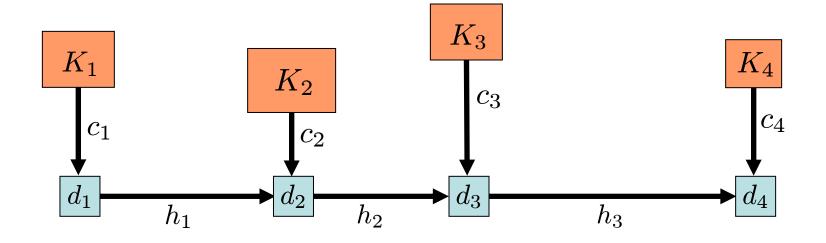
Differences:

- Algorithms for facility location and lot-sizing are different.
- Input size is different: lot-sizing represented as facility would have $O(n^2)$ edges.

Outline

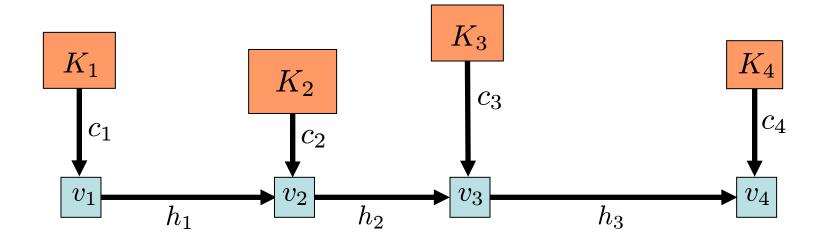
- 1. Models:
 - a. The economic lot-sizing problem.
 - b. An important special case: the non-speculative condition.
- 2. Overview of previous results.
- 3. Review of "wave" primal-dual algorithm of Levi et al (2006).
- 4. Main result: a faster algorithm for the lot-sizing problem.
- 5. Conclusions:
 - a. Connection with basic algorithms problems. O(n)?
 - b. Wave primal-dual applicable to other inventory problems.

Wave Primal-Dual Algorithm for Lot-Sizing



Primal LP $\min \sum_{s=1}^{n} K_s y_s + \sum_{s=1}^{n} \sum_{t=s}^{n} h_{st} d_t x_{st}$ s.t. $\sum_{s=1}^{t} x_{st} = 1, \qquad 1 \le t \le n,$ $0 \le x_{st} \le y_s, \qquad 1 \le s \le t \le n.$

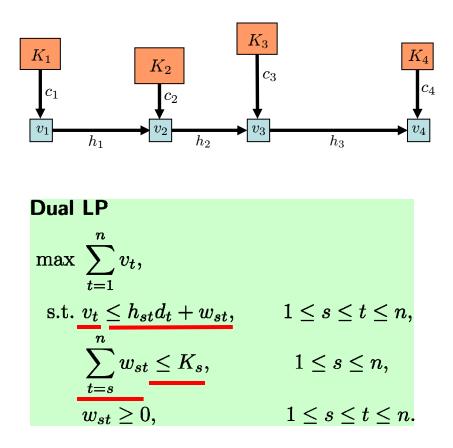
Wave Primal-Dual Algorithm for Lot-Sizing



 $\begin{array}{l} \textbf{Dual LP} \\ \max \ \sum_{t=1}^n v_t, \\ \text{s.t. } v_t \leq h_{st} d_t + w_{st}, \qquad 1 \leq s \leq t \leq n, \\ \sum_{t=s}^n w_{st} \leq K_s, \qquad 1 \leq s \leq n, \\ w_{st} \geq 0, \qquad 1 \leq s \leq t \leq n. \end{array}$

Intuition

- v_i called budgets
- w_{st} allocate K_s to demand points t
- Feas. sol. $w_{st} = \max\{0, h_{st}d_t v_t\}$



Note

- v_i called budgets
- w_{st} allocate K_s to demand points t
- Feas. sol. $w_{st} = \max\{0, h_{st}d_t v_t\}$

General

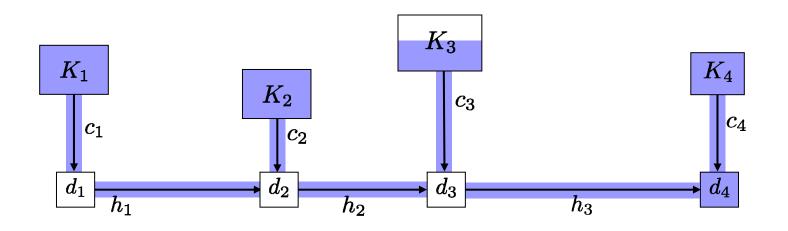
- Start with (*v*,*w*)=0 and (*x*,*y*)=0
- Iteratively increase dual solution, increasing dual objective
- At the same time, construct primal solution
- When dual objective cannot be increased, primal is feasible
- Post-processing step, *O*(*n*)

More details

- To increase dual objective, we increase budgets v_t
- At some point, some of the constraints become tight
- To keep increasing *v*_t we begin increasing *w*_{st} for those constraints
- At some point some of the constraints become tight
 - Open *s* in the primal
 - Freeze all corresponding v_t
 - Demands t with w_{st} >0 assigned to order s

Remaining free choice—order in which v_t are increased

The Wave

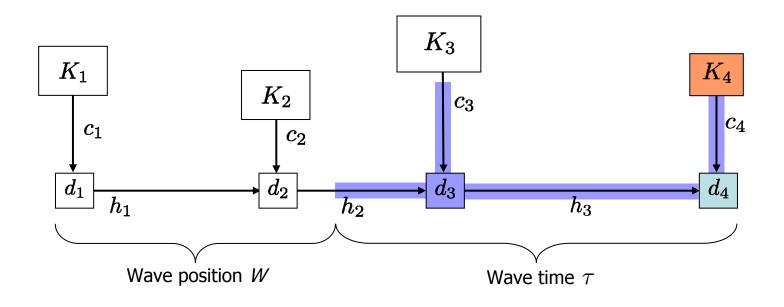


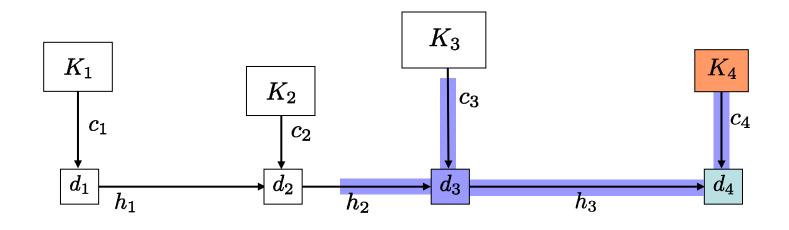
- start increasing v_4
- start increasing W_{44}
- start increasing v_3
- order 4 opens, budget 4 freezes demand 4 assigned to order 4
- start increasing W_{33}
- start increasing v_2
- start increasing W_{22} and W_{32}
- order 2 opens, budgets 2 & 3 freeze demands 2 & 3 assigned to order 2
- start increasing v_1
- start increasing w_{11}
- order 1 opens, budgets 1 freezes, demand 1 assigned to order 1

Types of events:

- Demand point becomes active
- Budget begins contributing to K_t
- Order point becomes tight & assoc.

Wave Time and Position





- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

Events:

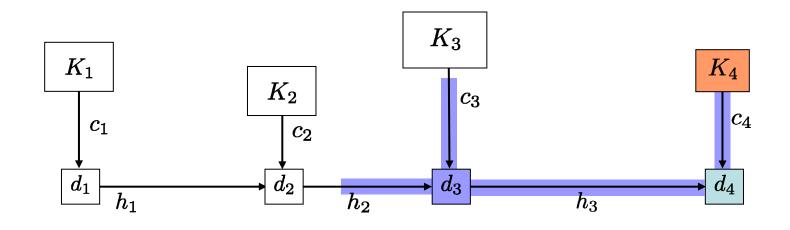
- Demand point becomes active
- Budget begins contributing to K_t
- Order point becomes tight & assoc.

Algorithms for digital computers:

- Goal at end of execution to obtain primal *y* and dual *v*.
- Execute (3) from event to event, instead of continuously

Step (3):

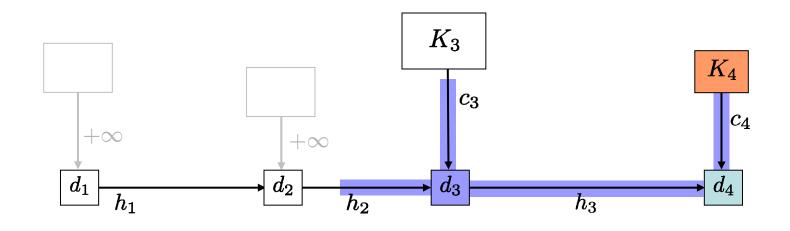
- Compute wave position *W** when next order point becomes tight.
- Update *W*:=*W**, then update *v* and *w*.



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

One iteration of (3):

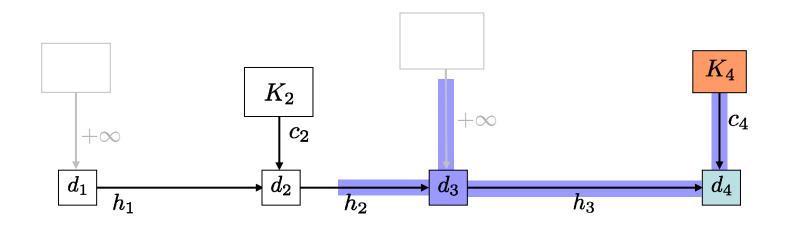
• For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

One iteration of (3):

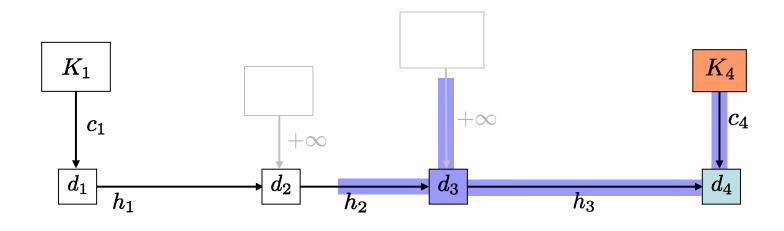
- For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Compute W_3



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

One iteration of (3):

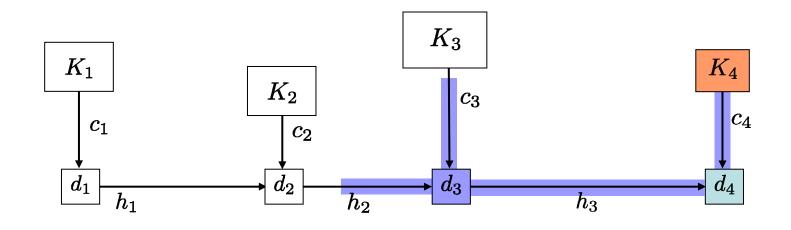
- For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Compute W_3
- Compute W₂



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

One iteration of (3):

- For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Compute W_3
- Compute W_2
- Compute W_1



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

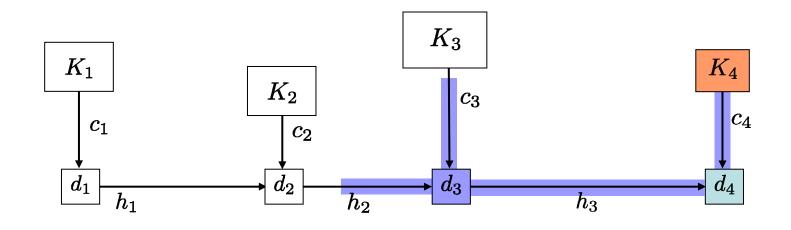
One iteration of (3):

- For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Set W' = min{ W_t : t is unfrozen }

Lemma: $W' = W^*$, the position when the next order point becomes tight. W_t that yields the minimum corresponds to the next order point that becomes tight.

Running time $O(n^3)$:

- One computation of W_t takes O(n).
- *O*(*n*) computations before an order point becomes tight.
- At most *O*(*n*) order points become tight.



- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

One iteration of (3):

- For each unfrozen order point *t*, compute position *W_t* when it becomes tight, assuming no other unfrozen order points become tight in the meantime.
- Set W' = min{ W_t : t is unfrozen }

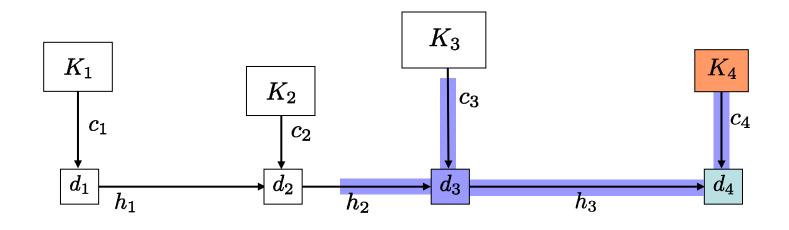
Lemma: $W' = W^*$, the position when the next order point becomes tight. W_t that yields the minimum corresponds to the next order point that becomes tight.

Running time $O(n^2)$:

- With preprocessing W_t takes O(1) amortized.
- *O*(*n*) computations before an order point becomes tight.
- At most *O*(*n*) order points become tight.

Outline

- 1. Models:
 - a. The economic lot-sizing problem.
 - b. An important special case: the non-speculative condition.
- 2. Overview of previous results.
- 3. Review of "wave" primal-dual algorithm of Levi et al (2006).
- 4. Main result: a faster algorithm for the lot-sizing problem.
- 5. Conclusions:
 - a. Connection with basic algorithms problems. O(n)?
 - b. Wave primal-dual applicable to other inventory problems.



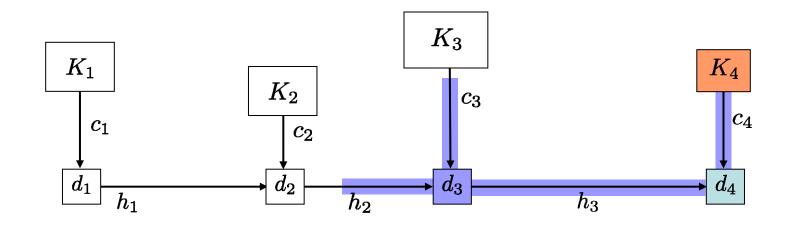
- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

Events:

- Demand point becomes active
- Budget begins contributing to K_t
- Order point becomes tight & assoc

Algorithms for digital computers:

- Goal at end of execution to obtain primal *y* and dual *v*.
- We will have "tentative" executions of (3), which may be incorrect.
- When we realize an execution is incorrect, we go back and delete it.
- Algorithm terminates => remaining executions guaranteed correct.



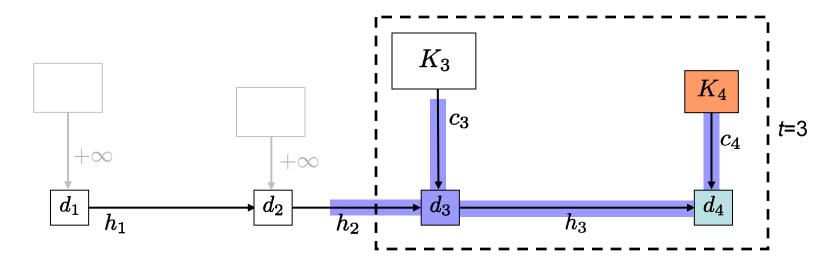
- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

Additional data structure:

- Stack $D = (o_k, o_{k-1}, ..., o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:

- 1) Start with *D*=(), *t*=*n*.
- 2) While *t*≥1:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *D*, and go to 2.1.
 - 2.3) Add *t* to stack *D*, set *t*:=*t*-1.



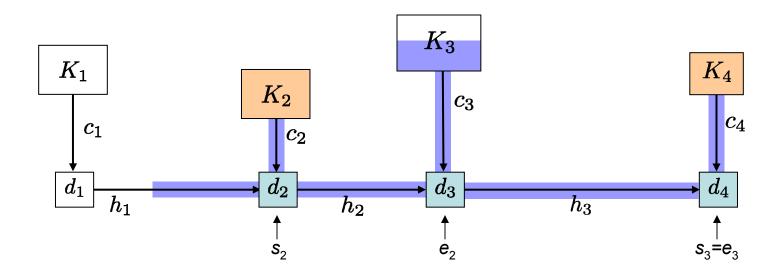
- (1) Start with the wave at $W = h_{1n}$ and the dual solution (v, w) = 0. All orders are closed, and all demand points are unserved, i.e. (x, y) = 0.
- (2) While there are unserved demand points:
- (3) Decrease W continuously. At the same time increase v_t and w_{st} for unserved demand points t so as to maintain $v_t = \max\{0, d_t(h_{1t} - W)\}$ and $w_{st} = \max\{0, v_t - (c_s + h_{st})d_t\}$. The wave stops when an order becomes tight.
- (4) Open the order s that became tight. For each unserved demand point t contributing to s, serve t from s.
- (5) For each open order s from 1 to n:
- (6) If there is a demand point t that contributes to s and to another open order s' with s' < s, close s. Reassign all demand points previously served from s to s'.
- (7) Return (x, y) and (v, w).

Additional data structure:

- Stack $D = (o_k, o_{k-1}, ..., o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:

- 1) Start with *D*=(), *t*=*n*.
- 2) While *t*≥1:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *D*, and go to 2.1.
 - 2.3) Add *t* to stack *D*, set *t*:=*t*-1.



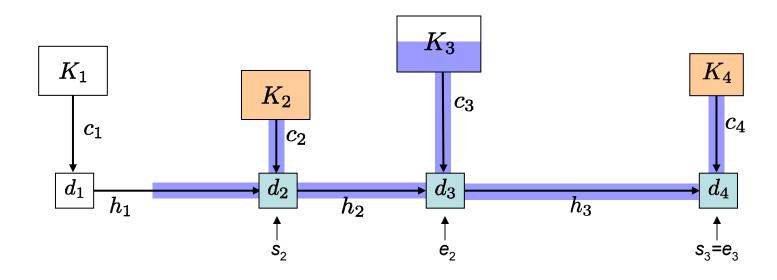
- Stack $D = (o_k, o_{k-1}, ..., o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:

- 1) Start with *D*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *D*, and go to 2.1.
 - 2.3) Add *t* to stack *D*, set *t*:=*t*-1.

Add information to stack:

- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), (o_1, s_1, e_1) \text{ of provisionally tight order points.}$
- *s*_{*k*}, ..., *e*_{*k*} are the demand points that were frozen when *o*_{*k*} become tight.



- Stack $D = (o_k, o_{k-1}, ..., o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:

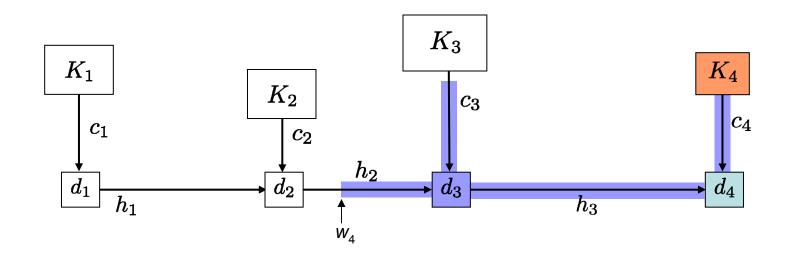
- 1) Start with *D*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *D*, and go to 2.1.
 - 2.3) Add *t* to stack *D*, set *t*:=*t*-1.

Add information to stack:

- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), \dots, (o_1, s_1, e_1))$ of provisionally tight order points.
- *s*_{*k*}, ..., *e*_{*k*} are the demand points that were frozen when *o*_{*k*} became tight.

Add further information to stack:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- w_k is the wave position when o_k became tight.



- Stack $D = (o_k, o_{k-1}, ..., o_1)$ of provisionally tight order points.
- Stack initially empty, at end of loop (2) will contain the correct order points.

Algorithm:

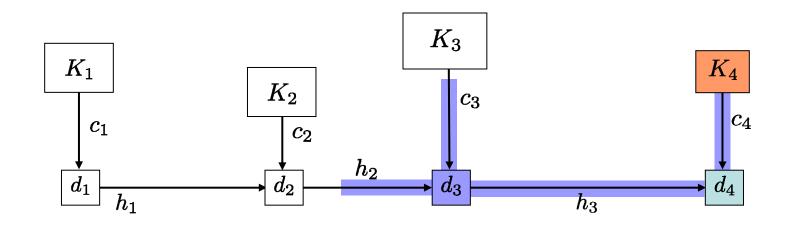
- 1) Start with *D*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *D*, and go to 2.1.
 - 2.3) Add *t* to stack *D*, set *t*:=*t*-1.

Add information to stack:

- $E = ((o_k, s_k, e_k), (o_{k-1}, s_{k-1}, e_{k-1}), ..., (o_1, s_1, e_1))$ of provisionally tight order points.
- *s*_{*k*}, ..., *e*_{*k*} are the demand points that were frozen when *o*_{*k*} became tight.

Add further information to stack:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- w_k is the wave position when o_k became tight.



- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

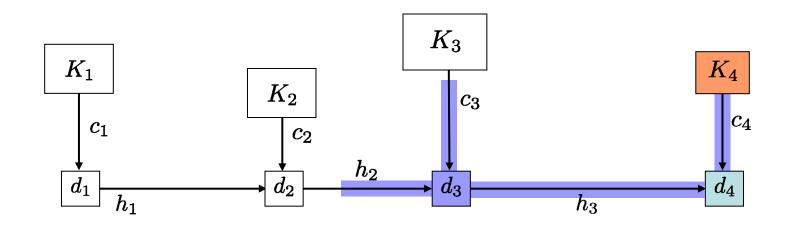
Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *E*, and go to 2.1.
 - 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Algorithm details:

- Once the wave position when *t* becomes tight is computed, inserting the record into the stack takes *O*(1).
- Deleting a record from the stack also takes O(1).
- Every record is deleted at most once, and we make at most *n* insertions => at most O(n) deletions / computations / insertions.

Remains to do computation, in O(?)



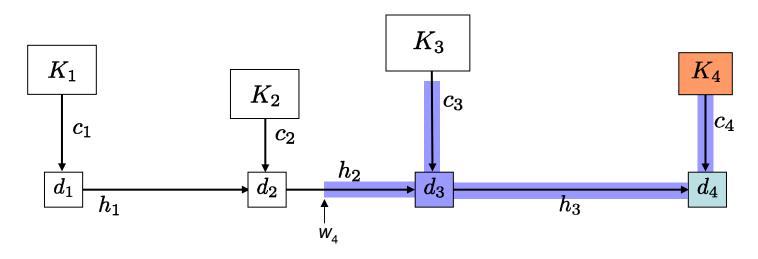
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *E*, and go to 2.1.
 - 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Computation:

- Define new set of numbers $a_1, ..., a_n$ with $a_t = c_t + h_{tn}$.
- Only frozen demand points in segments s_j,...,e_j with a_t ≤ h_{1n} w_j contribute to make order point t tight.
- All unfrozen demand points in *t*, ..., *o_k* contribute.



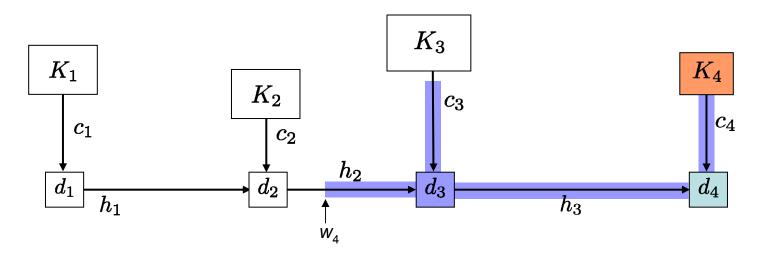
- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *E*, and go to 2.1.
 - 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Computation:

- Define new set of numbers $a_1, ..., a_n$ with $a_t = c_t + h_{tn}$.
- Only frozen demand points in segments s_j,...,e_j with a_t ≤ h_{1n} w_j contribute to make order point t tight.
- All unfrozen demand points in *t*, ..., *o_k* contribute.



- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

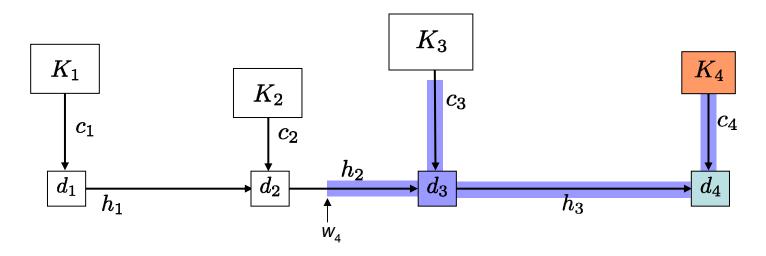
Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *E*, and go to 2.1.
 - 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Computation:

- Define new set of numbers $a_1, ..., a_n$ with $a_t = c_t + h_{tn}$.
- Only frozen demand points in segments s_j,...,e_j with a_t ≤ h_{1n} w_j contribute to make order point t tight.
- All unfrozen demand points in *t*, ..., *o_k* contribute.

Key Lemma. Given min{ $j : a_t \le h_{1n} - w_j$ }, we can determine in O(1) if order point t becomes tight before o_k . If t becomes tight after o_k , we can compute in O(1) the wave position when t becomes tight.



- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While $t \ge 1$:
 - 2.1) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k, delete o_k from stack *E*, and go to 2.1.
 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Key Lemma. Given $j^* = \min\{j : a_t \le h_{1n} - w_j\}$, we Can determine in O(1) if order point *t* becomes tight before o_k . If *t* becomes tight after o_k , we can compute in O(1) the wave position when *t* becomes tight.

Proof Idea. Can determine and perform the computation by inspecting each demand point in $t, ..., o_k$, and each record in $k, ..., j^*$.

This would take O(n).

Can perform in O(1), by computing the running sums d_1 , d_1+d_2 , ..., $d_1+d_2+...+d_n$ at start of algorithm, as well as certain running sums in the stack.

Stack becomes
$$E = ((o_k, s_k, e_k, w_k, R_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k, R_{k-1}), \dots, (o_1, s_1, e_1, w_1, R_1)).$$

Time for Data Structures

Stack data structure:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While *t*≥1:
 - 2.1) Compute $j^* = \min\{j : a_t \le h_{1n} w_j\}$.
 - 2.2) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k , delete o_k from stack *E*, and go to 2.1.
 - 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Key Lemma. Given $j^* = \min\{j : a_t \le h_{1n} - w_j\}$, we Can determine in O(1) if order point *t* becomes tight before o_k . If *t* becomes tight after o_k , we can compute in O(1) the wave position when *t* becomes tight.

Running time.

O(n) iterations.
Find *j** using binary search in O(log(n))
Do the remaining computations in O(1)
Total: O(n log n)

Running time when non-speculative.

O(n) iterations. Find *j** in O(1), since $a_1, ..., a_n$ are monotonic. Do the remaining computations in O(1)**Total:** O(n)

Matches best times so far

Time for Data Structures

Stack data structure:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While *t*≥1:
 - 2.1) Compute $j^* = \min\{j : a_t \le h_{1n} w_j\}$.
 - 2.2) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before *o_k*, delete *o_k* from stack *E*, and go to 2.1.
 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Key Lemma. Given $j^* = \min\{j : a_t \le h_{1n} - w_j\}$, we Can determine in O(1) if order point *t* becomes tight before o_k . If *t* becomes tight after o_k , we can compute in O(1) the wave position when *t* becomes tight.

Improved running time.

Machine: Word RAM

- 1) Sort *a*₁, ..., *a*_n in *O*(*n* log log *n*) before the start of the algorithm.
- Create additional stack *E*' that contains only *n*/log(*n*) entries out of the stack *E*. It divides *E* into buckets of size log(*n*).
- 3) Whenever a record is inserted into *E*', look up the position of w_k in $a_1, ..., a_k$ and place it in the record. $E' = ((o_k, s_k, e_k, w_k, p_k)).$
- When we have to find out *j**, first look up in *E*' using predecessor search, then look up in bucket in *E* using binary search.

Time for Data Structures

Stack data structure:

- $E = ((o_k, s_k, e_k, w_k), (o_{k-1}, s_{k-1}, e_{k-1}, w_k), ..., (o_1, s_1, e_1, w_1))$ of provisionally tight order points.
- $s_k, ..., e_k$ are the demand points that were frozen when o_k became tight.
- w_k is the wave position when o_k became tight.

Algorithm:

- 1) Start with *E*=(), *t*=*n*.
- 2) While *t*≥1:
 - 2.1) Compute $j^* = \min\{j : a_t \le h_{1n} w_j\}$.
 - 2.2) Compute time when order point *t* becomes tight, taking into account periods *t*, ..., *n* but ignoring periods 1, ..., *t*-1.
 - 2.2) If *t* becomes tight before o_k, delete o_k from stack *E*, and go to 2.1.
 2.3) Add *t* to stack *E*, set *t*:=*t*-1.

Total: O(n log log n)

Improved running time.

Machine: Word RAM

- 1) Sort *a*₁, ..., *a*_n in *O*(*n* log log *n*) before the start of the algorithm.
- Create additional stack *E*' that contains only *n*/log(*n*) entries out of the stack *E*. It divides *E* into buckets of size log(*n*).
- 3) Whenever a record is inserted into *E*', look up the position of w_k in $a_1, ..., a_k$ and place it in the record. $E' = ((o_k, s_k, e_k, w_k, p_k)).$
- 4) When we have to find out *j**, first look up in *E*' using predecessor search, then look up in bucket in *E* using binary search.

Running time:

- 1) O(n log log n).
- Each addition takes O(log(n)), there are O(n/log(n)) additions, for a total of O(n). [*]
- 4) Predecessor search takes O(log log n), O(n) lookups for a total of O(n log log n).
- 4.1) Bucket size is O(log n), lookup takes O(log log n), total O(n log log n)

Conclusions

- 1. We obtain a *O*(*n* log log *n*) algorithm for lot-sizing, improving upon the *O*(*n* log *n*) results from 1991–1993.
- 2. We connect the lot-sizing problem to basic computing primitives—sorting and predecessor search.
 - a. Opportunity for further improvement in running time.
 - b. Opportunity for other insights.
- 3. Wave primal-dual algorithms run on other inventory problems (JRP, multistage assembly).
- 4. O(n+sort(n))? O(n)?