Non-Adaptive Fault Diagnosis

 for All-Optical Networksvia Combinatorial Group Testing on Graphs
Nick Harvey, Mihai Pătraşcu, Yonggang Wen, Sergey Yekhanin Vincent W.S. Chan IIII

Group Testing

- n drugs: n-1 good, 1 bad

Group Testing

- n drugs: $n-1$ good, 1 bad
- better idea:

Very Useful in Practice

To: nickh, eewyg, chan
Subject: is any of you willing to give the talk?

Combinatorial Group Testing

- adaptive / nonadaptive
- m = \# elements
- $s=\#$ bad elements
- $\mathrm{T}^{*}=\#$ necessary probes
$\Omega\left(\frac{s^{2}}{\log s} \log m\right) \leq T^{*}[m, s\} \leq \mathrm{O}\left\{s^{2} \log m\right\}$

Group Testing on Graphs

- elements = edges
- bad elements = failed edges
- probes = connected subgraphs

Assumptions $\begin{cases}8 & 1 \text { element }=\$ 1 \\ \text { Graph Testing: } 1 \text { connected subset }=\$ 1 \\ \text { CGT: } & 1 \text { subset }=\$ 1\end{cases}$

Cost Model: All-Optical Networks

Practical assumption: undirected graph an edge $=2$ parallel optical fibers
=> testing entire connected subgraph $=1$ lightpath

Cost Model: All-Optical Networks

" 1 lightpath = \$1"

$$
\text { speed of light }=\text { fast }
$$

Optical routing
=> real cost: transmission / reception
=> real delay: adaptivity

Assumptions

Failure model:

- links fail
- permanent failure model
- adversarial failures

(cable cuts...)
(link = up/down)
(up to s)

Network model:

- undirected
- separate control network
[alternative: want to find the connected component of a central node]

Some Special Cases

Nonadaptive group testing on graphs: $L^{*}(G, s)$

$$
\begin{aligned}
& L^{*}(G, s) \geq T^{*}(m, s) \\
& T^{*}(m, s) \approx s^{2} \log m
\end{aligned}
$$

- line, ring $1 \cdots n$

$$
L^{*}(s=1)=\lceil n / 2\rceil
$$

- complete graph $K_{n} L^{*}(s=1)=O(\log n)$

- grid, torus $\sqrt{n} \times \sqrt{n} \quad L^{*}(s=1)=O(\log n)$
$L^{*}(s \geq 7)=\Omega(n)$

Lesson 1: Small Connectivity Hurts

Lower bound for line:

- probes = interval
- if one vertex has no [or]
=> can't distinguish adjacent edges

Lesson 2: Just Need a Trusted Subnet

Solution for complete graph:

1. test the star (1,2),(1,3), $\cdots,(1, n)$
2. assuming 1. says "fail": apply CGT on star edges

3. assuming 1. says "not fail": apply CGT on all other edges

Cost: $1+T^{*}(n, s=1)+T^{*}((n-1)(n-2) / 2, s=1]$

$$
=O(\log n)
$$

General Results: Well Connected

min-cut 2(s+1)
If G containts $\mathrm{s}+1$ edge-disjoint spanning trees:

$$
T^{*}(m, s) \leq L^{*}(G, s) \leq \mathrm{O}\left(s \cdot T^{*}(m, s)\right)
$$

Proof:

- test each subtree => at least one is ok
- use this subtree to do CGT on the other edges

Corollaries:

- 2D torus has min-cut $4 \Rightarrow L^{*}(s=1)=O(\log n)$ 2D grid similar, more complicated

- complete graph has min-cut $n-1=>$ can handle $s \leq[n-3] / 2$

General Results: Trees

Tree T of depth D: $\Omega(D+\log n) \leq L^{*}(T, s=1) \leq \mathrm{O}\left(D+\log ^{2} n\right)$

Proof:

- for all $d \leq D$, assume failure is at depth d use tree to depth $d-1$ to do CGT at depth $d]$

General Results: Low Diameter

G connected, diameter D: $L^{*}(G, 1) \leq \mathrm{O}\left(D+\log ^{2} n\right)$

Proof:

- let $T=$ shortest path tree (depth D)
- test T
- assuming T is ok, do CGT on $G \backslash T$

Cost
1

- assuming T in not ok, apply tree algorithm on T
$O\left(D+\log ^{2} n\right)$

Summary

- trees $\Omega(D+\log n) \leq L^{*}(T, s=1) \leq \mathrm{O}\left(D+\log ^{2} n\right)$
* line, ring: $L^{*}(s=1)=\Theta(D)=\Theta(n)$
- diameter D: $\quad L^{*}(G, s=1) \leq \mathrm{O}\left(D+\log ^{2} n\right)$
- s+1 edge-disjoint spanning trees

$$
\Omega\left(\frac{s^{2}}{\log s} \log m\right) \leq L^{*}(G, s) \leq \mathrm{O}\left(s^{3} \log m\right)
$$

* complete graph $\quad \forall s \leq\lfloor n-3] / 2$
* torus, grid $L^{*}(s=1)=O(\log n)$

$$
L^{*}(s \geq 7)=\Omega(n)
$$

The End

