
Deterministic load balancing and dictionaries in the
parallel disk model

Mette Berger∗ Esben Rune Hansen† Rasmus Pagh†

Mihai Pǎtraşcu‡ Milan Ružić† Peter Tiedemann†

ABSTRACT
We consider deterministic dictionaries in the parallel disk
model, motivated by applications such as file systems. Our
main results show that if the number of disks is moderately
large (at least logarithmic in the size of the universe from
which keys come), performance similar to the expected per-
formance of randomized dictionaries can be achieved. Thus,
we may avoid randomization by extending parallelism. We
give several algorithms with different performance trade-
offs. One of our main tools is a deterministic load balancing
scheme based on expander graphs, that may be of indepen-
dent interest.

Our algorithms assume access to certain expander graphs
“for free”. While current explicit constructions of expander
graphs have suboptimal parameters, we show how to get
near-optimal expanders for the case where the amount of
data is polynomially related to the size of internal memory.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations; H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms
Algorithms, Performance, Theory

Keywords
Deterministic, dictionary, parallel disk model, expander graph,
hashing

∗OctoShape ApS
†IT University of Copenhagen, Rued Langgaards Vej 7, 2300
København S, Denmark.
‡MIT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-452-9/06/0007 ...$5.00.

1. INTRODUCTION
Storage systems for large data sets are increasingly par-

allel. There are now disk arrays consisting of more than a
thousand disks1, and Network-Attached Storage (NAS) so-
lutions could in principle scale up to an arbitrary number
of storage servers. A simple, feasible model for these kinds
of situations is the parallel disk model [18]. In this model
there are D storage devices, each consisting of an array of
memory blocks with capacity for B data items; a data item
is assumed to be sufficiently large to hold a pointer value or
a key value. The performance of an algorithm is measured
in the number of parallel I/Os, where one parallel I/O con-
sists of retrieving (or writing) a block of B data items from
(or to) each of the D storage devices.

The problem studied in this paper is the design of dic-
tionaries, i.e., data structures storing a set of n keys from
some bounded universe U , as well as “satellite” informa-
tion associated with each key, supporting lookups of keys
and dynamic updates to the key set. This is a fundamental
and well-studied problem in computer science. In the con-
text of external memory, note that a dictionary can be used
to implement the basic functionality of a file system: Let
keys consist of a file name and a block number, and asso-
ciate them with the contents of the given block number of
the given file. Note that this implementation gives “random
access” to any position in a file.

Most external memory algorithms for one disk can im-
prove their performance by a factor of D in the parallel disk
model using striping. For external memory data structures
we can expect no such improvement, since at least one I/O
is needed to answer on-line queries. For example, the query
time of a B-tree in the parallel disk model is Θ(logBD n),
which means that no asymptotic speedup is achieved com-
pared to the one disk case unless the number of disks is
very large, D = Bω(1). Randomized dictionaries based on
hashing support lookups and updates in close to 1 I/O per
operation, as in the single disk case.

1.1 Our results and comparison with hashing
In this paper we show a new kind of benefit by moving

from one to many disks: Efficient randomized dictionaries
may be replaced by deterministic ones of essentially the same
efficiency. Besides the practical problem of giving an al-
gorithm access to random bits, randomized solutions never
give firm guarantees on performance. In particular, all hash-
ing based dictionaries we are aware of may use n/BO(1) I/Os

1For example, the Hitachi TagmaStore USP1100 disk array
can include up to 1152 disks, storing up to 32 petabytes.

for a single operation in the worst case. In contrast, we
give very good guarantees on the worst case performance of
any operation. No previously known dictionary in a feasible
model of computation has constant worst-case cost for all
operations and linear space usage.

Randomized dictionaries
The most efficient randomized dictionaries, both in theory
and practice, are based on hashing techniques. Much work
has been devoted to the trade-off between time and space
for such dictionaries, but in the context of this paper we
will only require that a dictionary uses linear space. While
hashing algorithms were historically analyzed under the so-
called uniform hashing assumption, most modern results are
shown using explicit, and efficiently implementable, hash
functions. In the context of external memory, the key re-
quirement on a hash function is that its description should
fit into internal memory. A reasonable assumption, made in
the following, is that internal memory has capacity to hold
O(log n) keys. This allows O(log n)-wise independent hash
functions, for which a large range of hashing algorithms can
be shown to work well, see e.g. [13, 14].

There are dictionaries having performance that is, in an
asymptotic sense, almost as good as one can hope for in a
randomized structure. If one wants a randomized dictionary
such that bounds on running times of its operations can
be expressed in form O(1), without interest in the actual
constant, then a choice is the dictionary of [6], having lookup
and update costs of O(1) I/Os with high probability (the
probability is 1 − O(n−c), where c can be chosen as any
constant).

In our setting, having D parallel disks can be exploited
by striping, i.e., considering the disks as a single disk with
block size BD. If BD is at least logarithmic in the number
of keys, a linear space hash table (with a suitable constant)
has no overflowing blocks with high probability. This is true
even if we store associated information of size O(BD/ log n)
along with each key. Note that one can always use the dic-
tionary to retrieve a pointer to satellite information of size
BD, which can then be retrieved in an extra I/O. However,
it is interesting how much satellite information can be re-
turned in a single I/O. We call the maximum supported size
of satellite data of a given method its bandwidth. Cuckoo
hashing [12] can be used to achieve bandwidth BD/2, us-
ing a single parallel I/O, but its update complexity is only
constant in the amortized expected sense.

In general, the average cost of an operation can be made
arbitrarily close to 1, whp., by the following folklore trick:
Keep a hash table storing all keys that do not collide with
another key (in that hash table), and mark all locations for
which there is a collision. The remaining keys are stored
using the algorithm of [6]. The fraction of searches and up-
dates that need to go to the dictionary of [6] can be made
arbitrarily small by choosing the hash table size with a suit-
ably large constant on the linear term. Note that the band-
width for this method can be made Θ(BD) by allowing an
extra I/O for operations on the keys in the second dictio-
nary.

Our results
In this paper we present deterministic and worst-case effi-
cient results closely matching what can be achieved using
hashing. All of our dictionaries use linear space. The first

Method Lookup
I/Os

Update
I/Os

Band-
width

Conditions

[6] O(1) O(1)
whp. - -

Sect. 4.1 O(1) O(1) - D=Ω(log u)

Hashing,
no overflow

1 whp. 2 whp. O
“

BD
log n

”

BD=Ω(log n)

Sect. 4.1 1 2 O
“

BD
log n

”

D=Ω(log u)
B=Ω(log n)

[12] 1 O(1)
exp.

O(BD)
-

[6] + trick 1 + ε
avg. whp.

2 + ε
avg. whp.

O(BD)
-

Sect. 4.3 1 + ε
avg.

2 + ε
avg.

O(BD) D=Ω(log u)
B=Ω(log n)

Figure 1: Comparison of our new results to existing
ones on parallel disk model dictionaries with con-
stant time per operation. All dictionaries use linear
space. The parameter ε > 0 can be chosen to be any
constant; u denotes the size of the universe U . Up-
date bounds take into account the cost of reading a
block before it can be written, making 2 I/Os the
best possible. For randomized dictionaries, “whp”
stands for “with high probability”, and “exp” stands
for “expected amortized”. Bounds that hold on av-
erage over all elements in the set are marked “avg.”
Where relevant (for dictionaries using close to 1
I/O), the bandwidth is also stated.

of our dictionaries achieves O(1) I/Os in the worst case for
both lookups and queries, without imposing any require-
ments on the value of B. A variation of this dictionary per-
forms lookups in 1 I/O and updates in 2 I/Os, but requires
that B = Ω(log n); the bandwidth is O(BD

log n
), like in the

comparable hashing result. We also give another dictionary
that achieves the bandwidth of O(BD) at the cost of relaxed
operation performance – lookups take 1 + ε I/Os on aver-
age, and updates take 2+ε I/Os on average. The worst-case
cost is O(log n), as opposed to hashing where the worst-case
cost is usually linear. Figure 1.1 shows an overview of main
characteristics of all the mentioned dictionaries – the new
ones and the comparable hashing-based structures.

All of our algorithms share features that make them suit-
able for an environment with many concurrent lookups and
updates:

• There is no notion of an index structure or central
directory of keys. Lookups and updates go directly
to the relevant blocks, without any knowledge of the
current data other than the size of the data structure
and the size of the universe U .

• If we fix the capacity of the data structure and there
are no deletions (or if we do not require that space of
deleted items is reused), no piece of data is ever moved,
once inserted. This makes it easy to keep references
to data, and also simplifies concurrency control mech-
anisms such as locking.

The results in Figure 1.1 are achieved by use of an un-
balanced expander graph of degree O(log u). While the ex-
istence of such a graph is known, the currently best ex-

plicit (i.e., computationally efficient) construction has de-

gree 2(log log u)O(1)

[16]. This means that with current state-
of-the-art in expander construction, the smallest number of

disks for which we can realize our scheme is 2(log log u)O(1)

.
In Section 5 we explore the situation in which we have b

√
u

words of internal memory available, for some constant b,
and obtain a “semi-explicit” expander construction of de-
gree (log u)O(1). The resulting expanders require either a

factor (log u)O(1) more space or a slightly stronger model
(the parallel disk head model) to support our algorithms.
The presented dictionary structures may become a practi-
cal choice if and when explicit and efficient constructions of
unbalanced expander graphs appear.

1.2 Motivation
File systems are by excellence an associative memory. This

associative retrieval is implemented in most commercial sys-
tems through variations of B-trees. In a UNIX example,
to retrieve a random block from a file (inode), one follows
pointers down a tree with branching factor B; leaves hold
pointers to the blocks of the file.

Since one does not need the additional properties of B-
trees (such as range searching), a hash table implementation
can be better. In theory, this can save an O(logB n) factor.
In practice, this factor is a small constant: in most settings
it takes 3 disk accesses before the contents of the block is
available. However, the file system is of critical importance
to overall performance, and making just one disk read in-
stead of 3 can have a tremendous impact. Furthermore,
using a hash table can eliminate the overhead of translat-
ing the file name into an inode (which we have not counted
above), since the name can be easily hashed as well.

Note that the above justification applies only to random
accesses, since for sequential scanning of large files, the over-
head of B-trees is negligible (due to caching). One may
question the need for such random access. For algorithms
on massive data sets it is indeed not essential. However,
there are also critical applications of a more data-structural
flavor. Popular examples include webmail or http servers.
These typically have to retrieve small quantities of informa-
tion at a time, typically fitting within a block, but from a
very large data set, in a highly random fashion (depend-
ing on the desires of an arbitrary set of users). Arrays of
disks are of course the medium of choice for such systems,
so parallelism is readily available. Our results show how
parallelism can, at least in theory, be used to provide an
attractive alternative to B-trees in such settings.

From a theoretical perspective, we observe a trade-off be-
tween randomness and parallelism that has not been ex-
plored before. But our main motivation comes from looking
at the potential applications. Randomization at the file-
system level is an idea that is often frowned upon. For one,
having to deal with expected running times adds unneces-
sary complications to a critical component of the operating
system, and a potential for malfunction. More importantly,
the file system often needs to offer a real-time guarantee for
the sake of applications, which essentially prohibits random-
ized solutions, as well as amortized bounds.

1.3 Related work
The idea of using expander graphs for dictionaries previ-

ously appeared in [4, 10, 3]. The results of [4] can be used to
make a static dictionary, i.e., not supporting updates, in the

parallel disk model, performing lookups in 1 I/O. The results
of [10], which give a randomized structure for a serial RAM,
can be modified to get a deterministic dynamic dictionary
in a parallel setting [3]. That dictionary has good amortized
bounds on the time for updates, but analyzed in the paral-
lel disk head model [1] (one disk with D read/write heads),
which is stronger than the parallel disk model, and fails to
model existing hardware. Additionally, the worst-case cost
of updates was shown in [3] to be linear in n. Our dictionar-
ies have good worst-case performance, the I/O bounds on
operations hold in the parallel disk model, and the methods
are even simpler, in implementation as well as analysis, than
the method of [10].

Other efforts towards efficient deterministic dictionaries
(on a serial RAM) can be seen as derandomizations of hash-
ing algorithms. However, the currently best methods need
update time nΩ(1) to achieve constant lookup time [9].

1.4 Overview of paper
In Section 2 we present definitions and notation to be used

throughout the paper. One of our main tools, a determin-
istic load balancing scheme is presented in Section 3. In
section 4.1 we explain how to use the load balancing scheme
to get an efficient dictionary in the parallel disk model. Sec-
tion 4.2 presents another way of using expanders to get an
efficient dictionary in the parallel disk model, in the static
case where there are no updates. In Section 4.3 this scheme
is dynamized to get a scheme that uses close to the optimal
number of I/Os for operations, on average over all elements.
Finally, Section 5 presents a new explicit expander construc-
tion for external memory algorithms.

2. PRELIMINARIES
An essential tool, common to all of our dictionary con-

structions is a class of expander graphs. There have been
a number of definitions of expander graphs, some of them
equivalent, and different notations have been used in the lit-
erature. The graphs that we use are bipartite. In a bipartite
graph G = (U, V, E), we may refer to U as the “left” part,
and refer to V as the “right” part; a vertex belonging to
the left (right) part is called a left (right) vertex. In our
dictionary constructions, the left part corresponds to the
universe U of keys, and the right part corresponds to the
disk blocks of the data structure. In Sect 5, where a new
explicit construction is described, expanders are not tied to
any particular application. A bipartite graph is called left-d-
regular if every vertex in the left part has exactly d neighbors
in the right part.

Definition 1. A bipartite, left-d-regular graph G = (U,V, E)
is a (d, ε, δ)-expander if any set S ⊂ U has at least
min ((1 − ε)d|S|, (1 − δ)|V |) neighbors.

Since expander graphs are interesting only when |V | < d|U |,
some vertices must share neighbors, and hence the parame-
ter ε cannot be smaller than 1/d.

We introduce notation for cardinalities of important sets:
u = |U |, v = |V |, and n = |S|. The set of neighbors of a set
S ⊂ U is denoted by ΓG(S) = {y ∈ V | (∃x ∈ S) (x, y) ∈ E}.
The subscript G will be omitted when it is understood, and
we write Γ(x) as a shorthand for Γ({x}). We use [x] to
denote the set {1, . . . , x}, and let D = [d]. In Sect. 5 we will
refer to bipartite expander graphs in terms of their neighbor

function F : U × D → V , where for x ∈ U F (x, i) is the ith
neighbor of x.

When G is an (d, ε, δ)-expander, then for any set S ⊂ U

such that |S| < (1−δ)v
(1−ε)d

it holds that |Γ(S)| ≥ (1 − ε)d|S|.
It will be convenient to introduce another notational defini-
tion of expander graphs; this definition is used starting from
Sect. 4.2 and until the end of the paper.

Definition 2. A bipartite, left d-regular graph G = (U, V, E)
is an (N, ε)-expander if any set S ⊂ U of at most N left ver-
tices has at least (1 − ε)d|S| neighbors.

To make the algorithms work in the parallel disk model
the expander graphs used should be striped – in a striped, d-
regular, bipartite graph there is a partition of the right side
into d sets such that any left vertex has exactly one neighbor
in each set of the partition. The construction of the graph
should allow the computation of Γ(x) for any given x, in a
way the represents the elements of Γ(x) in form (i, j), where
i is the index of the partition set and j is the index within
that set.

There exist (d, ε, δ)-expanders with left degree d = O(log(u
v
)),

for any v and positive constants ε, δ. If we wish that ev-
ery subset of U having less than N elements expands “very
well”, i.e. if we need a (N, ε)-expander it is possible to have
v = Θ(Nd) (clearly it is a requirement that v = Ω(Nd)).

For applications one needs an explicit expander, i.e., an
expander for which we can efficiently compute the neighbor
set of a given node (in the left part). In the context of exter-
nal memory algorithms, our requirement on an explicit con-
struction is that the neighbor set can be computed without
doing any I/Os, i.e., using only internal memory. No explicit
constructions with the mentioned (optimal) parameters are
known – see Sect. 5 for a discussion of state-of-the-art.

3. DETERMINISTIC LOAD BALANCING
We will consider d-choice load balancing using (unbal-

anced) bipartite expander graphs. Suppose there is an un-
known set of n left vertices where each vertex has k items,
and each item must be assigned to one of the neighbor-
ing right vertices (called “buckets”). We consider a natural
greedy strategy for balancing the number of items assigned
to each bucket. The assumption is that the set is revealed el-
ement by element, and the decision on where to assign the k
items must be made on-line. The strategy is this: Assign the
k items of a vertex one by one, putting each item in a bucket
that currently has the fewest items assigned, breaking ties
arbitrarily. The scheme allows multiple items belonging to
a vertex to be placed in one neighboring bucket.

A special case of this load balancing scheme, where k = 1
and the bipartite graph is a random graph of left degree
2, was presented and analyzed in [2, ?]. Tight bounds
on the maximum load were given for the “heavily loaded
case”, showing that the deviation from the average load is
O(log log n) with a high probability. We now give an analo-
gous result for a fixed (d, ε, δ)-expander. The scheme places
a number of items in each bucket that is close to the average
load of kn/v.

Lemma 3. If d > k
1−ε

then after running the load balanc-

ing scheme using a (d, ε, δ)-expander, the maximum number
of items in any bucket is bounded by kn

(1−δ)v
+ log(1−ε) d

k
v.

Proof. Let B(i) denote the number of buckets having
more than i items, and let µ stand for kn

(1−δ)v
. By the pi-

geonhole principle we have that B(µ) < kn
µ

= (1 − δ)v. We

will show that (1 − ε) d
k
· B(µ + i) ≤ B(µ + i − 1), for i ≥ 1.

Note that there are at least B(µ + i)/k left vertices that
have placed an item in a bucket of load more than µ + i
(after placement). Denoting the set of such left vertices by
Si, by the expansion property we have |Γ(Si)| ≥ min((1 −
ε)d · B(µ + i)/k, (1 − δ)v). Every vertex from Si has all its
neighboring buckets filled with more that µ + i − 1 items,
since the vertex was forced to put an item into a bucket of
load larger than µ + i − 1. If |Γ(Si)| was not smaller than
(1−δ)v then we would have B(µ+ i−1) ≥ (1−δ)v, which is
a contradiction. As a result, B(µ+i) < (1−δ)v ·((1−ε) d

k
)−i,

and it follows that B(µ + log(1−ε) d
k

v) = 0.

It is not hard to observe that we actually get a bound of
min(kn

q
+log(1−ε) d

k
q), where the minimum is over q ranging

from 1 to (1 − δ)v. The simpler statement in the lemma is
sufficient for the dictionary application, as we use expanders
with v not too big.

4. DICTIONARIES ON PARALLEL DISKS
We consider dictionaries over a universe U of size u. It is

sufficient to describe structures that support only lookups
and insertions into a set whose size is not allowed to go
beyond N , where the value of N is specified on initialization
of the structure. This is because the dictionary problem is
a decomposable search problem, so we can apply standard,
worst-case efficient global rebuilding techniques (see [11]) to
get fully dynamic dictionaries, without an upper bound on
the size of the key set, and with support for deletions. The
main observations, assuming that we allow the number of
disks to increase by a constant factor, are:

• The global rebuilding technique needed keeps two data
structures active at any time, which can be queried in
parallel.

• We can mark deleted elements without influencing the
search time of other elements.

• We can make any constant number of parallel instances
of our dictionaries. This allows insertions of a constant
number of elements in the same number of parallel
I/Os as one insertion, and does not influence lookup
time.

The amount of space used and the number of disks increase
by a constant factor compared to the basic structure. By
the observations above, there is no time overhead. Deletions
have the same worst case time bound as insertions.

4.1 Basic dictionary functionality
Without satellite information
Use a striped expander graph G with v = N/ log N , and
an array of v (more elementary) dictionaries. The array
is split across D = d disks according to the stripes of G.
The vertices from V represent indexes to the elements of
the array. The dictionary implements the load balancing
scheme described above, with k = 1. This gives a load of
size Θ(log N) on each bucket.

If the block size B is Ω(log N), the contents of each bucket
can be stored in a trivial way in O(1) blocks. Thus, we get
a dictionary with constant lookup time. By setting v =

O(N/B) sufficiently large we can get a maximum load of
less than B, and hence membership queries take 1 I/O. The
space usage stays linear.

The constraint Ω(log N) is reasonable in many cases. Yet,
even without making any constraints on B, we can achieve a
constant lookup and insertion time by using an atomic heap
[7, 8] in each bucket. This makes the implementation more
complicated; also, one-probe lookups are not possible in this
case.

With satellite information
If the size of the satellite data is only a constant factor larger
than the size of a key, we can increase v by a constant factor
to allow that the associated data can be stored together with
the keys,and can be retrieved in the same read operation.
Larger satellite data can be retrieved in one additional I/O
by following a pointer. By changing the parameters of the
load balancing scheme to k = d/2 and v = kN/ log N , it is
possible to accommodate lookup of associated information of
size O(BD/ log N) in one I/O. Technicalities on one-probe
lookups – what exactly to write and how to merge the data –
are given in the description of a one-probe static dictionary
in Sect. 4.2

4.2 Almost optimal static dictionary
The static dictionary presented in this section is interest-

ing in its own right: it offers one-probe lookups with good
bandwidth utilization, uses linear space when B = Ω(log n),
and the construction complexity is within a constant factor
from the complexity of sorting nd keys, each paired with
some associated data. It is not optimal because it uses a bit
more space when B is small and the construction procedure
takes more time than the time it takes to read the input,
which would be fully optimal. The methods of this dictio-
nary serve as a basis of the dynamic structure of the next
section.

From now on, the graph G = (U,V, E) is assumed to be a
(N, ε)-expander, unless otherwise stated. We will work only
with sets such that n ≤ N .

Recall that the unique existential quantifier is denoted by
∃! – it can be read as “there exists a unique”. Let ΦG(S) =
{y ∈ V | (∃!x ∈ S) (x, y) ∈ E}. We call the elements of
ΦG(S) unique neighbor nodes.

Lemma 4. |ΦG(S)| ≥ (1 − 2ε)d|S|.
Proof. We define a chain of sets: Tk = {x1, . . . , xk}, for

1 ≤ k ≤ n. We have Γ(Tk+1) \ Γ(Tk) = Φ(Tk+1) \ Φ(Tk).
In the worst case, all the elements of Γ(xk+1) ∩ Γ(Tk) will
be in Φ(Tk). This leads to inequality |Φ(Tk+1)| ≥ |Φ(Tk)| −
d + 2(|Γ(Tk+1)| − |Γ(Tk)|). By induction, for all k ≤ n it
holds that 2|Γ(Tk)| − |Φ(Tk)| ≤ k · d. Therefore |Φ(S)| ≥
2(1 − ε)nd − nd.

Lemma 5. Let S′ = {x ∈ S | |Γ(x) ∩ Φ(S)| ≥ (1 − λ)d},
for a given λ > 0. Then |S′| ≥ (1 − 2ε

λ
)n.

Proof. W.l.o.g. suppose S′ = {xk+1, xk+2, . . . , xn}. Let
k∗ be the largest integer that satisfies k∗(1−λ)d+(n−k∗)d ≥
|Φ(S)|. It is easy to see that k∗ ≥ k. Using Lemma 4 gives
k∗ ≤ 2ε

λ
n.

For the following static and dynamic dictionary results,
the stated numbers of used disks represent minimum re-
quirements for functioning of the dictionaries. The record

of one key, together with some auxiliary data, is supposed
to be distributed across 2

3
d disks. For 1 I/O search to be

possible, every distributed part of the record must fit in one
block of memory. If the size of the satellite data is too large,
more disks are needed to transfer the data in one probe. The
degree of the graph does not change in that case, and the
number of disks should be a multiple of d. Recall that we as-
sume availability of a suitable expander graph construction
such that d = O(log u).

Theorem 6. Let σ denote the size in bits of satellite data
of one element, and let d be the degree of the given (n, ε)-
expander graph. In the parallel disk model there is a static
dictionary storing a set of n keys with satellite data, such
that lookups take one parallel I/O and the structure can be
constructed deterministically in time proportional to the the
time it takes to sort nd records with the total amount of
satellite information proportional to nσ bits. The exact us-
age of resources depends on the block size relative to the size
of a key:

a) If O(log n) keys can fit in one memory block, then the
structure uses 2d disks and a space of O(n(log u + σ))
bits;

b) If the block size is smaller, then d disks are used and
the space consumption is O(n log u log n + nσ) bits.

The space usage in case (a) is optimal, up to a constant
factor, when u is at least polynomially larger than n. When
the universe is tiny, a specialized method is better to use,
for example simple direct addressing. The space usage in
case (b) is optimal when σ > log u log n).

Proof. Fix a value of ε that will always satisfy 1/d <
ε < 1/6; for concreteness we set ε = 1/12 (this imposes
the restriction d > 12). The data structure makes use of
a striped (n, ε)-expander graph of left degree d and with
v = O(nd). The main data is stored in an array A of v
fields, where the size of a field depends on the case – (a) or
(b). We will first explain the structure for the case (b) in
detail, then we will describe modifications made to optimize
the space usage in the case (a), and finally give the algorithm
for construction of the structures.

Structure in case (b). Every field of A has the size of lg n+
3σ
2d

bits (possibly rounded up to the nearest power of two).
Given any x ∈ U the set Γ(x) is viewed as the set of indexes
to the fields of A that may contain data about x. We will
later describe how to accomplish that, for every x ∈ S, 2/3
of the fields referenced by Γ(x) store parts of data about
the associated record for x. When a lookup is performed
for a key x, all the fields of A pointed to by Γ(x) are read
into the internal memory in one parallel I/O. However, not
all of them store data belonging to x. Deciding the correct
ones could be done by storing a copy of the key in each of
the fields of A that were assigned to it. Yet, a more space
efficient solution is to use identifiers of lg n bits, unique for
each element of S. Upon retrieval of the blocks from disks,
it is checked whether there exists an identifier that appears
in more than half of the fields. If not, then clearly x /∈ S,
otherwise the fields containing the majority identifier are
merged to form a record of associated data. Note that no
two keys from U can have more than εd common neighbors
in V . Therefore, we know that the collected data belongs to
x – there is no need for an additional comparison, or similar.

Structure in case (a). When the block size is reasonably
large, we can avoid storing lg n bits wide identifiers within
fields of A. We use two sub-dictionaries in parallel – one for
pure membership queries and another for retrieval of satel-
lite data. Half of the 2d available disks is devoted to each
dictionary. Querying membership in S is done using the dic-
tionary given in Sect. 4.1. Every stored key is accompanied
by a small integer of lg d bits, which we call head pointer. By
the assumption of the theorem for this case, O(log n) such
key-pointer pairs can fit in one block, thereby enabling one
probe queries according to Sect. 4.1.

The retrieval structure is similar to the dictionary for the
case (b). The array A now has fields of size 3σ

2d
+ 4 bits. In-

stead of “big” identifiers we choose to store succinct pointer
data in every field; the fraction of an array field dedicated
to pointer data will vary among fields. For every x we may
introduce an ordering of the neighbor set Γ(x) according to
the stripes of V . That order implies an order of the fields
of A assigned to a particular element. Each assigned field
stores a relative pointer to the next field in the list – if the
jth neighbor follows the ith neighbor in the list of assigned
nodes then the value j − i is stored within A(Γ(x, i)), where
Γ(x, i) denotes the ith neighbor of x. The differences are
stored in unary format, and a 0-bit separates this pointer
data from the record data . The tail field just starts with a
0-bit. The entire space occupied by the pointer data is less
than 2d bits per element of S; all the remaining space within
fields is used on storing record data. Upon parallel retrieval
of blocks from both dictionaries, we first check whether x is
present in S. If it is, we use the head pointer to reconstruct
the list and merge the satellite data.

Construction in O(n) I/Os. Assigning b 2
3
dc neighbors to

each key from S is done using the properties of unique neigh-
bor nodes. By setting λ = 1/3, according to Lemma 5 and
the choice of ε, at least half of the elements of S have at
least 2

3
d neighbors unique to them. For each x ∈ S′ (S′

defined by the Lemma) any 2
3
d unique neighbors are chosen

to store its satellite data; the fields of unused nodes from
Γ(S′) ∩ Φ(S) are labeled with an empty-field marker. The
entire process of determining Φ(S), S′, and filling the fields
can be done in less than c · n parallel I/Os, for a constant c.
The procedure is recursively applied to the set S \ S′, inde-
pendently of the assignments done at the first level, because
there is no intersection between the assigned neighbor set
for S′ and Γ(S \S′). The whole assignment procedure takes
less than c(n + n/2 + n/4 + . . .) = O(n) I/Os.

Improving the construction. We keep the concept of mak-
ing assignments using unique neighbor nodes, but change
the procedure that realizes it. We assume that the input
has a form of an array of records split across the disks, but
with individual records undivided (this should be a stan-
dard representation). We will describe a procedure that is
first applied to the input array, and then recursively applied
to the array obtained by removing the elements of S′ from
the input array. Unlike in the first version of the algorithm,
the job is not completely finished for the elements of S′ at
the end of the procedure. The ouput of the procedure is an
array of pairs of type (i, αi), where αi is data that is to be
written to A(i). This array will contain information only
about the fields assigned to the elements of S′. Each time
the procedure finishes execution, the output is appended to

a global array, call it B.
The procedure starts by making an array of all pairs of

type (x, y), x ∈ S, y ∈ Γ(x). This array is sorted according
to the second component of pairs, and then traversed to re-
move all sequences of more than one element that have equal
values of the second components. This effectively leaves us
a list of unique neighbor nodes, each paired with the (only)
neighbor from the left side. By sorting this list of pairs
according to the fist components, we get the elements of
Φ(S) ∩ Γ(x) grouped together, for each x ∈ S, and we are
able to remove data about members of S that do not have
enough unique neighbors. We now have a list of the elements
of S′, with associated lists of unique neighbors.

We sort the input array of records according to the dictio-
nary keys. The resulting array is traversed simultaneously
with the array of elements of S′ (recall that that one is sorted
also), allowing us to produce an array of pairs of type (i, αi).
The description of the main procedure is now finished.

When the contents of the array B is final (at the end of
the recursion), it is sorted according to the first components
of elements; this is the most expensive operation in the con-
struction algorithm. Filling the array A is at this point a
straightforward task.

4.3 Full bandwidth with 1 + ε average I/O
The above static dictionary is not hard to dynamize in a

way that gives fast average-case lookups and updates. We
concentrate on the case (a) from Theorem 6. A slightly
weaker result is possible in the more general case as well.
In this section, the reader should be careful to distinguish
between symbols ε and ε; ε is a parameter of operation per-
formance, while ε is a parameter for expander graphs and
its value will depend on the value of ε.

Theorem 7. Let ε be an arbitrary positive value, and
choose d, the degree of expander graphs, to be (a feasible
value) larger than 6(1 + 1/ε). Under the conditions of The-
orem 6.a, there is a deterministic dynamic dictionary that
provides the following performance: an unsuccessful search
takes one parallel I/O, returning the associated data when
a search is successful takes 1 + ε I/Os averaged over all the
elements of S, updates run in 2 + ε I/Os on average.

Proof. As mentioned at the beginning of this section it is
enough to describe a structure that supports only lookups
and insertions into a set whose size is not allowed to go
beyond N , where the value of N is specified on initialization
of the structure. As in the static case, we use two sub-
dictionaries. Since the first dictionary is already dynamic,
modifications are made only to the dictionary that retrieves
associated data. We choose ε so that 6

d
< 6ε < 1/(1+ 1

ε
); the

restriction on d was imposed to make this possible. Instead
of just one array, now there are l = log N/ log 1

6ε
arrays of

decreasing sizes: A1, A2, . . . , Al. The size of the array Ai

is (6ε)i−1v. Each array uses a different expander graph for
field indexing – all expander graphs have the same left set
U , the same degree d, but the size of each expander’s right
side equals the size of its corresponding array.

The insertion procedure works in a first-fit manner: for a
given x ∈ U find the first array in the sequence (A1, A2, . . . , Al)
in which there are 2

3
d fields unique to x (at that moment).

Using Lemma 5, it is not hard to check that the procedure
is correct, i.e. a suitable place is always found. To briefly
argue this observe that for the resulting set of an insertion

sequence, denote it by S, A1 will hold the data for a su-
perset of S′ (where S′ is defined as in Lemma 5 and with
respect to the first expander graph), and so on. In the worst
case an insertion takes l reads and one write. However, any
sequence of n insertions, n ≤ N , requires n parallel writes
and less than

n + (6ε)n + (6ε)2n + . . . + (6ε)ln

parallel read operations. The choice of ε implies the average
of less than 1 + ε reads.

5. EXPLICIT CONSTRUCTIONS
In the previous sections we have assumed “free” access

to an explicit optimal expander. An expander construction
(and any expander graph constructed by it) is considered
explicit if one can evaluate Γ(x), for a left vertex x, in time
polylog(u), given the size of U and V . It is not known how
to obtain an optimal explicit expander, when u = ω(N).

In the context of the external memory model it makes
sense to allow an expander construction to make use of a
small amount of internal memory, the primary issue being
avoiding access to external memory in order to evaluate the
neighbors of a left vertex. In this section we therefore con-
sider what we will call semi-explicit expander constructions,
which use o(N) words of internal memory and are allowed
a pre-processing step, but which still allows the neighbors
of a left vertex to be evaluated in time polylog(u) with no
access to external memory.

We first discuss previous related results and then show
how to achieve a semi-explicit expander construction requir-
ing, for any constant β ∈ [0, 1], O(Nβ) words of internal
memory, in the case where u = poly(N).

5.1 Previous Results
For the case of balanced expanders with arbitrarily small ε,

the best known explicit expander is due to Capalbo et al. [5]
who achieve an expander with constant degree when the
graph is almost balanced, i.e., u

v
= O(1). In the case of ar-

bitrarily unbalanced expanders the best known result is due
to Ta-Shma:

Theorem 8 ([16]). For any N, u, and ε, where ε < 1
and N ≤ u, there exists an explicit construction of an (N, ε)-
expander graph defined by F : [u] × [d] → [Nd], of degree

d = 2O((log log u)2 log log N)

Expanders requiring some pre-processed storage space were
previously considered in [?]. However the representation of
the resulting expanders require space Ω(N), and are there-
fore not suitable for expander based dictionaries where the
expander representation is stored in internal memory.

5.2 Construction
The following result from [5, Theorem 7.1] plays an im-

portant role in our construction:

Theorem 9 ([5]). For every u and ε > 0, there exists
an (N, ε)-expander defined by F : U × D → V , where v =
O(Nd), d = poly

`

1
ε

log u
v

+ 1
´

, and N = Θ
`

v·ε
d

´

.

F can be computed in time poly(log u, log 1
ε
) given two ap-

propriate expanders using s = poly(u
v
, 1

ε
) bits, which can be

found probabilistically in time poly(s) or deterministically in

time 2poly(s).

If we restrict our attention to the case where N = uα

where 0 < α < 1 the space usage of poly(u
v
, 1

ε
) becomes

poly(u
uαd

, 1
ε
) = poly(u1−α

d
, 1

ε
) which cannot be guaranteed

to be o(N). However for a certain range of α it is indeed
possible to obtain a space usage of o(N) as we will see below.

Corollary 1. For any constant 0 < β < 1 there ex-
ists a semi-explicit (ε

d
u1−β/c, ε)-expander F : U × [d] →

[u1−β/c] constructed using O(uβ/εc) words of space, where
d = poly(log u

ε
) and c is some fixed constant.

Proof. The construction in Theorem 9 requires O((u
vε

)c)

space, for some constant c. We wish to use O(uβ/εc) space.
We set u/v as small as possible while maintaining this space

usage that is u/v = uβ/c. This yields v = u1−β/c. Observing
that the remaining required properties are given by Theorem
9 ends the proof.

We can use Corollary 1 in conjunction with a composition
that allows us to use two slightly unbalanced expanders to
produce a more unbalanced expander. We will refer to this
composition method, previously used on condensers by Ta-
Shma et al. in [?], as the telescope product.

Lemma 10. Let c1, c2 be constants where c1 ≥ c2 and let
F1 : U1 × D1 → V1 be a (c1·v1

d1
, ε1)-expander and let F2 :

V1 × D2 → V2 be a (c2·v2
d2

, ε2)-expander. Then for x1 ∈ U1,

e1 ∈ D1 and e2 ∈ D2, F2(F1(x1, e1), e2) : U1 × (D1 ×D2) →
V2 with appropriate re-mapping of possible multi-edges is a
(c2·v2

d1·d2
, 1 − (1 − ε1)(1 − ε2))-expander.

Proof. Consider any set S ⊆ U1 of size s ≤ c2·v2
d1·d2

. This

set is small enough to be fully expanded by F1, since c2·v2
d1·d2

≤
c1·v1

d1
by the assumption that c2 ≤ c1. The expansion of S

hence yields a set of neighbors V ′ ⊆ V1 of size v′ ≥ (1 −
ε1) · c2·v2

d2
. This set is small enough to be fully expanded

by F2, yielding a set of neighbors V ′′ ⊆ V2 of size v′′ ≥
(1 − ε2)(1 − ε1) · v2 · c2. The result of this composition may
be a multi-graph. In order to rectify this, we define the
following neighbor function: When evaluating a neighbor of
x ∈ U1 we evaluate all neighbors of x in v2 and re-map all
but one edge in each multi-edge in an appropriate and fixed
manner. This cannot decrease the expansion factor.

The need to evaluate all neighbors does not affect the
time complexity of the dictionaries in this paper, since we
always evaluate all neighbors. When only evaluating a single
neighbor this increases the time complexity by a factor d1d2.

Lemma 11. For any β′ < c, any ε′ > 0, and any j ≥ 0
there exist an (ε′uj/dj , 1− (1− ε′)j+1)-expander F (j) : [u]×
[dj] → [uj] using O(j ·uβ′

/ε′c) words of internal memory and
requiring time poly(dj) to evaluate neighbors, of degree dj =

(poly(log(u)/ε′))j+1, and right part of size uj = u(1−β′/c)j

.

Proof. Consider the following family of expanders ob-
tained by Corollary 1:

Fi,ε′ : [ui] × [poly(log(u)/ε′)] → [ui+1]

Such that each Fi,ε′ is an (
ε′ui+1

poly(log(u)/ε′)
, ε′)-expander, where

ui = u(1−β′/c)i

. Now consider the telescope product applied

recursively on this family:

F (j)(x, e1 ◦ e2 ◦ ...ej)

=

Fj,ε′ (F
(j−1)(x, e1 ◦ e2 ◦ ...ej−1), ej) if j > 0

F0,ε′ (x, e1) otherwise

By induction using Lemma 10 we see that F (j) satisfies the
lemma. The complexity of evaluating neighbors is just the
time to evaluate the neighbors of neighbors in each of the
expanders in the family, and is easily seen to be bounded by
poly(dj).

Theorem 12. For any constant 0 < β < 1 and u =
poly(N) there exists a semi-explicit (N, ε)-expander defined
by F : U × D → V , with d = polylog(u) and v = O(Nd)
requiring O(Nβ) words of pre-processed internal memory.

Proof. (For full details we refer to [3].) Let u = O(N 1/α).

We note that for sufficiently high i, F (i) from Lemma 11
reaches a point where v ≤ Ndi. Let p = 1

1−β/c
, then the

required number of iterations k is bounded by

logp(log u/ log N) + O(1) = logp(a) + O(1) = O(1) .

To obtain a total error of ε we set ε′ = 1− k
√

1 − ε such that
(1 − ε) = (1 − ε′)k. Finally, by setting β′ = α · β we ensure
a space usage of O(k · uαβ/ε′c) = O(Nβ/ε′c).

We have now attained a new construction of an unbal-
anced expander, when u is polynomial in N . Our construc-
tion requires a degree of (log N)O(1), compared to the previ-

ous best result of (log N)O((log log N)2), by using some inter-
nal memory. Like all mentioned explicit expander construc-
tions, our construction does not yield a striped expander. If
we implement the described dictionaries in the parallel disk
head model, we do not need the striped property. To get
an algorithm for the parallel disk model we may stripe an
expander F : U × D → V in a trivial manner by making a
copy Vi of the right side V of the expander for each disk i. In
order to find the neighbor of x ∈ U , we calculate F (x, i) and
return the corresponding vertex in Vi. This incurs a factor d
increase in the size of the right part of the expander, and
hence a factor d larger external memory space usage.

6. OPEN PROBLEMS
It is plausible that full bandwidth can be achieved with

lookup in 1 I/O, while still supporting efficient updates. One
idea that we have considered is to apply the load balancing
scheme with k = Ω(d), recursively, for some constant num-
ber of levels before before relying on a brute-force approach.
However, this makes the time for updates non-constant. It
would be interesting if this construction could be improved.

7. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems. Comm.
ACM, 31(9):1116–1127, 1988.

[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal.
Balanced allocations. SIAM J. Comput.,
29(1):180–200, 1999.

[3] M. Berger, E. R. Hansen, and P. Tiedemann.
Expander based dictionary data structures. Master’s
thesis, IT-University of Copenhagen, 2005. Available
at:
http://www.itu.dk/people/esben/publications/thesis.pdf.

[4] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and
S. Venkatesh. Are bitvectors optimal? In Proceedings
of the 32nd Annual ACM Symposium on Theory of
Computing (STOC ’00), pages 449–458. ACM Press,
2000.

[5] M. R. Capalbo, O. Reingold, S. P. Vadhan, and
A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proceedings of
the 34th Annual ACM Symposium on Theory of
Computing (STOC ’02), pages 659–668, 2002.

[6] M. Dietzfelbinger, J. Gil, Y. Matias, and
N. Pippenger. Polynomial hash functions are reliable
(extended abstract). In Proceedings of the 19th
International Colloquium on Automata, Languages
and Programming (ICALP ’92), volume 623 of Lecture
Notes in Computer Science, pages 235–246.
Springer-Verlag, 1992.

[7] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. J. Comput. System Sci., 48(3):533–551, 1994.

[8] T. Hagerup. Sorting and searching on the word RAM.
In Proceedings of the 15th Symposium on Theoretical
Aspects of Computer Science (STACS ’98), volume
1373 of Lecture Notes in Computer Science, pages
366–398. Springer-Verlag, 1998.

[9] T. Hagerup, P. B. Miltersen, and R. Pagh.
Deterministic dictionaries. J. Algorithms, 41(1):69–85,
2001.

[10] A. Östlin and R. Pagh. One-probe search. In
Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP ’02),
volume 2380 of Lecture Notes in Computer Science,
pages 439–450. Springer, 2002.

[11] M. H. Overmars and J. van Leeuwen. Worst-case
optimal insertion and deletion methods for
decomposable searching problems. Inform. Process.
Lett., 12(4):168–173, 1981.

[12] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

[13] J. P. Schmidt and A. Siegel. The analysis of closed
hashing under limited randomness (extended
abstract). In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC ’90),
pages 224–234. ACM Press, 1990.

[14] J. P. Schmidt, A. Siegel, and A. Srinivasan.
Chernoff-Hoeffding bounds for applications with
limited independence. SIAM J. Discrete Math.,
8(2):223–250, 1995.

[15] A. Siegel. On universal classes of extremely random
constant-time hash functions. SIAM J. Comput.,
33(3):505–543, 2004.

[16] A. Ta-Shma. Storing information with extractors. Inf.
Process. Lett., 83(5):267–274, 2002.

[17] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less
condensers, unbalanced expanders, and extractors. In
STOC ’01: Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages
143–152, New York, NY, USA, 2001. ACM Press.

[18] J. S. Vitter and E. A. M. Shriver. Algorithms for
parallel memory I: Two-level memories. Algorithmica,
12(2/3):110–147, Aug./Sept. 1994.

