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Main Theme

Power of the Word RAM !



Integer Sorting

• Radix-sort <’54 O(n log U/log n)
• Van Emde Boas ’77 O(n log log U)
• Kirkpatrick, Reisch’84 O(n log(log U/log n))
• Fredman, Willard (FOCS’90) O(n log n/log log n)  (det.)

O(n )  (rand.)
• Andersson et al. (STOC’95) O(n log log n)  (rand.)

O(n) for w >> log2 n  (rand.)
• Raman (ESA’96) O(n )  (det.)
• Andersson (FOCS’96) O(n )  (det.)
• Thorup (SODA’98) O(n (log log n)2)  (det.)
• Han (SODA’01) O(n loglogn logloglogn)  (det.)
• Han (STOC’02) O(n log log n)  (det.)
• Han, Thorup (FOCS’02) O(n )  (rand.)
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Integer (Predecessor) Searching

• Van Emde Boas ’77 O(loglog U) query time     
(“stratified trees”)

• Fredman, Willard (FOCS’90) O(log n/loglog n)    
(“fusion trees”) O(         )

• Beame, Fich (STOC’99) O(loglog U/logloglog U)  
(optimal in cell probe model) O(                      )

• Andersson, Thorup (STOC’00) O(                      )  
(“exponential search trees”) for query & update

• Pătraşcu, Thorup (STOC’06)
• Etc.
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nloglog/nlog
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Graph Problems
(e.g. MST/SSSP)

Computational Geometry
(CG)

Sorting/Searching



Standard Problems in CG

• 2D nearest neighbor search

• 2D point location

O(n log n) preproc.
O(n) space
O(log n) query

O(n) preproc.
O(n) space
O(log n) query



Standard Problems in CG (Cont’d)
• 2D line segment intersection

• 2D Voronoi diagrams & 3D convex hulls

• Etc, etc, etc.

O(n log n + K) time

O(n log n)
time



The Model

• Unit-cost RAM with word size w
• Coordinates are integers in {1,…,U}
• U ≤ 2w,  i.e., w ≥ log U
• w ≥ log n
• Availability of standard ops like <, +, -, *, /, 

bitwise-&, <<, >>



Previous Word RAM Results in CG

• Orthogonal range searching
• Orthogonal cases of 2D point location & segment 

intersection  [e.g. loglog U-type results by Overmars ’87]

• L∞ variants of 2D nearest neighbor/Voronoi diagrams 
[e.g., loglog U-type results by Karlsson ’84]

• NON-orthogonal problems???
e.g., Willard (SODA’92) asked: standard 2D Voronoi
diagrams in o(n log n) time??



Graph Problems

Sorting/Searching

Rest of 
Computational Geometry

Orthogonal CG problems



New Results

• 2D Voronoi diagrams
O(n log n/log log n) time  (rand.)

• 3D convex hulls
O(n log n/log log n) time  (rand.)

• 2D line segment intersection
O(n log n/log log n + K) time  (rand.)

• 2D point location & 2D nearest neighbor
O(n) space, O(log n/log log n) query 

• Etc, etc, etc.



New Results (Cont’d)

• 2D Voronoi diagrams
O(n ) time  (rand.)

• 3D convex hulls
O(n ) time  (rand.)

• 2D line segment intersection
O(n + K) time  (rand.)

• 2D point location & 2D nearest neighbor
O(n) space, O(                        ) query 

• Etc, etc, etc.

Uloglog/Ulog

Uloglog/Ulog

Uloglog/Ulog
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Key Subproblem: Point Location in a Slab

• Given n disjoint line 
segments spanning  
vertical slab, how to 
locate query point in 
o(log n) time??

[can’t project to 1D, can’t 
build 1D structure at every 
vertical line, …]



Basic Idea

• Replace binary tree with b-ary tree

• But how?      
[Fredman, Willard’s original “fusion tree” does not 
generalize…]



Key Observation

• Fix b, h.  Given n segments with left/right 
endpts in a length-2ℓ / length-2m vertical 
interval, we can find ≤ b segments s0,s1,…
s.t.

i. Between si & si+1: there are ≤ n/b segments, OR 
left endpts are in a length-2ℓ-h subinterval, OR   
right endpts are in a length-2m-h subinterval; 

ii. ∃ segments s0’,s2’,…, each encodable in O(h) bits,  
with s0 < s0’ < s2 < s2’ < …



Proof

• Divide left/right 
interval into 2h grid 
subintervals

• Draw (n/b)th, 
(2n/b)th, (3n/b)th,…
segment

i. Betwn s0 & s1, left 
endpts are in length-2ℓ-h

subinterval; 
Betwn s1 & s2, there are 
n/b segments

s0

s1

s2



Proof

s0

s2

s0’
• ∃ s0’ betwn s0 & s2 using 

only grid endpts (O(h)
bits)



The New “2D Fusion Tree” for the Slab 
Subproblem

• Just apply Observation recursively!
• Each tree node can be packed in one word if 

bh ≈ w  (by ii)

• Query time =   tree height (using word ops)
≤ logb n + 2w/h  (by i)
=  O(logb n + b)   (set b = logε n)
=  O(log n/log log n)



Switch speakers. Confuse audience



Using the Slab Problem

• talk only about 2D point location
– a bit more smartness involved for 2D Voronoi, 3D 

convex hull, line segment intersection…
• before our work:

– the slab problem is a trivial binary search
– going to the general case is what’s interesting



Conversion Techniques
• Lipton+Tarjan planar separator

• Mulmuley random sampling

• Cole, Sarnak+Tarjan persistence
• use exponential trees [Andersson] + new ideas

• Kirkpatrick triangulation refinement

• Edelsbrunner+Guibas+Stolfi separating chains



Review: Persistence

• sweep with vertical line
• insert/remove segments into dynamic slab structure

(next slides)

• keep all past images of the data structure in small space 
via persistence (can be done)



Review: Exponential Trees
Hope: dynamize slab structure black-box

pick     separators,        segments apart

construction: static structure on separators; recurse
update: rebuild static structure when needed 

separators change infrequently (?)

query:
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2D ≠ 1D
Trouble: segments are not numbers

– remove separator segment
– insert intersecting segment

separator does not separate

Use offline knowledge:
separators = segments which won’t be removed for a long time



Open problems

• count segment intersections in o(n log n)
• derandomize (3D convex hull, 2D Voronoi)
• better algorithms

– point location problem is offline

• lower bounds for the data structures
– is exact NN easier than point location?

Thank  you!
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