
Planar Point Location in Sublogarithmic Time

Mihai Pătraşcu (MIT)

Point Location in o(log n) Time,
Voronoi Diagrams in o(n log n) Time, and

Other Transdichotomous Results in
Computational Geometry

Timothy M. Chan (U. Waterloo)

Main Theme

Power of the Word RAM !

Integer Sorting

• Radix-sort <’54 O(n log U/log n)
• Van Emde Boas ’77 O(n log log U)
• Kirkpatrick, Reisch’84 O(n log(log U/log n))
• Fredman, Willard (FOCS’90) O(n log n/log log n) (det.)

O(n) (rand.)
• Andersson et al. (STOC’95) O(n log log n) (rand.)

O(n) for w >> log2 n (rand.)
• Raman (ESA’96) O(n) (det.)
• Andersson (FOCS’96) O(n) (det.)
• Thorup (SODA’98) O(n (log log n)2) (det.)
• Han (SODA’01) O(n loglogn logloglogn) (det.)
• Han (STOC’02) O(n log log n) (det.)
• Han, Thorup (FOCS’02) O(n) (rand.)

nlog

nlog
nloglognlog

nloglog

Integer (Predecessor) Searching

• Van Emde Boas ’77 O(loglog U) query time
(“stratified trees”)

• Fredman, Willard (FOCS’90) O(log n/loglog n)
(“fusion trees”) O()

• Beame, Fich (STOC’99) O(loglog U/logloglog U)
(optimal in cell probe model) O()

• Andersson, Thorup (STOC’00) O()
(“exponential search trees”) for query & update

• Pătraşcu, Thorup (STOC’06)
• Etc.

nlog

nloglog/nlog
nloglog/nlog

Graph Problems
(e.g. MST/SSSP)

Computational Geometry
(CG)

Sorting/Searching

Standard Problems in CG

• 2D nearest neighbor search

• 2D point location

O(n log n) preproc.
O(n) space
O(log n) query

O(n) preproc.
O(n) space
O(log n) query

Standard Problems in CG (Cont’d)
• 2D line segment intersection

• 2D Voronoi diagrams & 3D convex hulls

• Etc, etc, etc.

O(n log n + K) time

O(n log n)
time

The Model

• Unit-cost RAM with word size w
• Coordinates are integers in {1,…,U}
• U ≤ 2w, i.e., w ≥ log U
• w ≥ log n
• Availability of standard ops like <, +, -, *, /,

bitwise-&, <<, >>

Previous Word RAM Results in CG

• Orthogonal range searching
• Orthogonal cases of 2D point location & segment

intersection [e.g. loglog U-type results by Overmars ’87]

• L∞ variants of 2D nearest neighbor/Voronoi diagrams
[e.g., loglog U-type results by Karlsson ’84]

• NON-orthogonal problems???
e.g., Willard (SODA’92) asked: standard 2D Voronoi
diagrams in o(n log n) time??

Graph Problems

Sorting/Searching

Rest of
Computational Geometry

Orthogonal CG problems

New Results

• 2D Voronoi diagrams
O(n log n/log log n) time (rand.)

• 3D convex hulls
O(n log n/log log n) time (rand.)

• 2D line segment intersection
O(n log n/log log n + K) time (rand.)

• 2D point location & 2D nearest neighbor
O(n) space, O(log n/log log n) query

• Etc, etc, etc.

New Results (Cont’d)

• 2D Voronoi diagrams
O(n) time (rand.)

• 3D convex hulls
O(n) time (rand.)

• 2D line segment intersection
O(n + K) time (rand.)

• 2D point location & 2D nearest neighbor
O(n) space, O() query

• Etc, etc, etc.

Uloglog/Ulog

Uloglog/Ulog

Uloglog/Ulog

Uloglog/Ulog

Key Subproblem: Point Location in a Slab

• Given n disjoint line
segments spanning
vertical slab, how to
locate query point in
o(log n) time??

[can’t project to 1D, can’t
build 1D structure at every
vertical line, …]

Basic Idea

• Replace binary tree with b-ary tree

• But how?
[Fredman, Willard’s original “fusion tree” does not
generalize…]

Key Observation

• Fix b, h. Given n segments with left/right
endpts in a length-2ℓ / length-2m vertical
interval, we can find ≤ b segments s0,s1,…
s.t.

i. Between si & si+1: there are ≤ n/b segments, OR
left endpts are in a length-2ℓ-h subinterval, OR
right endpts are in a length-2m-h subinterval;

ii. ∃ segments s0’,s2’,…, each encodable in O(h) bits,
with s0 < s0’ < s2 < s2’ < …

Proof

• Divide left/right
interval into 2h grid
subintervals

• Draw (n/b)th,
(2n/b)th, (3n/b)th,…
segment

i. Betwn s0 & s1, left
endpts are in length-2ℓ-h

subinterval;
Betwn s1 & s2, there are
n/b segments

s0

s1

s2

Proof

s0

s2

s0’
• ∃ s0’ betwn s0 & s2 using

only grid endpts (O(h)
bits)

The New “2D Fusion Tree” for the Slab
Subproblem

• Just apply Observation recursively!
• Each tree node can be packed in one word if

bh ≈ w (by ii)

• Query time = tree height (using word ops)
≤ logb n + 2w/h (by i)
= O(logb n + b) (set b = logε n)
= O(log n/log log n)

Switch speakers. Confuse audience

Using the Slab Problem

• talk only about 2D point location
– a bit more smartness involved for 2D Voronoi, 3D

convex hull, line segment intersection…
• before our work:

– the slab problem is a trivial binary search
– going to the general case is what’s interesting

Conversion Techniques
• Lipton+Tarjan planar separator

• Mulmuley random sampling

• Cole, Sarnak+Tarjan persistence
• use exponential trees [Andersson] + new ideas

• Kirkpatrick triangulation refinement

• Edelsbrunner+Guibas+Stolfi separating chains

Review: Persistence

• sweep with vertical line
• insert/remove segments into dynamic slab structure

(next slides)

• keep all past images of the data structure in small space
via persistence (can be done)

Review: Exponential Trees
Hope: dynamize slab structure black-box

pick separators, segments apart

construction: static structure on separators; recurse
update: rebuild static structure when needed

separators change infrequently (?)

query:

n

...)(
lglg

lg...
lglg

lg
lglg

lg
4
1

2
1

4

4

++⋅≤++
n

n
n

n
n

n

)(nΘ

2D ≠ 1D
Trouble: segments are not numbers

– remove separator segment
– insert intersecting segment

separator does not separate

Use offline knowledge:
separators = segments which won’t be removed for a long time

Open problems

• count segment intersections in o(n log n)
• derandomize (3D convex hull, 2D Voronoi)
• better algorithms

– point location problem is offline

• lower bounds for the data structures
– is exact NN easier than point location?

Thank you!

	Planar Point Location in Sublogarithmic TimeMihai Pătraşcu (MIT) Point Location in o(log n) Time,Voronoi Diagrams in o(
	Integer Sorting
	Integer (Predecessor) Searching
	Standard Problems in CG
	Standard Problems in CG (Cont’d)
	The Model
	Previous Word RAM Results in CG
	New Results
	New Results (Cont’d)
	Key Subproblem: Point Location in a Slab
	Basic Idea
	Key Observation
	Proof
	Proof
	The New “2D Fusion Tree” for the Slab Subproblem
	Switch speakers. Confuse audience
	Using the Slab Problem
	Conversion Techniques
	Review: Persistence
	Review: Exponential Trees
	2D ≠ 1D
	Open problems

