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Abstract
At STOC’06, we presented a new technique for proving
cell-probe lower bounds for static data structures with
deterministic queries. This was the first technique which
could prove a bound higher than communication complexity,
and it gave the first separation between data structures
with linear and polynomial space. The new technique was,
however, heavily tuned for the deterministic worst-case,
demonstrating long query times only for an exponentially
small fraction of the input. In this paper, we extend
the technique to give lower bounds for randomized query
algorithms with constant error probability.

Our main application is the problem of searching prede-
cessors in a static set of n integers, each contained in a `-bit
word. Our trade-off lower bounds are tight for any combi-
nation of parameters. For small space, i.e. n1+o(1), proving
such lower bounds was inherently impossible through known
techniques. An interesting new consequence is that for near
linear space, the classic van Emde Boas search time of O(lg `)
cannot be improved, even if we allow randomization. This is
a separation from polynomial space, since Beame and Fich
[STOC’02] give a predecessor search time of O(lg `/ lg lg `)
using quadratic space.

We also show a tight Ω(lg lg n) lower bound for 2-
dimensional range queries, via a new reduction. This holds
even in rank space, where no superconstant lower bound was
known, neither randomized nor worst-case. We also slightly
improve the best lower bound for the approximate nearest
neighbor problem, when small space is available.

1 Introduction

The main result of this paper is a randomized lower
bound for static predecessor search, matching the best
deterministic upper bounds, thus showing that the cur-
rent query time cannot be improved using random-
ization. This stands in contrast to the situation for
problems such as high dimensional approximate near-
est neighbors where randomization provides a provable
advantage.

The predecessor search problem is to represent an
ordered set Y such that for any query x we can find
efficiently predecessor(x) = max {y ∈ Y | y ≤
x}. This would be the predecessor of x in a sorted
list over {x} ∪ Y . Predecessor search is one of the
most fundamental and well-studied problems in data
structures. For a comprehensive list of references, we
refer to [3]; here, we only describe briefly the best known
bounds.

1.1 The Upper-Bound Story. We focus on the
static case, where Y is given in advance for preprocess-
ing. For example, we can sort Y , and later find the
predecessor of x by binary search using O(lg n) compar-
isons, where n = |Y |.

On computers, we are particularly interested in in-
teger keys. Thereby we also handle, say, floating point
numbers whose ordering is preserved if they are cast as
integers. We can then use all the instructions on integers
available in a standard programming language such as
C, and we are no longer limited by the Ω(lg n) compar-
ison based lower bound for searching. A strong motiva-
tion for considering integer keys is that integer predeces-
sor search is asymptotically equivalent to the IP look-up
problem for forwarding packets on the Internet [6]. This
problem is extremely relevant from a practical perspec-
tive. The fastest deployed software solutions use non-
comparison-based RAM tricks (see e.g. [5]).

More formally, we represent Y on a word RAM with
a given word length b. We assume each integers in Y has
` bits, and that lg n ≤ ` ≤ b. On the RAM, the most
natural assumption is ` = b. The case b > ` models the
external memory model with B = b b

`c keys per page.
In this case, the well-known (comparison-based) B-trees
achieve a search time of O(logB n). Unless otherwise
stated, we assume below b = `.

Using the classic data structure of van Emde
Boas [14] from 1975, we can represent our integers so
that predecessors can be searched in O(lg `) time. The
space is linear if we use hashing [15]. In the 1990, Fred-
man and Willard [7] introduced fusion trees, which re-
quires linear space and can answer queries in O(log` n)
time. Combining with van Emde Boas’ data structure,
they got a search time of O(min { lg n

lg ` , lg `}), which is
always O(

√
lg n).

In 1999, Beame and Fich [3] found an improvement
to van Emde Boas’ data structure bringing the search
time down to O( lg `

lg lg ` ). Combined with fusion trees,
this gave them a bound of O(min { lg n

lg ` , lg `
lg lg `}), which

is always O(
√

lg n
lg lg n ). However, the new data structure

of Beame and Fich uses quadratic space, and they asked
if the space could be improved to linear or near-linear.

Finally, at STOC’06 [12], we presented an optimal



deterministic trade-off. Define lg x = dlog2(x + 2)e, so
that lg x ≥ 1 even if x ∈ [0, 1]. Assuming S bits of space
are available, and defining a = lg S

n , we showed that the
optimal search time is, up to constant factors:

(1.1) min



logb n

lg `−lg n
a

lg `
a

lg( a
lg n · lg `

a )
lg `

a

lg

„
lg `

a / lg lg n
a

«

We refer to [12] for a discussion of the significance
of each branch of this trade-off. The most important
consequence is that for a polynomial universe with
b = ` = Θ(lg n) and near-linear space S = Õ(n) 1 , the
classic van Emde Boas bound of O(lg `) = O(lg lg n) is
optimal. Such polynomial universes often appear inside
combinatorial algorithms.

These upper bounds are achieved by a deterministic
query algorithm on a RAM. The data structure can
be constructed in expected time O(S) by a randomized
algorithm, starting from a sorted list of integers.

1.2 The Lower-Bound Story. Ajtai [1] was the
first to prove a superconstant lower bound for our
problem. His results, with a correction by Miltersen [9],
can be interpreted as saying that there exists n as
a function of ` such that the time complexity for
polynomial space is Ω(

√
lg `), and likewise there exists `

as a function of n making the time complexity Ω( 3
√

lg n).
Miltersen [9] revisited Ajtai’s work, showing that

the lower bound holds in the communication game
model, and for a simpler colored predecessor problem.
In this problem, the elements of Y have an associated
color (say, red or blue), and the query asks only for
the color of the predecessor in Y . This distinction is
important, as one can reduce other problems to this
simpler problem, such as existential range queries in two
dimensions [10] or prefix problems in a certain class of
monoids [9]. Like previous lower bound proofs, ours also
holds for the colored problem, making the lower bounds
applicable to these problems.

Miltersen, Nisan, Safra and Wigderson [10] once
again revisited Ajtai’s proof, extending it to random-
ized algorithms. More importantly, they captured the
essence of the proof in an independent round elimination
lemma, which forms a general tool for proving communi-
cation lower bounds. Our cell-probe elimination lemma
is inspired, at a high level, by this result.

1We define eO(n) = n lgO(1) n.

Beame and Fich [3] improved the lower bounds

to Ω( lg `
lg lg ` ) and Ω(

√
lg n

lg lg n ) respectively. Sen and
Venkatesh [13] later gave an improved round elimina-
tion lemma, which can reprove the lower bounds of
Beame and Fich, but also for randomized algorithms.
The time-space trade-offs obtained by these proofs are
Ω( lg n

lg b , lg `
lg lg S ), where S is the space bound, and possibly

b > `.
At STOC’06 [12], we presented lower bounds for

a deterministic querier matching the upper bounds in
(1.1). When S ≥ n1+ε for some constant ε > 0, the
lower bounds could be shown via the stronger commu-
nication game model, and allowed randomization with
two-sided error. The most interesting part, however,
was the improved lower bound for space n1+o(1). These
were the first bounds surpassing communication com-
plexity, and they provided the first separation between
linear and polynomial space for any data structure prob-
lem. Unfortunately, these bounds only held for the de-
terministic case.

2 Our Contributions

The main result of this paper is that the deterministic
predecessor bound from (1.1) cannot be improved even
if we allow randomization. As mentioned above, the
unresolved case was with small space n1+o(1), which is
the most interesting case in practice.

Our previous deterministic lower bound [12] for
small space was heavily tuned for the deterministic
worst-case, demonstrating long query times only for a
fraction of the input which is exponentially small in the
query time. In this paper, we generalize the technique
to give lower bounds for randomized query algorithms
with constant error probability.

2.1 Randomization versus Determinism. In this
paper, “randomized algorithm” refers to an algorithm
with a fixed running time, which may make a two-
sided error with probability bounded away from 1/2.
This model is stronger that one-sided or zero-error (Las
Vegas) randomization, so lower bounds also apply in
these settings.

Traditionally, proving a randomized lower bound is
considered a challenging task, even if the deterministic
bound is known and believed to hold even with ran-
domization. Our own predecessor problem offers sev-
eral examples in which it took much technical progress
until a randomized lower bound was given. Ajtai [1]
published the first deterministic lower bound in 1988,
but it was not until STOC’95 that Miltersen et al [10]
gave the same randomized bound. In STOC’99, Beame
and Fich [3] proved an optimal deterministic bound



for polynomial space, but it took until ICALP’01 and
CCC’03 [13] for this to be extended to the randomized
case by Sen and Venkatesh.

It is also interesting to note that for a related prob-
lem, approximate nearest neighbor searching, known de-
terministic lower bounds are much higher than random-
ized upper bounds [8], showing that randomization can
help crucially for natural data-structure problems. We
also consider this problem below, and describe an im-
provement to the randomized lower bound.

In the course of proving the deterministic lower
bounds for the predecessor problem, we introduced a
new concept which was crucial to the induction hypoth-
esis: we allowed the algorithm to reject queries, under
certain conditions. In fact, the previous proof rejects
almost all queries; nonetheless the few accepted queries
remaining carry enough information to contradict a fast
query time. We note that which queries are accepted
depends non-trivially on the data structure and query
algorithm. This dependence was not a problem for the
proof, as any accepted query had to be handled correctly
by the deterministic query algorithm.

However, in the randomized error case, it could be
that we only accept queries leading to errors. This
is not known a priori, since the errors are silent. A
new challenge here is hence to make sure that accepted
queries to not have a particularly high error rate (i.e.,
conditioned on the query being accepted, this algorithm
still is correct with good probability). Since the concept
of rejects was a key to our previous progress, it seems
essential to study the interplay between errors and
rejects. We conjecture these ideas will prove significant
beyond the scope of our current results.

2.2 Not the first randomized separation. As we
are randomizing the first deterministic separation be-
tween linear and polynomial space for any data struc-
ture problem, it seems that this should be the first such
randomized separation. However, very recently [11], we
presented such a separation for so-called rich problems,
like exact high dimensional nearest neighbors. The sep-
aration worked for any rich problem, both deterministi-
cally and randomized. However, the predecessor prob-
lem is known to be far from rich, so the results and proof
techniques of [11] are irrelevant here.

2.3 Approximate Nearest Neighbor Search. In
FOCS’04, Chakrabarti and Regev [4] showed the first
lower bound for randomized O(1)-approximate nearest
neighbor search. If points come from the d-dimensional
Hamming cube, they showed that a data structure using
nO(1) words of dO(1) bits requires Ω(lg lg d/ lg lg lg d)
query time. This result is tight for large enough

polynomial space, but it is not known how to attain
such good query times with close to linear space (an
important practical problem). Using our techniques,
one can show an Ω(lg lg d) time lower bound given Õ(n)
space, which, however, is unlikely to be optimal. Note
that for deterministic algorithms, a much higher lower
bound of Ω(d/ lg n) is known [8]. Thus, it is essential
that we can prove a randomized bound.

2.4 Range Queries in Two Dimensions. Another
problem closely related to predecessor search is static
range searching in two dimensions. Given a set of n
points at integer coordinates in the plane, the query
asks whether an axis-parallel rectangle contains any
point. Consider the colored predecessor problem, where
elements of the set Y are red or blue, and the query
should only return the color of the predecessor. Lower
bounds for this problem (such as ours) also apply to
range queries, as observed by [10]. The trick is to
consider the interval stabbing problem, where intervals
are define by a red point and the next blue point. This
problem is itself easily reducible to 2D range searching
(even to the special case of dominance queries, where
one corner of the rectangle is always the origin).

An interesting special case is when coordinates are
distinct integers in [n], i.e. the problem is in rank space.
This restriction occurs naturally in many important
cases, such as recursion from higher-dimensional range
structures, or geometric approaches to pattern match-
ing. In FOCS’00, Alstrup et al.[2] gave a query time
of O(lg lg n), using space O(n lgε n). Clearly, predeces-
sor lower bounds are irrelevant, since predecessors in [n]
are trivial to find with O(n) space. In fact, no previous
technique could prove a superconstant lower bound.

We can show a tight Ω(lg lg n) time bound for
space Õ(n). Note that this requires a novel approach,
since for dominance queries, as obtained by the old
reduction, there is a constant-time upper bound (the
RMQ data structures). In a nutshell, we consider a
uniform 3

√
n × 3

√
n grid on top of our original space.

In each cell, we construct a hard subproblem using the
colored predecessor problem. This is possible since we
get to place 3

√
n points in the space

[
n2/3

]2. Finally, we
can use the direct-sum properties of our lower bound,
to argue that for this set of problems, the query time
cannot be better than for one problem with 3

√
n points

and Õ( 3
√

n) space. Further details are given in the full
version.

2.5 An extended abstract. This paper needs to
be understood as an extended abstract. Essentially, it
contains only a description of the new ideas needed for
the proof. We only briefly summarize the portions of



the old proof which we use (which are themselves rather
involved), and refer to [12] for details about those.

3 Randomized Cell-Probe Elimination

3.1 Statement of the Central Lemma. An ab-
stract decision data structure problem is defined by a
function f : D × Q → {0, 1}. An input from D (e.g. a
set of n integers) is given at preprocessing time, and
the data structure must store a representation of it in
some bounded space. An input from Q (e.g. an integer
to search for) is given at query time, and the function
of the two inputs must be computed.

As mentioned before, we work in the cell-probe
model, and let b be the number of bits in a cell. We
assume the query’s input consists of at most b bits, and
that the space bound is at most 2b. For the sake of
an inductive argument, we extend the cell-probe model
by allowing the data structure to publish some bits at
preprocessing time. These are bits depending on the
data structure’s input, which the query algorithm can
inspect at no charge.

The query algorithm may not compute f correctly
in two cases. First, we allow the algorithm to reject
some queries, in the following limited way. After in-
specting the query and the published bits, the algorithm
can decide to not answer the query (a reject). Other-
wise, we say the query is accepted; the algorithm can
make cell probes, and at the end it must produce an
answer. Later rejects are disallowed. In contrast to
silent error, it makes sense to talk about tiny (close to
zero) probabilities of accepting, even for problems with
boolean output.

If the query is accepted, the algorithm may still
produce an incorrect output, which we call an error.
We allow silent, two-sided errors. We define the error
probability to be the probability the output is incorrect,
conditioned on the fact that the query is accepted.
Naturally, the problem is trivial if the error probability
is allowed to be 1/2, regardless of the accept probability.

We always consider a problem in conjunction with
a distribution D over D × Q, and we restrict the pre-
processing and query algorithms to be deterministic.
The reject and error probabilities are defined under D.
We can use the easy direction of Yao’s minimax prin-
ciple [16] to obtain bounds for randomized algorithms.
Considering a classic cell-probe algorithm which is not
allowed to reject queries, we can fix its random bits so
that the error probability is maintained under D. We
can later manipulate the algorithm in our model (pos-
sibly introducing rejects).

For an arbitrary problem f and an integer k ≤ 2b,
we define a direct-sum problem

⊕k
f : Dk × ([k] ×

Q) → {0, 1} as follows. The data structure receives

a vector of inputs (d1, . . . , dk). The representation
depends arbitrarily on all of these inputs. The query
is the index of a subproblem i ∈ [k], and an element
q ∈ Q. The output of

⊕k
f is f(di, q). We also define a

distribution
⊕k D for

⊕k
f , given a distribution D for

f . Each di is chosen independently at random from
the marginal distribution on D induced by D. The
subproblem i ∈ [k] is chosen uniformly, and q is chosen
from the distribution on Q conditioned on di.

Given an arbitrary problem f and an integer h ≤ b,
we can define another problem f (h) as follows. The
query is a vector (q1, . . . , qh). The data structure
receives a regular input d ∈ D, an integer r ∈ [h] and the
prefix of the query q1, . . . , qr−1. The output of f (h) is
f(d, qr). Note that we have shared information between
the data structure and the querier (i.e. the prefix of
the query), so f (h) is a partial function on the domain
D×

⋃h−1
i=0 Qi ×Q. Now we define an input distribution

D(h) for f (h), given an input distribution D for f . The
value r is chosen uniformly at random. Each query
coordinate qi is chosen independently at random from
the marginal distribution on Q induced by D. Now d is
chosen from the distribution on D, conditioned on qr.
We give the f (h) operator precedence over the direct
sum operator, i.e.

⊕k
f (h) means

⊕k [
f (h)

]
.

Now consider an algorithm A for some problem⊕k
f . For some instance p of the published bits, a

subproblem index i ∈ [k], and a query q ∈ Q the
algorithm may decide to reject the query or begin by
probing a certain cell. We define Ai(p; q) to be the
cell probed, or † if the query is rejected. Thus, we
use A as a function giving the first action taken by the
algorithm. We also write Ai(p) = {Ai(p; q) | q ∈ Q}
and A∗(p) =

⋃
i∈[k]Ai(p). That is, A∗(p) is the set of

all possible initial cell probes that the algorithm could
make when the published bits are p.

Lemma 3.1. There exists a universal constant C, such
that for any problem f , distribution D and ε↑ > 0, the
following holds in the cell-probe model with (αε↑)

6

C k pub-
lished bits allowed. Assume there exists a solution A to⊕k

f (2) with accept probability α and error probability
ε over

⊕k D(2), which satisfies (∀)p : |A∗(p)| ≤ kσ, for
some σ. Then there exists a solution B for

⊕k
f , mak-

ing the same number of probes as A, and satisfying one
of the following two sets of properties:

1. accept probability αε↑
C and error probability ε + ε↑

over
⊕k D, as well as (∀)p : |B∗(p)| ≤ k

√
σ · Cb.

2. for some integer j ≥ 1, accept probability αε↑/Cj

and error probability ε − j
C ε↑ over

⊕k D, as well
as (∀)p : |B∗(p)| ≤ kσ.



Note that applying the lemma yields an improve-
ment in one of two directions: it reduces either the er-
ror, or the space of initial cell probes. Once the initial
cell probe is in a small enough set, one can simply in-
clude those cells among the published bits, and skip the
first cell probe.

3.2 Applying the lemma to the predecessor
problem. We now sketch the application of Lemma 3.1
to predecessor search. Since this is rather standard, we
present a compact summary of what is done in [12],
and highlight the interesting differences. The rest of
the paper concentrates on actually proving Lemma 3.1,
which needs the most novel ideas.

First, we sketch the proof of our deterministic
bounds in [12]. Let P (n, `) be the colored predecessor
problem on n keys of length `. Suppose we are dealing
with a direct sum problem

⊕k
P (n, h`). One first shows

that a solution for
⊕k

P (n, h`) is also a solution for⊕k
P (n, `)(h). Given a solution to

⊕k
P (n, `)(h), one

can apply a lemma similar to our Lemma 3.1, and
eliminate the first cell probe. This changes the problem
to

⊕k
P (n, `), i.e. reduces the key length by a factor of

h. It also introduces roughly k h
√

σ published bits. To
balance that, one amplifies the number of subproblems
by roughly t = h

√
σ: it can be shown that a solution

for
⊕k

P (n, `) is also a solution for
⊕kt

P (n/t, `− lg t).
After this, the argument is repeated. In the end,
we are left with a nontrivial problem, but zero cell-
probes. An information-theoretic argument shows a
contradiction. This argument goes through even if the
accept probability is rather small, so it is not a problem
if the accept rate drops geometrically in every step.

Note that the hard distribution is constructed im-
plicitly by this argument. Eliminating a cell probe
when going from

⊕k
P (n, `)(h) to

⊕k
P (n, `) can also

be viewed as constructing a hard distribution
⊕k D(h)

for
⊕k

P (n, `)(h), starting from whatever distribution⊕k D is hard for
⊕k

P (n, `). Thus, to obtain a hard
distribution for the original problem, start with a (triv-
ial) distribution which is hard for zero cell probes, and
follow the cell-probe eliminations in reverse.

Let us now describe how this overall argument is
modified for a randomized lower bound. The essential
difference is that we need to use our new Lemma 3.1
to eliminate a cell probe. In the scenario of h = 2,
we simply apply the lemma once. If case 1 happens,
|B∗(p)| = O(k

√
σw). Then, the data structure can

publish, in addition to p (its old published bits), the
contents of all cells in B∗(p). The algorithm can simply
skip the first cell probe, and retrieve the data from the
published bits. Thus, if we only require h = 2 and case 1

of the lemma always comes out, the proof is unchanged.
The first issue that we have to face is that some

branches of the tradeoff require h > 2. Up to constant
factors, it suffices to take h a power of two. Then, we
need log2 h applications of the lemma leading to case 1.
After this, the space of initial cell probes is reduced to
less than k h

√
σ(Cb)2, so we can simply publish all these

cells. This is an interesting trick which allows us to
prove the lemma just for f (2). In the deterministic case,
it was not hard to prove a similar lemma directly for
f (h), but the complications of the randomized bounds
make this infeasible.

The second issue we address is the possibility of
case 2. If this happens, we simply keep applying the
lemma until we see case 1. Let us assume that the
initial algorithm has an error of at most 1/3, and let
T be the number of eliminations we want to perform.
Then, we use the lemma with ε↑ = 1

9T . We apply the
lemma until case 1 happens T times, so the maximum
error we can get to is 1

3 + 1
9 < 1

2 . Then, the problem
remains nontrivial at all times. Now note that case 2 can
only happen O(T ) times, because each time it happens,
the error is reduced by Ω(1/T ). Thus, case 2 can be
amortized away against the useful case 1, and the lower
bound is only decreased by a constant factor.

The final worry is that the accept probability can
decrease arbitrarily in case 2. However, if the probabil-
ity decreases by Cj , the error also decreases by Ω(j/T ).
Then, by an amortization as above, the accept proba-
bility cannot decrease past 2−O(T ).

4 Proof of the Lemma 3.1

4.1 Preliminaries. We first introduce some conve-
nient notation. Remember that the data structure’s in-
put for

⊕k
f (2) consists of a vector (d1, . . . , dk) ∈ Dk, a

vector selecting the interesting segments (r1, . . . , rk) ∈
[2]k and the query prefixes Qi ∈ Q, for each i with ri = 2
(we can take Qi to be the empty string when ri = 1).
Denote by d, r and Q the random variables describing
these three components of the input. Also let p(r, Q, d)
be the function representing the bits published by the
data structure for a specific input. The query consists
of an index i selecting the interesting subproblem, and
a vector (q1, q2) with a query to that subproblem. De-
note by i and q these random variables. Note that in our
probability space

⊕k D(2), we have q1 = Qi whenever
ri = 2.

For an instance p of the published bits, and a
prefix q1 for a query to subproblem i, we can make the
following definitions:

Ψi(p; q1) = {Ai(p; q1, q2) | q2 ∈ Q} \ {†}. Note also
that the marginal distribution of q2 ∈ Q induces a



distribution on the support Ψi(p; q1) ∪ {†}.

T i(p; q1) = the set of
√

σ cells in Ψi(p; q1) which have
the highest probability of being probed (or all cells
if |Ψi(p; q1)| <

√
σ). Again, our probability space

is given by a random choice of q2 from the marginal
distribution on Q.

τ i(p; q1) = Prq2 [Ai(p; q1, q2) ∈ T i(p; q1) | Ai(p; q1, q2) 6= †].
In other words, τ i(p; q1) is the probability density
of T i(p; q1) in Ψi(p; q1).

We now define the following random variable:
(4.2)

δi(p) =


Prq1,q2

[
τ i(p;q1) ≤ 1

2 ∧ Ai(p;q1,q2) 6= †
| i = i

]
, if ri = 1

Prq2

[
Ai(p;Qi,q2) ∈ T i(p;Qi) | i = i

]
,

if ri = 2

Note that this is a random variable, since it depends
on Q and r. However, also notice that d is irrelevant.
Indeed, we are playing a formal game of feeding p to the
query algorithm as the published bits. The value p may
be totally unrelated to what the data structure could
actually want to publish, i.e. p(r,Q,d).

Our analysis will actually concentrate on the func-
tion δi(p) = Er,Q[δi(p)]. Notice that this is no longer
a random variable. For convenience, we also define
δ∗(p) = Ei∈[k][δi(p)] = 1

k

∑
i δi(p). Using standard no-

tation from probability theory, we write δi(p | E) =
Er,Q[δi(p) | E], for an event E. It is important to
point out that T i and τ i are not affected by such a
conditioning, since they are simply mathematical func-
tions (although they are themselves defined with refer-
ence to the marginal distribution on Q). We also write
δi(p | X) when we condition on some random variable
X, i.e. δi(p | X) is a function x 7→ δi(p | X = x).

To analyze the accept probability α, define αi(p) =
Prq1,q2 [Ai(p;q1,q2) 6= † | i = i] and αi(p; q1) =
Prq2 [Ai(p; q1,q2) 6= † | i = i,q1 = q1]. We also
define α∗(p) and conditioned versions similar to δi. Now
α = Er,Q,d[α∗(p(r,Q,d) | r,Q,d)].

Finally, we need definitions giving us a handle on
error. Let e(r, Q, d; q1, q2) be an indicator for whether
the data structure makes an error when faced with the
input (r, Q, d) on the data structure’s side, and (q1, q2)
on the query side. Now condition on p(r,Q,d) = p,
i = i, q1 = q1 and q2 = q2. Depending on r,Q and
d, the algorithm may reject, make an error or compute
the correct answer. Assuming the algorithm accepts
the query (which depends entirely on p, i, q1, q2), let
εi(p; q1, q2) be the probability of making an error. For-
mally, εi(p; q1, q2) = E[e(r,Q,d; q1, q2) | p(r,Q,d) =
p, i = i,q1 = q1,q2 = q2].

Note that the parameter p in εi has a vastly different
significance as the p in δi. In εi, we condition on p being
the bits published by the data structure, thus changing
the probability space (restricting the input). In δi, we
work in the whole probability space, but play the formal
game of always feeding the query algorithm p as the
published bits.

We write εi(p) = Eq1,q2 [ε
i(p;q1,q2) | p(r,Q,d) =

p, i = i]. We also define ε∗(p) and the conditioned
versions in the same manner as for δi. We are now ready
to state a key property of any solution for

⊕k
f (2):

Lemma 4.1. There exist r and Q, such that
Ed[δ∗(p(r,Q,d) | r = r, Q = Q, d)] ≥ αε↑

64 and
Ed[ε∗(p(r,Q,d) | r = r, Q = Q, d)] ≤ ε + ε↑

8 .

4.2 An Analysis of
⊕k

f (2). This section is dedi-
cated to proving Lemma 4.1. First we show:

Lemma 4.2. For any i and p, we have δi(p) ≥ αi(p)/4.

Proof.

δi(p) = Er,Q[δi(p)]

=
1
2

E[δi(p) | ri = 1] +
1
2

EQi [δi(p) | ri = 2]

=
1
2

∑
q1:τ i(p;q1)≤1/2

Pr[q1 = q1] · αi(p; q1)

+
1
2

∑
q1

Pr[q1 = q1] · τ i(p; q1) · αi(p; q1)

≥ 1
2

∑
q1:τ i(p;q1)≤1/2

Pr[q1 = q1] · αi(p; q1)

+
1
2

∑
q1:τ i(p;q1)≥1/2

Pr[q1 = q1] ·
1
2
αi(p; q1)

≥ 1
2

∑
q1

Pr[q1 = q1] ·
1
2
αi(p; q1) =

1
4
αi(p). �

The result of this lemma is in some sense ignoring the
help given by the published bits, by assuming they are
constantly set to some value p. Fortunately, we can
show that the published bits cannot significantly alter
the average behavior, since they are much fewer than
the number of subproblems. The following lemmas are
slight variants of lemmas used in our deterministic lower
bound. They are essentially Chernoff bounds exploiting
independence of δi and αi over various i’s:

Lemma 4.3. With probability at least 1 − (αε↑)
2

512 over
random r,Q and d, we have:

(∀)p : δ∗(p | r,Q,d) ≥ α∗(p)
4

− αε↑
256



Lemma 4.4. With probability at least 1 − (αε↑)
2

512 over
random r,Q and d, we have:

(∀)p : α∗(p | r,Q,d) ≤ α∗(p) +
αε↑
256

We combine Lemmas 4.3 and 4.4 by a union
bound. We conclude that with probability at least
1 − (αε↑)2/256 over random r,Q and d, we have that
(∀)p:

δ∗(p | r,Q,d) ≥ α∗(p)
4 − αε↑

256

α∗(p | r,Q,d) ≤ α∗(p) + αε↑
256

}
⇒

⇒ δ∗(p | r,Q,d)− α∗(p | r,Q,d)
4

≥ −αε↑
128

Since this holds for all p, it also holds for p = p(r,Q,d),
the actual bits that the data structure wants to publish.
This means:
(4.3)

Pr
r,Q,d

[
δ∗(p | r,Q,d)− α∗(p | r,Q,d)

4
< −αε↑

128

]
≤ (αε↑)2

256

Remember that our lemma must simultaneously
guarantee a large enough δ∗, and a small enough
increase in error. We now deal with the in-
crease in error. First define the random variable
A = Ai(p(r, Q,d);q1,q2). Now let φ(r, Q) =
E[e(r, Q,d;q1,q2) | r = r,Q = q, A 6= †]. In other
words, φ(r, Q) is the probability the algorithm makes an
error, conditioned on the query being accepted and the
choices of r and Q. By definition of ε, E[φ(r,Q) | A 6=
†] ≤ ε. Now by Markov, we have Pr[φ(r,Q) ≤ ε+ε↑/8 |
A 6= †] ≥ ε↑/8. Remember that Pr[A 6= †] ≥ α. Then
Pr[φ(r,Q) ≤ ε + ε↑/8 and A 6= †] ≥ αε↑/8. In partic-
ular, Pr[φ(r,Q) ≤ ε + ε↑/8] ≥ αε↑/8.

Now let us work in the probability space where
φ(r,Q) ≤ ε+ε↑/8 holds. The probability of (4.3) cannot
increase too much in this space:

(4.4) Pr
r,Q,d

[
δ∗(p | r,Q,d)− α∗(p | r,Q,d)

4
< − α

16

| φ(r,Q) ≤ ε +
ε↑
8

]
≤ (αε↑)2/256

αε↑/8
=

αε↑
32

We now want to lower bound E[δ∗(p | r,Q,d) |
φ(r,Q) ≤ ε + ε↑/8]. Because δ∗, α∗ ∈ [0, 1], we have
δ∗(·) − α∗(·)/4 ≥ −1/4. We use this as a pessimistic

estimate for the cases covered by (4.4). We obtain:

E
[
δ∗(p | r,Q,d)− α∗(p | r,Q,d)

4

| φ(r,Q) ≤ ε +
ε↑
8

]
≥ −αε↑

128
+

αε↑
32

·
(
−1

4

)
⇒ E

[
δ∗(p | r,Q,d) | φ(r,Q) ≤ ε +

ε↑
8

]
≥ 1

4
E

[
α∗(p | r,Q,d) | φ(r,Q) ≤ ε +

ε↑
8

]
− αε↑

64

Finally, we must lower bound the expectation on the
right-hand side. We have:

E
[
α∗(p | r,Q,d) | φ(r,Q) ≤ ε +

ε↑
8

]
= Pr

[
A 6= † | φ(r,Q) ≤ ε +

ε↑
8

]
≥ Pr

[
A 6= † and φ(r,Q) ≤ ε +

ε↑
8

]
≥ αε↑

8

This finally implies that:

E [δ∗(p | r,Q,d) | φ(r,Q) ≤ ε + ε↑/8] ≥ αε↑/64

Now we use the probabilistic method. There exist
r and Q such that φ(r,Q) ≤ ε + ε↑/8, and δ∗(p |
r = r,Q = Q,d) ≥ αε↑/64. These are exactly the
conditions guaranteed by the lemma.

4.3 Constructing a Solution for
⊕k

f . In this
section, we complete the proof of Lemma 3.1.

We try to use the solution for
⊕k

f (2) to construct
a better solution for

⊕k
f . To use this strategy, we

need to extend an instance of
⊕k

f to an instance of⊕k
f (2). This is done using the r and Q values whose

existence is guaranteed by Lemma 4.1. The extended
data structure’s input consists of the vector (d1, . . . , dk)
given to

⊕k
f , and the vectors r and Q. A query’s

input for
⊕k

f is a problem index i ∈ [k] and a q ∈ Q.
We extend this to (Qi, q) if ri = 2, or manufacture an
appropriate suffix if ri = 1, as described below.

First note that extending an input of
⊕k

f to an
input of

⊕k
f (2) by this strategy preserves the desired

answer to a query (in particular, the suffix is irrelevant
to the answer, so it can be manufactured). Also, this
transformation is well defined because r and Q are
“constants”, defined by the input distribution

⊕k D(2).
Since our model is nonuniform, we only care about the
existence of r and Q, and not about computational
aspects. From the point of view of the data structure,
we are done: we simply construct the representation
and the help bits by using the algorithm for

⊕k
f (2) on

the extended input.
It remains to describe the new query algorithm.

First, we consider a hybrid problem:
⊕k

f (2) given the



choices of r and Q. This is a special case of
⊕k

f (2)

because we restrict the input through r and Q. Also, it is
not the same as the problem we are ultimately interested
in, because when ri = 1, the suffix of the query is
random, and not manufactured by the algorithm. In
this hybrid problem, we transform all queries with a
noticibly higher error rate into rejects (which we call
error rejects). Specifically, if εi(p; q1, q2 | r = r,Q =
Q) > ε + ε↑, the query algorithm rejects when getting
query (q1, q2) for subproblem i, with the published bits
being p. Note that this is well-defined, since εi is a
mathematical function depending only on information
known to the querier.

Intuitively, two things can happen after this trans-
formation. If the error is well-spread across queries, the
rejects introduced by this technique are not significant.
Then, we can apply an algorithmic construction (see
below) for reducing the space of initial probes, which
uses the guarantee that no single accepted query is too
bad in terms of error. Otherwise, a sizable fraction of
the error is concentrated on a few queries. Then, we
improve in another direction: we decrease the overall
error, introducing just a few rejects for the bad queries.

Formally, let ρi(p; q1, q2) be an indicator for error
rejects (i.e. it is 1 in we reject the combination p, i, q1, q2

and 0 otherwise). To simplify notation, also let ^(p)
be the event characterized by r = r, Q = Q, and
p(r,Q,d) = p. We now make the following definitions:

ρi(p) = Eq1,q2

[
ρi(p;q1,q2) | ^(p), i = i

]
.

ρ∗ = Ed,i

[
ρi(p(r,Q,d))

]
.

ρi(p; q1) = Eq2 [ρ
i(p; q1,q2)]. This is only defined if ri =

1. It is important to realize that the distribution of
q2 is the marginal distribution on Q, even given
p, r and Q. Indeed, the data structure has no
information about the suffix, since ri = 1.

The two cases discussed above can be understood for-
mally in terms of ρ∗.

The case ρ∗ ≥ αε↑
256 . We aim for case 2 of the

central lemma: reduce the error of the query algorithm,
without changing the set of initial probes. For this,
consider the instances of p, i, q1, q2 sorted by increasing
εi(p; q1, q2 | r = r,Q = Q). Pick the best instances,
until we reach a set of total probability mass roughly
αε↑
128 . A subset with mass negligibly close to this can be
chosen because the granularity is small enough: each
query has probability at most 1/k due to the uniform
choice of the subproblem.

Now consider the algorithm in which we reject
all but the instances chosen as above. Clearly, the
overall accept probability is Ω(αε↑), as desired. Now we
argue that the average error has gone down by Ω(ε↑).

Indeed, δ∗ is a lower bound for the accept probability,
so by Lemma 4.1, the old algorithm accepted with
probability at least αε↑

64 . Then, a total mass of αε↑
128 was

rejected. Among these instances, there were at least
αε↑
256 which had an error rate of ε + ε↑. This is higher by
7ε↑/8 compared to the overall error rate of ε + ε↑/8
(by Lemma 4.1). Excluding the error rejects makes
the average error go down by at least (1/4)(7ε↑/8) =
7ε↑/32, and excluding other instances in decreasing
order can only improve the average. Then the new
average error rate is ε + ε↑/8− 7ε↑/32 = ε− 3ε↑/32.

To simplify expressions, denote the new average
error by ε − 2cε↑, for c = 3/64. Ideally, we would
like all instances to have small error, slightly above the
average, e.g. ε − cε↑. If most do, we are done (see
below). Otherwise, we can apply the same reasoning
as above: reject a constant fraction of the probability
mass, but improve the error further. We repeat this
an arbitrary number of times, until the termination
condition is reached.

More precisely, after j repetitions (starting with j =
0), the average error will be ε−(j+2)cε↑. Now consider
all instances with error rate above ε−(j +1)cε↑. If they
have mass at most a half, we are done, and we continue
as described below. Otherwise, we keep only the best
instances in terms of error rate, up to a probability
mass of a half. Thus, we halve the accept rate, but
improve the average error rate by cε↑. Now repeat. To
finalize the construction, we reject all instances with
error above ε − (j + 1)cε↑. These have mass at most a
half, since the loop terminated. Thus, in the end the
accept probability is Ω(α/2j).

Now we finally convert the algorithm for
⊕k

f (2)

into an algorithm for
⊕k

f . When ri = 2, the
algorithm simply passes the query to the old algorithm.
Thus, the accept and error rates for such a subproblem
are unchanged. When ri = 1, we can choose an
arbitrary suffix, leading to an accepted query. The
accept probability can only improve, since even one
good suffix suffices to make the query accepted. Also
note that the average error is bounded by ε− (j +1)cε↑,
since for any accepted suffix we have at most this error.

The case ρ∗ <
αε↑
256 . We aim for the guarantees in

case 1 of the central lemma: reduce the range of the
first cell probe, sacrificing the other parameters. When
our algorithm accepts a query, it will simulate a non-
rejecting query in the hybrid algorithm for

⊕k
f (2).

Since all queries with error above ε + ε↑ have been
error-rejected, the average error of the algorithm can
be at most ε + ε↑. Thus, we only need to analyze the
accept probability as we develop the new algorithm.
The following two lemmas describe the two strategies
of the algorithm:



Lemma 4.5. For any instance p of the published bits
and a subproblem i with ri = 2, there is a query
algorithm whose first probe is in T i(p;Qi) when the
query is accepted, and which has an accept probability
of at least δi(p | ^(p))− ρi(p).

Proof. The algorithm probe-rejects all queries which
lead to a probe outside T i(p;Qi), and runs the oth-
ers by the old algorithm. By definition, δi(p | ^(p)) =
Prq2 [Ai(p;Qi,q2) ∈ T i(p;Qi) | i = i ∧ ^(p)]. Sub-
tracting ρi(p) eliminates those q2 values which are error
rejected; possibly, some were not even counted by the
previous expression, so this is a lower bound. Thus, we
are left with queries which are not error-rejected, and
want to probe a cell inside T i(p;Qi). �

Lemma 4.6. For any instance p of the published bits,
there exists a set of cells H with |H| = k

√
σ · O(w),

such that for every subproblem i with ri = 1, there is a
query algorithm whose first probe is in H whenever the
query is accepted, and which has an accept probability
of at least δi(p | ^(p))− 2ρi(p).

Proof. Given a set H, the query algorithm is simple to
describe. We iterate through all possible query suffixes.
For each one, we simulate the extended query using
the algorithm for

⊕k
f (2). If this algorithm rejects the

query, or the first probed cell is not in H, we continue
trying suffixes. If we don’t find any good suffix, we
probe-reject the query. Note that it is essential that
the old algorithm accepts or rejects after looking just at
published bits. Then, searching for a suffix that would
not be rejected is free, as it does not involve any cell
probes. Also, it is essential that any extended query
has a good error probability, since we do not know which
suffix will be used.

It remains to justify the existence of a good enough
set H. Let C be the algorithm after we have introduced
the error rejects. Consider all subproblems i and queries
q such that {Ci(p; q, q2) | q2 ∈ Q} \ {†} has cardinality
at least

√
σ. These are subsets of the universe C∗(p) ⊆

A∗(p), and |A∗(p)| ≤ kσ by assumption of Lemma 3.1.
Then, by a standard probabilistic argument, a random
subset of A∗(p) with density roughly 1/

√
σ will intersect

all these sets with nonzero probability. Specifically, we
have at most 2b sets, because i and q are part of the
query (which is a word), so there exists a subset H with
Θ(k

√
σb) elements which intersects all our sets.

Finally, we need to analyze the success probability
of this algorithm. Consider some pair i and q with
τ i(p; q) ≤ 1/2. Our goal is to show that this pair can be
handled by the above argument if 2ρi(p; q) ≤ αi(p; q).
Note that the right hand side counts the suffixes which
were accepted before. Overall, the condition states the

error rejects themselves decrease this accept probability
by at most a half. As for ρi(p; q), it is important to
realize that αi(p; q | ^p) = αi(p; q), so this quantity is
relevant in the probability space we care about. Indeed,
the distribution of q2 is in both cases the marginal
distribution on Q, since the data structure has no
information about q2.

To prove the claim, consider the definition of
τ i(p; q). This only relies on randomness over q2, so it is
unchanged if we condition on ^p. Thus, τ i(p; q) counts
the probability mass of the most frequently-probed

√
σ

cells. By assumption, this is at most a half. Then, if an
arbitrary set of queries with mass at most a half is error-
rejected, one still cannot reduce the number of cells that
are probed by accepting queries to less than

√
σ. Then,

as explained above, the set H can be chosen to satisfy
at least one accepting suffix.

We finally analyze the probability that q will satisfy
τ i(p;q) ≤ 1/2 and 2ρi(p;q) ≤ αi(p;q). We use Ind[·]
for the indicator of a condition (1 if the condition holds,
0 otherwise). Observe that for any variable x ≤ 1,
Ind[x ≥ 0] ≥ x.

Pr
q

[
τ i(p;q) ≤ 1/2 ∧ 2ρi(p;q) ≤ αi(p;q) | i = i ∧ ^(p)

]
=

∑
q:τ i(p;q)≤1/2

Pr[q = q | i = i ∧ ^(p)] ·

· Ind[αi(p; q)− 2ρi(p; q) ≥ 0]

≥
∑

q:τ i(p;q)≤1/2

Pr[q = q | i = i ∧ ^(p)] · (αi(p; q)− 2ρi(p; q))

≥
∑

q:τ i(p;q)≤1/2

Pr[q = q | i = i ∧ ^(p)] · αi(p; q)

−
∑

q

Pr[q = q | i = i ∧ ^(p)] · 2ρi(p; q)

= Eq

[
αi(p;q) · Ind[τ i(p;q1) ≤ 1/2] | i = i ∧ ^(p)

]
−2Eq[ρi(p;q) | i = i ∧ ^(p)]

= δi(p | ^(p))− 2ρi(p). �

Thus, for every choice of the published bits, our
algorithm only probes cells from a set of size k ·

√
σ +

k
√

σ ·O(w), as desired. Furthermore, the average accept
probability over all subproblems and all choices of p is
at least Ed[δ∗(p(r,Q,d) | r = r,Q = Q,d)] − 2ρ∗. By
Lemma 4.1, this is at least αε↑

64 − 2αε↑
256 = Ω(αε↑).
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