Cell-Probe Lower Bounds for
Succinct Partial Sums

Mihai Patrascu Emanuele Viola

s

==,
— at&t

Succinct Data Structures

N + o(N),
N + O(N/Ig N),
Given some input of N bits N+ O(VN), ...

=> some data structure of close to N bits
to answer useful queries

Why?

Practice: functional data compression
You often want to query compressed data,
... SO the data structure on top better be small, too

Theory: algorithmic ideas with nice information theory flavor

Interesting Upper Bounds

[Dodis, P, Thorup ’10]
Store a vector A[1..n] from alphabet 2

— Space |nlog, Z|
— Constant time to read or write A[i]

[P, FOCS’08]
Store a vector A[1..n] of bits

— Query time O(t) for RANK(k) := A[1] + ... + A[K]
— Spacen + n [(w/t)t

Rank / Select

RANK(k) = A[1] + ... + A[K]
SELECT(k) = index of k" one in A[1..n]

A staple of succinct data structures.

Example: representing trees succinctly

|{ LEFTCHILD(K) = 2 - RANK(K)
I RIGHTCHILD(k) = 2 - RANK(K) + 1
| PARENT() = SELECT ([k/2])

Interesting Lower Bounds

[Gal, Miltersen’03] polynomial evaluation
=> redundancy * query time > Q(n)
® nobody really expects a succinct solution

[Golynski soDA’09] store a permutation and query m(-), (-)
With space 2nlgn, query timeis 1
If spaceis (1 + €) nlgn =>query time is Q(1 / Ve)

[HERE] RANK / SELECT
For query time t => space is > n +n [wol)
NB: Upper bound was n + n [(w/t)e(

Models

“Standard Model” (a.k.a. Word RAM)
e memory = words of w bits
 w2lgn (store pointers, indices)

* constant time ops: read/write memory,
+;) */ /1 %1 <; >1 ==, >>1 <<I &I |l A

Lower bounds: “Cell-Probe Model”
« memory = words (cells) of w bits
* time =# cell reads/writes

Nice: information theoretic, holds even with exotic instructions

The Lower Bound Proof

Step 1: Understand the Upper Bound

Al1] JLAL2]] *** LALB] ALT 1L ALT] = | AL

Recursion

Store non-succinctly

Spend constant time per node
=> decode %, from 2* and the H(Z,,..., 25| £*) memory bits

Set parameters such that: H(Z,..., Z;| 2*)=0(w) => B=zw

Cangotlevelsup => redundancy=n/w!

Published Bits

For induction, use a stronger model:
* memory = cells of w bits; cost 1 to read a cell
e P published bits, free to read (=cache)

Initially, set P = redundancy
-> publish some arbitrary!") P bits

Intuitively, think of published bits = sums at roots of the subtrees

Published Bits Die by Direct Sum

Do published bits trivialize the problem?
No. Consider T=100-P subproblems

Problem 1 Problem T

A A

A[1] | A[2] || Aln]

For the average problem, published bits have 0.01 information
=> can’t really help

Qq

Intuition: { first cells probed by Q, } = { first cells probes by Q, }
= the roots of the trees

Recursion Intuition

Remove top level of the trees
=> t-=1
redundancy *=w

Main Lemma:
Remove one cell-probe
Increase P *= O(w)

Upper Bound Lower Bound

A[1] | A[2]

A[n]

Q

So just publish { first cells probed by Q, }
=> get rid of 1 probe for all queries

Careful for Bad Algorithms!

Remove top level of the trees Main Lemma:
=> t-=1 Remove one cell-probe
redundancy *=w Increase P *= O(w)

l Can’t make an argument based on first probe!]

Intuition: { first cells probed by Q, } = { first cells probes by Q, }
= the roots of the trees

So just publish { first cells probed by Q, }
=> get rid of 1 probe for all queries

Intuition Fix

Upper Bound Lower Bound

Remove top level of the trees Main Lemma:
=> t-=1 Remove one cell-probe
redundancy *=w Increase P *= O(poly(w))
¢ - -~ -~~~ - -7/ =-=-"-""=-""-"=-""""=""=""=""=""=-""="/""=""=-== \

| footprint: Foot(Q) = { cells probes by Q}
| |

Intuition: | Foot(Q,) N Foot(Q,) | = Q(P)

So just publish Foot(Q,)
=> get rid of 1 probe for most queries

Why are Cells Reused?

Suppose, for contradiction, that | Foot(Q,) I Foot(Q,) | = o(P)

So the answers to most of Q, can be decoded from Foot(Q,)

lgnored in this talk J

But Answers(Q,) and Answers(Q,) are highly correlated:
H(Ans(Qg)) + H(Ans(Q,)) >> H(Ans(Q), Ans(Q,))

So the data structure is an inefficient encoding (non-succinct).

Entropy Computation

Problem 1 Problem T

All] | .. | A[k+1] | | A[n]
S S S S S
Qk '

H(Ans(Qg)) = H(Ans(Q,)) = T - H(binomial on n/T trials)
=~ T-clg(n/T) forsome constantc

H(Ans(Qg,), Ans(Q,)) = H(Ans(Q,)) + H(Ans(Q,) | Ans(Qy))
= T-clg(n/T) + T H(binomial on k trials)

=T-clg(n/T)+T-clgk — -
T Clgm +Toclgnen = ftn T
= H(Ans(Qy)) + H(Ans(Q,)) - Q(T)

Proof by Encoding

Claim: We will encode A with less than n bits (impossible)

Published bits P
Answers to Q,, Q, H(Ans(Qg), Ans(Qy))
Cells in Foot(Q,,) w- |Foot(Qg)| - H(Ans(Qy))
Other cells [HXIF(X)) = HOX) = H(F(X)][n - w-|Foot(Qy)| - H(Ans(Q,))

TOTAL n+P-AH

AH = H(Ans(Q), Ans(Q,)) — [H(Ans(Qg)) + H(Ans(Q))] = Q(T)

Contradictionfor T>> P

