Cell-Probe Lower Bounds for Succinct Partial Sums

Mihai Pătraṣcu

at\&t

Emanuele Viola

Succinct Data Structures

Given some input of N bits
=> some data structure of close to N bits to answer useful queries

Why?
Practice: functional data compression
You often want to query compressed data,
... so the data structure on top better be small, too
Theory: algorithmic ideas with nice information theory flavor

Interesting Upper Bounds

[Dodis, P, Thorup '10]
Store a vector $A[1 . . n]$ from alphabet Σ

- Space $\left\lceil n \log _{2} \Sigma\right\rceil$
- Constant time to read or write $A[i]$
[P, FOCS'08]
Store a vector $A[1 . . n]$ of bits
- Query time $\mathrm{O}(t)$ for RANK $(k):=A[1]+\ldots+A[k]$
- Space $n+n /(w / t)^{t}$

Rank / Select

$$
\begin{aligned}
& \operatorname{RANK}(k)=A[1]+\ldots+A[k] \\
& \operatorname{SELECT}(k)=\text { index of } k^{\text {th }} \text { one in } A[1 . . n] \\
& \quad \text { A staple of succinct data structures. }
\end{aligned}
$$

Example: representing trees succinctly

Interesting Lower Bounds

[Gál, Miltersen '03] polynomial evaluation
=> redundancy * query time $\geq \Omega(n)$
© nobody really expects a succinct solution
[Golynski SODA'09] store a permutation and query $\pi(\cdot), \pi^{-1}(\cdot)$
With space $2 n \lg n$, query time is 1
If space is $(1+\varepsilon) n \lg n=>$ query time is $\Omega(1 / \sqrt{ })$
[HERE] RANK / SELECT
For query time $t \Rightarrow>$ space is $\geq n+\boldsymbol{n} / \boldsymbol{w}^{\mathbf{0}(t)}$
NB: Upper bound was $n+n /(\boldsymbol{w} / \boldsymbol{t})^{\Theta(t)}$

Models

"Standard Model" (a.k.a. Word RAM)

- memory = words of w bits
- $w \geq \lg n$ (store pointers, indices)
- constant time ops: read/write memory,

$$
+,-, *, /, \%,<,>,==, \gg, \ll, \&, \mid, \wedge
$$

Lower bounds: "Cell-Probe Model"

- memory = words (cells) of w bits
- time = \# cell reads/writes

Nice: information theoretic, holds even with exotic instructions

The Lower Bound Proof

Recursion

Spend constant time per node $\Rightarrow>$ decode Σ_{i} from Σ^{*} and the $H\left(\Sigma_{1}, \ldots, \Sigma_{B} \mid \Sigma^{*}\right)$ memory bits

Set parameters such that: $\mathrm{H}\left(\Sigma_{1}, \ldots, \Sigma_{B} \mid \Sigma^{*}\right)=O(w) \quad \Rightarrow \quad B \approx w$
Can go t levels up \Rightarrow redundancy $\approx n / w^{t}$

Published Bits

For induction, use a stronger model:

- memory = cells of w bits; cost 1 to read a cell
- P published bits, free to read (=cache)

Initially, set $P=$ redundancy
-> publish some arbitrary(!) P bits

Intuitively, think of published bits \approx sums at roots of the subtrees

Published Bits Die by Direct Sum

Do published bits trivialize the problem?
No. Consider $T=100 \cdot P$ subproblems

For the average problem, published bits have 0.01 information => can't really help

Recursion Intuition

Upper Bound

Remove top level of the trees
=> $\quad t=1$
redundancy ${ }^{*}=w$

Lower Bound

Main Lemma:
Remove one cell-probe Increase $P^{*}=\mathrm{O}(w)$

Intuition: $\left\{\right.$ first cells probed by $\left.\mathrm{Q}_{0}\right\}=\left\{\right.$ first cells probes by $\left.\mathrm{Q}_{k}\right\}$ $=$ the roots of the trees

So just publish $\left\{\right.$ first cells probed by Q_{0} \}
=> get rid of 1 probe for all queries

Careful for Bad Algorithms!

Upper Bound
Remove top level of the trees $=>$ $t-=1$ redundancyMain Lemma: Remove one cell-probe Increase $P^{*}=O(w)$

Can't make an argument based on first probe!
Intuition: $\left\{\right.$ first cells probed by $\left.\mathrm{Q}_{0}\right\}=\left\{\right.$ first cells probes by $\left.\mathrm{Q}_{k}\right\}$ $=$ the roots of the trees

So just publish $\left\{\right.$ first cells probed by Q_{0} \}
=> get rid of 1 probe for all queries

Intuition Fix

Upper Bound

| Remove top level of the trees
 $=>$ | Main Lemma:
 redundancy $*=w$ |
| :--- | :--- | | Remove one cell-probe |
| :--- |
| Increase $P^{*}=O($ poly $(w))$ |

footprint: $\operatorname{Foot}(\mathrm{Q})=\{$ cells probes by Q$\}$

Intuition: $\left|\operatorname{Foot}\left(\mathrm{Q}_{0}\right) \cap \operatorname{Foot}\left(\mathrm{Q}_{k}\right)\right|=\Omega(P)$
So just publish Foot(Q_{0})
=> get rid of 1 probe for most queries

Why are Cells Reused?

Suppose, for contradiction, that $\left|\operatorname{Foot}\left(\mathrm{Q}_{0}\right) \cap \operatorname{Foot}\left(\mathrm{Q}_{k}\right)\right|=o(P)$
So the answers to most of Q_{k} can be decoded from $\overline{\text { Foot }\left(\mathrm{Q}_{0}\right)}$
Ignored in this talk

But Answers $\left(\mathrm{Q}_{0}\right)$ and Answers $\left(\mathrm{Q}_{k}\right)$ are highly correlated: $H\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right)+\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{\mathrm{k}}\right)\right) \gg H\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right), \operatorname{Ans}\left(\mathrm{Q}_{k}\right)\right)$

So the data structure is an inefficient encoding (non-succinct).

Entropy Computation

$\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right) \approx \mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{\mathrm{k}}\right)\right) \approx T \cdot \mathrm{H}($ binomial on n / T trials $)$ $\approx T \cdot c \lg (n / T)$ for some constant c
$\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right), \operatorname{Ans}\left(\mathrm{Q}_{k}\right)\right)=\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right)+\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{k}\right) \mid \operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right)$
$\approx T \cdot c \lg (n / T)+T \cdot \mathrm{H}$ (binomial on k trials)
$\approx T \cdot c \lg (n / T)+T \cdot c \lg k$
$<T \cdot c \lg (n / T)+T \cdot c \lg n /(2 T)$
$=H\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right)+\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{k}\right)\right)-\Omega(T)$

For k in "first half"...
Otherwise symmetric

Proof by Encoding

Claim: We will encode A with less than n bits (impossible)

Write down...		Bits required
Published bits		P
Answers to $\mathrm{Q}_{0}, \mathrm{Q}_{\mathrm{k}}$		$\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right), \operatorname{Ans}\left(\mathrm{Q}_{k}\right)\right.$)
$\begin{aligned} & \text { Cells in Foot }\left(Q_{0}\right) \\ & \text { Other cells }\end{aligned} \quad H(X \mid f(X))=H(X)-H(f(X))$		$w \cdot\left\|\operatorname{Foot}\left(\mathrm{Q}_{0}\right)\right\|-\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{Q}_{0}\right)\right)$
		$n-w \cdot\left\|\operatorname{Foot}\left(\mathrm{Q}_{0}\right)\right\|-\mathrm{H}\left(\operatorname{Ans}\left(\mathrm{C}_{k}\right)\right)$
TOTAL		$\boldsymbol{n}+\boldsymbol{P}-\Delta H$

Contradiction for $T>P$
The End

