
Cell-Probe Lower Bounds for
Succinct Partial Sums

Mihai Pătrașcu Emanuele Viola

Succinct Data Structures

Given some input of N bits
=> some data structure of close to N bits

to answer useful queries

Why?

Practice: functional data compression
You often want to query compressed data,
… so the data structure on top better be small, too

Theory: algorithmic ideas with nice information theory flavor

N + o(N),
N + O(N/lg N),
N + O(√N), …

Interesting Upper Bounds

[Dodis, P, Thorup ’10+
Store a vector A[1..n] from alphabet Σ

– Space ⌈n log2 Σ⌉

– Constant time to read or write A[i]

[P, FOCS’08]
Store a vector A[1..n] of bits

– Query time O(t) for RANK(k) := A*1+ + … + A[k]

– Space n + n / (w/t)t

Rank / Select

RANK(k) = A*1+ + … + A[k]
SELECT(k) = index of kth one in A[1..n]

A staple of succinct data structures.

Example: representing trees succinctly

A

B C D

E F

A

B

C

D

E

F

A B . E C . F . D

1 1 0 1 1 0 1 0 1 0 0 0 0

LEFTCHILD(k) = 2 · RANK(k)
RIGHTCHILD(k) = 2 · RANK(k) + 1
PARENT(k) = SELECT ([k/2])

Interesting Lower Bounds

[Gál, Miltersen ’03+ polynomial evaluation
=> redundancy * query time ≥ Ω(n)
 nobody really expects a succinct solution

[Golynski SODA’09+ store a permutation and query π(·), π-1(·)
With space 2n lg n, query time is 1
If space is (1 + ε) n lg n => query time is Ω(1 / √ε)

[HERE] RANK / SELECT

For query time t => space is ≥ n + n / wO(t)

NB: Upper bound was n + n / (w/t)Θ(t)

Models

“Standard Model” (a.k.a. Word RAM)

• memory = words of w bits

• w ≥ lg n (store pointers, indices)

• constant time ops: read/write memory,
+, -, *, /, %, <, >, ==, >>, <<, &, |, ^

Lower bounds: “Cell-Probe Model”

• memory = words (cells) of w bits

• time = # cell reads/writes

Nice: information theoretic, holds even with exotic instructions

The Lower Bound Proof

Step 1: Understand the Upper Bound

A[2] …

lg (B
Σ)

A[1] A[B]

Σ1

A[.] …

lg (B
Σ)

A[.] A[.]

ΣB…

Σ*

H(Σ1,…, ΣB| Σ*)

Recursion

∑

∑ ∑ ∑

∑

∑ ∑ ∑

∑

∑ ∑ ∑

Store non-succinctly

Spend constant time per node
=> decode Σi from Σ* and the H(Σ1,…, ΣB| Σ*) memory bits

Set parameters such that: H(Σ1,…, ΣB| Σ*) = O(w) => B ≈ w

Can go t levels up => redundancy ≈ n / wt

Published Bits

For induction, use a stronger model:

• memory = cells of w bits; cost 1 to read a cell

• P published bits, free to read (=cache)

Initially, set P = redundancy
-> publish some arbitrary(!) P bits

Intuitively, think of published bits ≈ sums at roots of the subtrees

Published Bits Die by Direct Sum

Do published bits trivialize the problem?

No. Consider T=100·P subproblems

For the average problem, published bits have 0.01 information
=> can’t really help

A[1] A[2] A[n]

Problem 1 Problem T

Recursion Intuition

Intuition: { first cells probed by Q0 } = { first cells probes by Qk }
= the roots of the trees

So just publish { first cells probed by Q0 }
=> get rid of 1 probe for all queries

Upper Bound Lower Bound

Remove top level of the trees
=> t -= 1

redundancy *= w

Main Lemma:
Remove one cell-probe
Increase P *= O(w)

A[1] A[2] A[n]

Q0
Q1

Careful for Bad Algorithms!

Intuition: { first cells probed by Q0 } = { first cells probes by Qk }
= the roots of the trees

So just publish { first cells probed by Q0 }
=> get rid of 1 probe for all queries

Upper Bound Lower Bound

Remove top level of the trees
=> t -= 1

redundancy *= w

Main Lemma:
Remove one cell-probe
Increase P *= O(w)

Can’t make an argument based on first probe!

Intuition Fix

Intuition: | Foot(Q0) ∩ Foot(Qk) | = Ω(P)

So just publish Foot(Q0)
=> get rid of 1 probe for most queries

Upper Bound Lower Bound

Remove top level of the trees
=> t -= 1

redundancy *= w

Main Lemma:
Remove one cell-probe
Increase P *= O(poly(w))

footprint: Foot(Q) = { cells probes by Q }

Why are Cells Reused?

Suppose, for contradiction, that | Foot(Q0) ∩ Foot(Qk) | = o(P)

So the answers to most of Qk can be decoded from Foot(Q0)

But Answers(Q0) and Answers(Qk) are highly correlated:
H(Ans(Q0)) + H(Ans(Qk)) >> H(Ans(Q0), Ans(Qk))

So the data structure is an inefficient encoding (non-succinct).

Ignored in this talk

Entropy Computation

H(Ans(Q0)) ≈ H(Ans(Qk)) ≈ T · H(binomial on n/T trials)
≈ T · c lg(n/T) for some constant c

H(Ans(Q0), Ans(Qk)) = H(Ans(Q0)) + H(Ans(Qk) | Ans(Q0))
≈ T · c lg(n/T) + T · H(binomial on k trials)
≈ T · c lg(n/T) + T · c lg k
< T · c lg(n/T) + T · c lg n/(2T)
= H(Ans(Q0)) + H(Ans(Qk)) – Ω(T)

A[1] .. A[k+1] A[n]

Q0
Qk

Problem 1 Problem T

For k in “first half”…
Otherwise symmetric

Proof by Encoding

Claim: We will encode A with less than n bits (impossible)

ΔH = H(Ans(Q0), Ans(Qk)) – [H(Ans(Q0)) + H(Ans(Qk))] = Ω(T)

Contradiction for T >> P

Write down… Bits required

Published bits P

Answers to Q0, Qk H(Ans(Q0), Ans(Qk))

Cells in Foot(Q0) w·|Foot(Q0)| - H(Ans(Q0))

Other cells n - w·|Foot(Q0)| - H(Ans(Qk))

TOTAL n + P - ΔH

H(X|f(X)) = H(X) – H(f(X))

