Cell-Probe Lower Bounds for Succinct Partial Sums

Mihai Pătrașcu

Emanuele Viola

Succinct Data Structures

N + o(N), N + O(N/lg N), N + O(VN), ...

Given some input of N bits

=> some data structure of close to N bits

to answer useful queries

Why?

Practice: functional data compression You often want to query compressed data, ... so the data structure on top better be small, too

Theory: algorithmic ideas with nice information theory flavor

Interesting Upper Bounds

[Dodis, P, Thorup '10]

Store a vector A[1..n] from alphabet Σ

- Space $[n \log_2 \Sigma]$
- Constant time to read or write A[i]

[P, FOCS'08]

Store a vector A[1..n] of bits

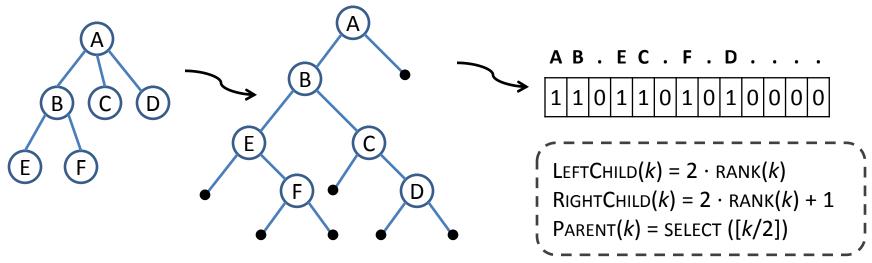
- Query time O(t) for RANK(k) := A[1] + ... + A[k]
- Space n + n / (w/t)^t

Rank / Select

RANK(*k*) = *A*[1] + ... + *A*[*k*] SELECT(*k*) = index of *k*th one in *A*[1..*n*]

A staple of succinct data structures.

Example: representing trees succinctly



Interesting Lower Bounds

[Gál, Miltersen '03] polynomial evaluation => redundancy * query time $\geq \Omega(n)$

 $\ensuremath{\mathfrak{S}}$ nobody really expects a succinct solution

[Golynski SODA'09] store a permutation and query $\pi(\cdot)$, $\pi^{-1}(\cdot)$ With space $2n \lg n$, query time is 1 If space is $(1 + \varepsilon) n \lg n =>$ query time is $\Omega(1 / \sqrt{\varepsilon})$

[HERE] RANK / SELECT For query time $t \Rightarrow$ space is $\ge n + n / w^{O(t)}$ NB: Upper bound was $n + n / (w/t)^{O(t)}$

Models

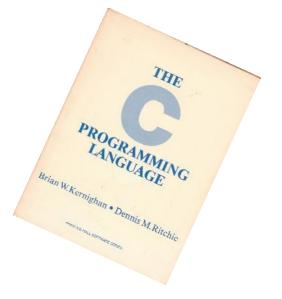
"Standard Model" (a.k.a. Word RAM)

- memory = words of w bits
- $w \ge \lg n$ (store pointers, indices)
- constant time ops: read/write memory,
 +, -, *, /, %, <, >, ==, >>, <<, &, |, ^

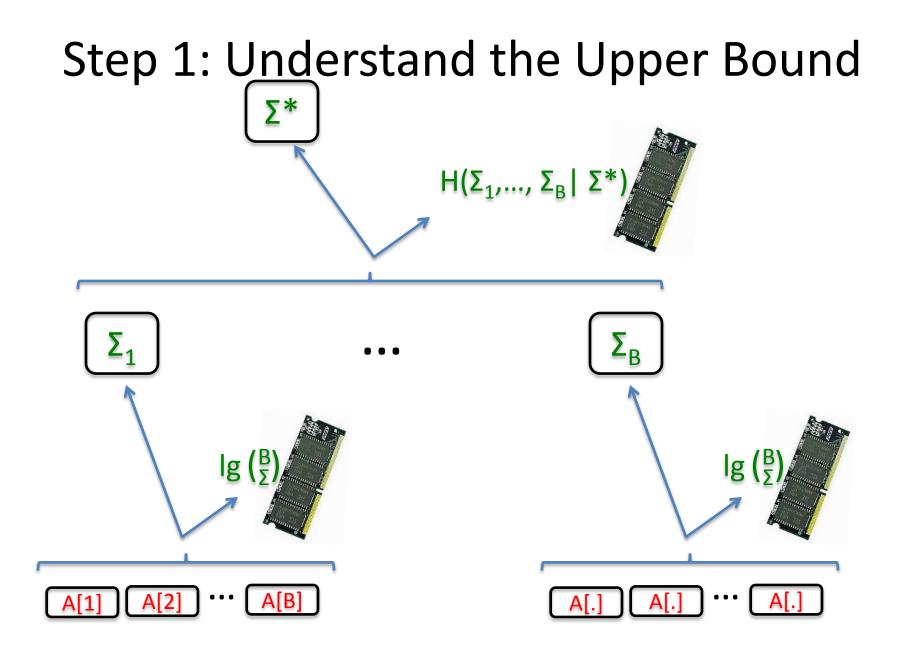
Lower bounds: "Cell-Probe Model"

- memory = words (cells) of w bits
- time = # cell reads/writes

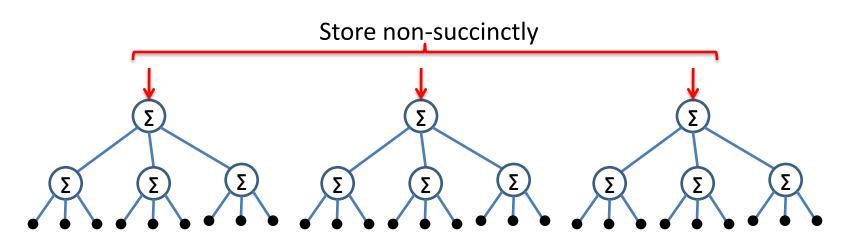
Nice: information theoretic, holds even with exotic instructions



The Lower Bound Proof



Recursion



Spend constant time per node => decode Σ_i from Σ^* and the $H(\Sigma_1,..., \Sigma_B | \Sigma^*)$ memory bits Set parameters such that: $H(\Sigma_1,..., \Sigma_B | \Sigma^*) = O(w) \implies B \approx w$ Can go *t* levels up => redundancy $\approx n / w^t$

Published Bits

For induction, use a stronger model:

- memory = cells of *w* bits; cost 1 to read a cell
- *P* published bits, free to read (=cache)

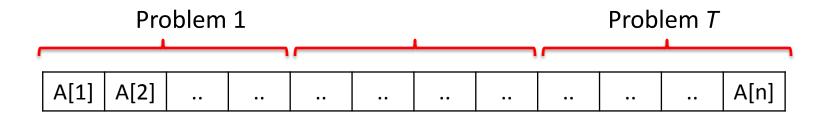
Initially, set P = redundancy -> publish some arbitrary^(!) P bits

Intuitively, think of published bits ≈ sums at roots of the subtrees

Published Bits Die by Direct Sum

Do published bits trivialize the problem?

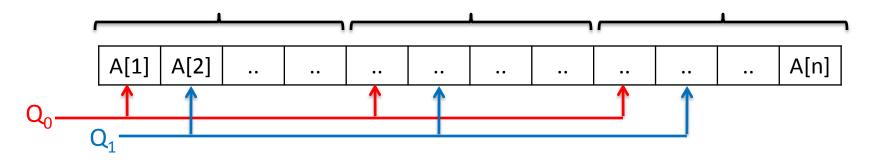
No. Consider *T*=100·*P* subproblems



For the average problem, published bits have 0.01 information => can't really help

Recursion Intuition

Upper Bound		Lower Bound
Remove top level of the trees		Main Lemma:
=>	<i>t</i> -= 1	Remove one cell-probe
	redundancy *= w	Increase $P *= O(w)$



Intuition: { first cells probed by Q₀ } = { first cells probes by Q_k } = the roots of the trees

So just publish { first cells probed by Q₀ } => get rid of 1 probe for all queries

Careful for Bad Algorithms!

Upper	Bound	Lower Bound
Remove top level of the trees		Main Lemma:
=>	<i>t</i> -= 1	Remove one cell-probe
	redundancy *= w	Increase $P *= O(w)$

Can't make an argument based on **first** probe!

Intuition: { first cells probed by Q_0 } = { first cells probes by Q_k } = the roots of the trees

So just publish { first cells probed by Q₀ } => get rid of 1 probe for all queries

Intuition Fix

Upper	Bound	Lower Bound
Remove top level of the trees		Main Lemma:
=>	<i>t</i> -= 1	Remove one cell-probe
	redundancy *= w	Increase P *= O(poly(w))

```
Intuition: | Foot(Q_0) \cap Foot(Q_k) | = \Omega(P)
So just publish Foot(Q_0)
=> get rid of 1 probe for most queries
```

Why are Cells Reused?

Suppose, for contradiction, that | Foot(Q_0) \cap Foot(Q_k) | = o(P)

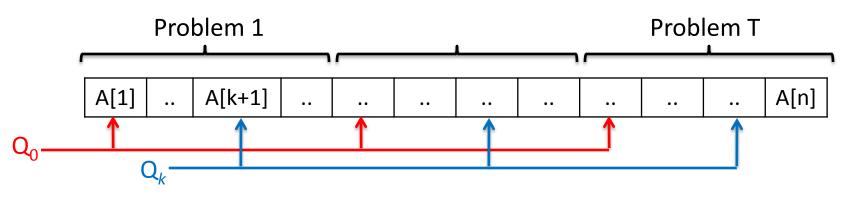
So the answers to most of Q_k can be decoded from Foot(Q_0)

Ignored in this talk

But Answers(Q_0) and Answers(Q_k) are highly correlated: H(Ans(Q_0)) + H(Ans(Q_k)) >> H(Ans(Q_0), Ans(Q_k))

So the data structure is an inefficient encoding (non-succinct).

Entropy Computation

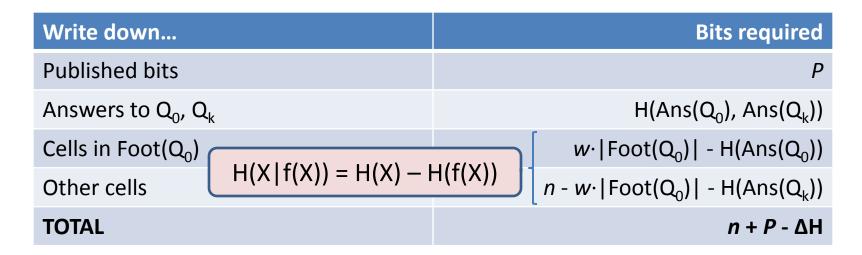


 $H(Ans(Q_0)) \approx H(Ans(Q_k)) \approx T \cdot H(binomial on n/T trials)$ $≈ T \cdot c lg(n/T) for some constant c$

 $\begin{aligned} \mathsf{H}(\mathsf{Ans}(\mathsf{Q}_0), \mathsf{Ans}(\mathsf{Q}_k)) &= \mathsf{H}(\mathsf{Ans}(\mathsf{Q}_0)) + \mathsf{H}(\mathsf{Ans}(\mathsf{Q}_k) \mid \mathsf{Ans}(\mathsf{Q}_0)) \\ &\approx T \cdot c \, \lg(n/T) + T \cdot H(\mathsf{binomial on } k \mathsf{ trials}) \\ &\approx T \cdot c \, \lg(n/T) + T \cdot c \, \lg k \\ &< T \cdot c \, \lg(n/T) + T \cdot c \, \lg n/(2T) \\ &= \mathsf{H}(\mathsf{Ans}(\mathsf{Q}_0)) + \mathsf{H}(\mathsf{Ans}(\mathsf{Q}_k)) - \Omega(T) \end{aligned}$

Proof by Encoding

Claim: We will encode A with less than n bits (impossible)



 $\Delta H = H(Ans(Q_0), Ans(Q_k)) - [H(Ans(Q_0)) + H(Ans(Q_k))] = \Omega(T)$

Contradiction for T >> P

