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Abstract

We describe reductions from the problem of determining the
satisfiability of Boolean CNF formulas (CNF-SAT) to several
natural algorithmic problems. We show that attaining any
of the following bounds would improve the state of the art
in algorithms for SAT:

• an O(nk−ε) algorithm for k-Dominating Set, for any
k ≥ 3,

• a (computationally efficient) protocol for 3-party set
disjointness with o(m) bits of communication,

• an no(d) algorithm for d-SUM,

• an O(n2−ε) algorithm for 2-SAT formulas with m =
n1+o(1) clauses, where two clauses may have unre-
stricted length, and

• an O((n + m)k−ε) algorithm for HornSat with k unre-
stricted length clauses.

One may interpret our reductions as new attacks on the

complexity of SAT, or sharp lower bounds conditional on

exponential hardness of SAT.
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1 Introduction

Do NP-hard problems require us to exhaustively search
over all solutions? This basic question is the heart of
the P versus NP problem. Over the last decade or so,
the area of exact algorithms for NP-hard problems has
seen vast development. Hundreds of papers have been
written on how to solve hard problems exponentially
faster than brute-force search. Most results report
algorithms running in O?(2δt) time for a constant δ < 1,
where O?(2t) would be the runtime of an exhaustive
search.1 We say that an improved algorithm for a
problem to be one with a runtime bound of the above
type. A surprising number of search problems have
been shown to exhibit improved algorithms. To cite
a representative list of papers at this point is not really
possible, but the surveys by Woeginger [31, 32] are
somewhat comprehensive on recent work.

For certain key problems, we still do not know
improved algorithms. The most famous of these is
the “original” NP-complete problem: the satisfiability
problem for Boolean formulas in conjunctive normal
form, which we abbreviate as CNF-SAT. Satisfiability
is so ubiquitous that an entire conference on theory and
applications of the problem is held annually [29]. A
sequence of papers has given algorithms for CNF-SAT
with 2n−o(n) · poly(m) runtime [28, 30, 10, 11, 12, 13],
where n is the number of variables and m is the number
of clauses. The current best, implicit in Calabro,
Paturi, and Impagliazzo [4] and observed by Dantsin
and Hirsch [14], is a deterministic algorithm that runs
in

2n(1− 1
O(log(m/n)) ) · poly(m) time.

One implication of this algorithm that for every con-
stant c > 0, there is an δ(c) < 1 such that SAT with n
variables and cn clauses can be solved in O(2δ(c)n) time.
An algorithm with such a guarantee was first given by
Arvind and Schuler [2].

It does not appear that the current approaches will
lead to a bound of O?(2δn) for general CNF-SAT, with

1The O? notation suppresses polynomial factors in the input
size.



constant δ < 1. Nor do they seem promising for a more
modest goal, namely a bound of O?(2δn) for k-SAT,
where k can be any constant (hidden in the asymptotic
notation), but δ < 1 is a universal constant independent
of k.

One positive result in this direction follows from
work of Calabro, Paturi, and Impagliazzo [4]. Their
duality between clause density and clause width shows
that an improved algorithm for CNF-SAT with n vari-
ables and f(n) clauses would follow from an algorithm
for k-SAT with n variables and f(n) clauses that runs
in time 2δn, where δ < 1 is any constant and k ≥
1
δ log f(n) + Ω(1). Hence, it suffices to restrict atten-
tion to formulas with “logarithmic length” clauses.

In the opposite direction, Impagliazzo and Pa-
turi [23] conjectured that there is no improved algorithm
for CNF-SAT. They showed that an O?(2δn) algorithm
for CNF-SAT implies an O?(2δn·(1−1/(e·k))) algorithm
for k-SAT. Thus, an improvement to the state of the
art for CNF-SAT will immediately imply algorithms for
the family of k-SAT problems. This offers some evi-
dence that any improvement for CNF-SAT is unlikely,
though one must be careful in judging how compelling
the evidence is. For example, if δ = .99, the implied k-
SAT algorithm is only an improvement over the known
O?((2− 2

k+1 )n) algorithm for k > 107.
We have expended significant effort attempting to

either find an improved algorithm, or give interesting
evidence against its possibility. In this paper, we present
several hypotheses which appear plausible, given the
current state of knowledge. We prove that if any of the
hypotheses are true, then CNF-SAT has an improved
algorithm. One can either interpret our reductions as
new attacks on the complexity of CNF-SAT, or lower
bounds (ruling out all hypotheses) conditional on the
hardness of CNF-SAT.

The proofs themselves exhibit strong connections
between SAT and k-Dominating Set, 2-SAT, Horn-
Sat, the 3-party set disjointness problem in commu-
nication complexity, and the d-SUM problem. A side
result of our work is a further elucidation of the rela-
tionships between open problems in exact algorithms
and celebrated open problems in other areas. (Weaker
forms of these connections have been reported before in
the literature, as we will discuss later.)

More precisely, we show that CNF-SAT can be
solved in 2δn · poly(m) time for some δ < 1, if any one
of the following hypotheses are true:

1. (Section 2) Define k-Dominating Set to be the
problem of finding a k-set S of nodes in graph,
where all nodes are either adjacent to S are in S.
The problem is a special case of the celebrated k-
junta problem in learning theory. We know that

for all k ≥ 7, the k-Dominating Set problem on
n node graphs can be solved in nk+o(1) time [17].

Hypothesis: For some k ≥ 3 and ε > 0, k-
Dominating Set is in O(nk−ε) time.

2. (Section 3) Define 2Sat+2Clauses to be the prob-
lem of satisfying a 2-CNF formula on n vari-
ables and m clauses, conjoined with two additional
clauses of arbitrary length. We know the problem
has an O(mn + n2) time algorithm, via a natural
reachability algorithm on graphs.

Hypothesis: For m = n1+o(1) and some constant
ε > 0, 2Sat+2Clauses is in O(n2−ε) time.

3. (Appendix A) Define HornSat+kClauses to be
the problem of satisfying a Horn CNF formula
conjoined with k additional clauses of arbitrary
length. We know the problem is in O(nk · (m+n))
time, where n is the number of variables and m is
the number of clauses.

Hypothesis: For some ε > 0 and k ≥ 2,
HornSat+kClauses is in O((n+m)k−ε) time.

A weaker problem than CNF-SAT is the k-SAT
problem for arbitrary k ≥ 3. All known algorithms
for k-SAT have increasingly longer running times as
k increases. In particular, the running times for k-
SAT are all of the form 2(1−1/Θ(k))n. Impagliazzo and
Paturi [23] have shown that the running time must
indeed increase with k, assuming the Exponential Time
Hypothesis (ETH) which states that 3-SAT cannot be
solved in 2o(n) time.

The following hypothesis from commmunication
complexity implies that the k-SAT problem can be
solved in O(1.74n) time for all constants k. Note this
does not have any known implications for general CNF-
SAT. However, it does imply that CNF-SAT with con-
stant clause density can also be solved in this running
time, by results of Calabro, Impagliazzo, and Paturi [4].

• (Section 4) In 3-Party Set Disjointness, there
are three parties and subsets S1, S2, S3 ⊆ [m],
where the ith party has access to all sets except
for Si. (This problem is also called “set disjoint-
ness in the number on the forehead model”.) The
parties wish to determine if S1∩ · · · ∩Sk = ∅, with
minimum communication. An m-bit communica-
tion protocol is trivial, and a major open problem
is to determine whether 3-party set disjointness has
a sublinear communication protocol.

Hypothesis: There is a protocol for 3-party set
disjointness where the parties communicate o(m)
bits and perform 2o(m) time computations.



Finally, we show a tight correspondence between the
Exponential Time Hypothesis and the difficulty of the
d-SUM problem. The d-SUM problem asks whether a
set of N numbers contains a d tuple that sums to zero.
The best known algorithm runs in O(ndd/2e/polylogn)
time. In computational geometry, d-SUM is a basis
for a hardness theory for many problems. We show
the following hypothesis implies k-SAT can be solved
in 2o(n) time for all constant k:

• (Section 5) Hypothesis: There is a d < N0.99

such that d-SUM on N numbers of O(d lgN) bits
can be solved in No(d) time.

All our proofs use a special type of divide and con-
quer: we reduce CNF-SAT and k-SAT instances to
mildly exponential-sized instances of the above prob-
lems, by enumerating short lists of partial assignments
inside the instance and using the structure of the prob-
lem to encode satisfiability. This maneuver exponen-
tially increases the problem size, but the task of com-
bining subproblems to obtain a global solution becomes
drastically easier.

While the above results can be seen as new attacks
on the complexity of SAT, of course they can also be
seen as hardness results. That is, if we assume that
CNF-SAT and k-SAT for arbitrary constant k cannot be
solved in less than 1.99n time, then our work deduces
a multitude of interesting lower bounds: strong lower
bounds on dominating set, a nearly quadratic lower
bound for finding a pair of nodes with no path between
them (in a directed graph), nΩ(d) lower bounds on
d-SUM (which in turn imply other lower bounds in
computational geometry), and an Ω(m) communication
lower bound on computable protocols for 3-party set
disjointness.

Remark on notation. All functions used in theo-
rem statements are implicitly assumed to be efficiently
computable.

2 SAT and Dominating Set

In Parameterized Complexity, k-Dominating Set is
one of the canonical W [2]-complete problems [16].
Given an undirected graph on n nodes and m edges,
the problem is to find a k-set S of nodes where every
node of the graph is either in S, or is incident to a node
in S. It is equivalent to finding a set cover of k sets.
It is also a special case of the k-junta problem in learn-
ing theory, where we are given a set of examples from
{0, 1}n, each labeled with a 0 or a 1, and wish to find a
function on k variables that maps the examples to their
corresponding labels.

For a long while, the best algorithm known for
solving k-Dominating Set was the obvious O(nk+1)

brute-force algorithm. Fast matrix multiplication can
improve this time bound slightly, as demonstrated by
Eisenbrand and Grandoni [17]. Consider the special
case of 2-dominating set. Take the Boolean adjacency
matrix A of the graph G, complement it (flip 1’s to 0’s,
and 0’s to 1’s) and multiply the resulting matrix with

its transpose, i.e. compute B = A · AT . We have the
following.

Proposition 2.1. G has a 2-dominating set ⇐⇒ For
some i and j, B[i, j] = 0.

Proof. Let M [i, :] denote the ith row of M and
M [:, j] denote the jth column of M . Let V = [n] be the
vertices of G. Then

{i, j} is a 2-dominating set

⇐⇒ (A ∨ I)[i, :] ∨ (A ∨ I)[j, :] = 1, the all-1’s vector

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)[j, :]〉 = 0

⇐⇒ 〈(A ∨ I)[i, :], (A ∨ I)
T

[:, j]〉 = 0

⇐⇒ B[i, j] = 0.

2

Therefore 2-Dominating Set can be solved in
O(nω) time, where ω < 2.376 is the matrix multipli-
cation exponent [8]. To generalize the algorithm to k-
Dominating Set, let v1, . . . , vn be a list of the vertices,
and S1, . . . , S( n

k/2)
be a list of all k/2-sets of the vertices.

Define an
(
n
k/2

)
× n Boolean matrix Ak, where

Ak[i, j] = 0 ⇐⇒ vj is dominated by Si.

Then, the product Bk = Ak × ATk is an
(
n
k/2

)
×
(
n
k/2

)
matrix, where Bk[i, j] = 0 iff Si ∪ Sj is a dominating
set.

Using Coppersmith’s rectangular matrix multipli-
cation [9], this algorithm can be implemented to run in
nk+o(1) time for all k > 7.

Proposition 2.2. For k ≥ 7, k-Dominating Set can
be solved in nk+o(1) time.

Proof. Coppersmith [9] gave an algorithm for
multiplying a n × n.294 matrix with a n.294 × n matrix
in n2+o(1) ring operations. The product Bk = Ak ×ATk
is essentially a product of an N × N2/k matrix with a
N2/k×N matrix, for N =

(
n
k/2

)
. But 2/k ≤ 0.294 when

k ≥ 7, so Coppersmith’s algorithm can be applied. 2

This method is almost Ω(n) faster than the trivial
algorithm, but still requires that one examine every
possible k-set of vertices. A major open question in



parameterized algorithms is whether a time bound even
slightly better than nk is possible for k-Dominating
Set.

Hypothesis 1. There exist k ≥ 3 and ε ∈ (0, k) such
that k-Dominating Set is in O(nk−ε) time.

We know of no results suggesting that Hypothesis 1
may be false. Surprising algorithms have been found for
hard parameterized problems in the past. For example,
the W [1]-complete problem k-Clique has an O(n.793k)
algorithm [27]. However, if one believes that there is
even a slight improvement for k-Dominating Set, then
one must believe there is an improved algorithm for
CNF-SAT.

Theorem 2.1. Hypothesis 1 implies that CNF-SAT
has an improved algorithm.

A slightly weaker connection between k-
Dominating Set and SAT has been established
in the literature.

Theorem 2.2. (Chen et al. [6], Theorem 5.4)
k-Dominating Set is not in f(k)no(k) time, for any
function f , unless FPT = W [1].

That is, it was known that if k-Dominating Set
is in no(k) time, then k-SAT has a 2o(n) algorithm
(i.e., the Exponential Time Hypothesis is false [23]).
However, this result does not say anything a priori
about the complexity of CNF-SAT. As far as we know,
it is consistent with current knowledge that k-SAT has
a 2o(n) algorithm, yet CNF-SAT still does not have an
improved algorithm.

Theorem 2.1 is a special case of the following lemma.

Lemma 2.1. Suppose there is an integer k ≥ 3 and
function f such that k-Dominating Set is solvable in
O(nf(k)) time. Then CNF-SAT is in O

(
(m+ k2

n
k )f(k)

)
time.

Proof of Lemma 2.1. Fix k ≥ 3. Let F be a
CNF formula with n variables; we build a corresponding
graph GF . Without loss of generality, assume k divides
n. Partition the set of its variables into k parts of n/k
size each. For each part, make a list of all 2n/k partial
assignments to variables in that part. Each partial
assignment shall correspond to a node in GF .

Make each of the k parts a clique, so there are k
disjoint 2n/k-cliques with O(22n/k) edges. Now add m
more nodes, one for each clause, and place an edge from
a partial assignment node to a clause node iff the partial
assignment satisfies the clause. Finally, for each partial
assignment clique, add a dummy node that has edges to

all nodes in that clique, but no edges to clause nodes or
any other clique.

Consider a k-dominating set S in GF . Note that no
clause node is in S, otherwise some dummy node would
not be dominated. Suppose S has two (or more) partial
assignment nodes from the same clique. Then there is
some clique for which S chose no node; but then S does
not dominate its dummy node. Therefore, the collection
of partial assignments corresponding to the nodes of S
is some satisfying variable assignment, since all clause
nodes are dominated.

The total number of nodes is k2n/k +m+ k, so the
lemma follows. 2

The above result can be rephrased in terms of the
k Set Cover problem. Here, one is given a collection
C of n sets over a universe of size m, and the task is
to find a S ⊆ C so that |S| = k and every element
of the universe is contained in some set of S. By
associating the set Sv = N(v)∪ {v} with each vertex of
a graph G = ({v1, . . . , vn}, E), and setting the universe
to be {v1, . . . , vn}, a k set cover for the collection
{Sv1 , . . . , Svn} is a k-dominating set for G. Thus an
immediate corollary of Theorem 2.1 is the following.

Theorem 2.3. If there is k ≥ 2, k Set Cover can be
solved in O(nk−ε) time for a collection of n sets over a
universe of size poly(log n), then Sat has an improved
algorithm on instances with poly(n) clauses.

2.1 A partial converse An intriguing question is
whether or not a converse to Theorem 2.1 holds. That
is, does the existence of a good CNF-SAT algorithm
imply the existence of a good k-Dominating Set
algorithm? One would like to encode a graph into a
small CNF formula, whereby an assignment to k log n
variables satisfies the formula iff the graph has a k
dominating set.

We can show a partial converse of this kind. Define
the problem Cnf-Sat-S to have instances of the form
(F, S), where F is a CNF formula and S is a subset
of the variables of F . The problem is to find an
assignment a to S such that F [S = a] is a satisfiable
Horn formula. (Recall a Horn formula is a CNF formula
where each clause has at most one positive literal. Horn
satisfiability is well-known to be in P.) In other words,
the problem is to verify that S is a “backdoor set” [33]
of variables for F , with respect to a subsolver for Horn
formulas.

Cnf-Sat-S is perhaps more difficult than CNF-
SAT in terms of exact algorithms, in that we are only
allowed to set variables within a certain subset (other
variables are out of our control), and the assignment
we find must not only extend to a satisfying assignment



for the formula, but also extend easily to a satisfying
assignment. Cnf-Sat-S is essentially equivalent to the
CircuitSAT problem, where instead of a CNF F , we
are given a circuit C and wish to set its n input variables
so that the circuit is satisfied (here, the input variables
play the role of S). Note that Cnf-Sat-S can be
solved in O?(2|S|) and CircuitSat can be solved in
O?(2n). We show that a time improvement for Cnf-
Sat-S implies a better dominating set algorithm.

Theorem 2.4. If Cnf-Sat-S is in O(f(m+ n) · 2δ|S|)
time for some δ ∈ (0, 1) and function f , then k-
Dominating Set is in O(f(kn2) · nδk) time.

Notice that for any δ < 1 and constant c > 1,
nc+δk ∈ O(nk−ε) for sufficiently large k and sufficiently
small ε > 0. So if f is a polynomial in the above, then
the implication is indeed an improved dominating set
algorithm for large enough k.

Proof of Theorem 2.4. Let G = (V,E) be
given and let n = |V |. We will set up a for-
mula FG. Define a (k log n)-set of variables S =
{x1,1, . . . , x1,logn, x2,1, . . . , x2,logn, . . . , xk,1, . . . , xk,logn}.
These variables will represent the binary encoding of
a dominating set: specifying an assignment to the
variables of S will be equivalent to specifying a k-set
of vertices in G. For j ∈ [k] and i ∈ [n], let vj,i be kn
variables representing the n vertices in the graph G.
Informally, vj,i = 1 if and only if the jth vertex in the
candidate dominating set does not dominate the ith
vertex of G.

The clauses of FG check that the k-set guessed
by S is indeed dominating. Define x1

i,j := xi,j , and

x0
i,j := ¬xi,j . Fix a vertex u ∈ V in the following.

Let b1b2 · · · blogn be a binary encoding of u. Define the
neighborhood N(u) := {v | {u, v} ∈ E}. Let us index
the elements of V −N(u) as

V −N(u) = {ui1 , . . . , uin−deg(u)
}.

Then for all j = [k] and d = 1, . . . , n− deg(u), add the
clause:

(x1−b1
j,1 ∨ · · · ∨ x1−blog n

j,logn ∨ vj,id)

to FG. Intuitively, this clause says that the idth vertex
is not dominated by the jth vertex in the candidate
dominating set. Note there are O(kn2) clauses of this
kind, one for each possible setting of j, u, and d. For
all vertices i = 1, . . . , n, add the clause

(¬v1,i ∨ ¬v2,i ∨ · · · ∨ ¬vk,i)

to FG. These clauses stipulate that at least one of the k
vertices in the candidate dominating set must dominate

the ith vertex, for all i. This completes the description
of FG.

Observe that once all of the variables in S are set to
values (say, an assignment a), all remaining clauses in
FG are either of the form (x) or (¬x∨¬y∨· · ·∨¬z). That
is, the remaining formula is Horn, and thus satisfiability
for it can be determined in linear time.

We claim that the Horn formula FG[S = a] is
satisfiable if and only if a denotes a dominating set of G.
First, since every clause in FG[S = a] is either a positive
literal or a collection of negative literals, observe that
FG[S = a] is unsatisfiable if and only if the clauses
(v1,i),(v2,i), . . ., (vk,i) appear in FG[S = a], for some

i = 1, . . . , n. A clause (vj,i) appears iff the literals x1−b1
j,1 ,

. . ., x
1−blog n

j,logn are set false and (x1−b1
j,1 ∨· · ·∨x

1−blog n

j,logn ∨vj,i)
is a clause in FG. But x1−b1

j,1 , . . ., x
1−blog n

j,logn are false iff the
jth vertex in the set S has binary encoding b1b2 · · · blogn,
and the above clause is in FG iff the vertex with binary
encoding b1b2 · · · blogn does not have the ith vertex as a
neighbor. Therefore the clauses (v1,i),(v2,i), . . ., (vk,i)
appear in FG[S = a] iff for all j = 1, . . . , n, the jth
vertex in S does not have the ith vertex as a neighbor,
i.e. the set S is not dominating.

Hence the pair (F, {xi,j | i ∈ [k], j ∈ [n]}) is
an instance of Cnf-Sat-S with |S| = O(k log n) and
|F | = O(kn2). From the above discussion, it follows
that a satisfying assignment to S is equivalent to a
dominating set in the graph. 2

3 SAT and 2-SAT

2-SAT is the well-known restriction of CNF-SAT to
instances with at most two literals per clause. The
problem has fast algorithms, being solvable in linear
time [3]. One possible direction for finding an improved
algorithm for CNF-SAT is to try reducing it to 2-SAT
in some interesting way. As we do not believe P = NP,
this reduction should be exponential, but not terribly
exponential (say, of 2(1−ε)n total size for some ε > 0).
If such a reduction existed, the linear time algorithm for
2-SAT would imply an improved CNF-SAT algorithm.

The results of this section are inspired by this poten-
tial direction. We present a minor generalization of 2-
SAT, which we call 2Sat+2Clauses. This problem ad-
mits a straightforward O(mn+n2) time algorithm. We
prove that if it has a sub-quadratic time algorithm, then
CNF-SAT has an improved algorithm, via a “mildly ex-
ponential” reduction.

Define an instance of 2Sat+2Clauses to be a
2-CNF formula that is conjoined with at most two



additional clauses of arbitrary length. For example,

(¬x1 ∨ x4) ∧ (x2 ∨ ¬x3) ∧ (x5 ∨ x6)

∧(x1 ∨ x2 ∨ · · · ∨ x6) ∧ (¬x1 ∨ ¬x2 ∨ · · · ∨ ¬x6)

is a 2Sat+2Clauses instance. Similar “mixed” in-
stances have been studied in the past, especially in the
average-case setting (cf. [26]) where the satisfiability of
random formulas has been analyzed. We start with a
simple algorithm for solving this problem.

Theorem 3.1. 2Sat+2Clauses is in O(mn + n2)
time, where n is the number of variables and m is the
total number of clauses.

Proof. Let F be an instance and C1, C2 be
its two arbitrary size clauses. Construct a directed
graph G where each node is a literal of F (a variable
or its negation) and there is an edge from `i to `j iff
(¬`i ∨ `j) ∈ F − C1 − C2. Note the edge relation plays
the role of implication.

We start by preprocessing G. Compute the transi-
tive closure of G in O(mn + n2) time using standard
techniques [7]. This results in a Boolean matrix M
where M [i, j] = 1 ⇐⇒ `i → `j , for all literals `i
and `j . If there is a variable x such that x → ¬x and
¬x→ x then return unsatisfiable.

For every pair of literals `i in C1 and `j in C2, we
will determine if `i ∧ `j can be extended to a satisfying
assignment for all of F . Observe that

(`i ∧ `j) ≡ ¬(¬`i ∨ ¬`j) ≡ ¬(`i → ¬`j).

We can determine in O(1) time if (`i → ¬`j) is true, by
looking up the corresponding entry in M . If that entry
is 0, then we return satisfiable, since it means that
`i = true and `j = true can be extended to a satisfying
assignment for F . Otherwise we move to the next pair
of literals. If all pairs of literals have been exhausted,
we return unsatisfiable. 2

Note the above proof shows that the following
purely graph-theoretic problem is at least as difficult as
the 2Sat+2Clauses problem: given a directed graph
G = (V,E) and subsets S, T ⊆ V , determine if there is
some s ∈ S and t ∈ T with no path from s to t.2

Our second hypothesis is that there is a better
algorithm for 2Sat+2Clauses:

2Let G be the directed graph from the proof. In linear time

we can rule out if G has a path from some x to ¬x and back to

x. Let S be the literals in C1 and let T be the negations of those
literals in C2. There is an s ∈ S and t ∈ T with no path iff there
are two literals, one in C1 and one in C2, that can be extended

to a satisfying assignment to F .

Hypothesis 2. For some ε > 0, 2Sat+2Clauses is
in O((m+ n)2−ε) time.

Theorem 3.2. Hypothesis 2 implies that CNF-SAT
has an improved algorithm.

Proof. We show how to embed an CNF formula F
into an (exponentially sized) 2Sat+2Clauses instance
F ′. In particular, if F has n variables and m clauses,
then F ′ will have O(2n/2 + m + n) variables and
O(m2n/2 + mn) clauses. This immediately implies the
claim of the theorem.

The variables of F ′ will be of the form xS , where S
is a proposition that is either a conjunction of literals in
F , or a disjunction of literals in F . Intuitively, we want
xS to be true if and only if S is true. We therefore want
¬xS ⇐⇒ x(¬S), which we capture with the clauses

(xS ∨ x(¬S)) ∧ (¬xS ∨ ¬x(¬S))

for every proposition S in the below.
We split the set of n variables into two parts of

n/2 size. (WLOG we may assume n is even.) For
both parts, list all the possible 2n/2 partial assignments
P to the variables of that part. We interpret each
P as a conjunction of n/2 literals in the natural way.
(For example we would interpret the partial assignment
y1 = 1, y2 = 0, y3 = 1 as the conjunction y1 ∧ ¬y2 ∧
y3.) For each P , make two variables xP and x(¬P ) in
F ′. Let P1, . . . , P2n/2 and Q1, . . . , Q2n/2 be the partial
assignments of the first and second part, respectively.
The two arbitrary size clauses in F ′ will be:

(xP1
∨ · · · ∨ xP

2n/2
) and (xQ1

∨ · · · ∨ xQ
2n/2

).

The remaining clause structure of F can be represented
using a 2-CNF. For each clause C of F , let C1 (C2) be
the disjunction of literals in C involving variables from
the first (second) part, respectively. Make variables xC1 ,
x(¬C1), xC2 , and x(¬C2), and include the clause

xC1 ∨ xC2 .

Finally, we relate the clause variables to the partial
assignment variables. For each variable yi of F , we
have the variables xyi and x¬yi in F ′. For every Ci
of the form (yi ∨D), F ′ has the clause

x(¬Ci) → x¬yi .

For every partial assignment P that sets yi = 1, F ′ has
the clause xP → xyi , and for every partial assignment
P that falsifies a clause Ci, F

′ also has xP → x(¬Ci).
We now prove that F ′ is satisfiable iff F is satisfi-

able. It is not hard to see that, if F is satisfiable by



assignment a, then F ′ is satisfied by setting xS = 1 if
and only if the proposition S is satisfied by a.

The other direction (F ′ is satisfiable implies F is
satisfiable) is a little more involved. First, we claim
that if xPj

= 1 for an n/2-variable partial assignment
Pj , then for all j 6= i, xPi

= 0. Let y be a variable in
which Pi and Pj differ in assignment. Without loss of
generality, xPj

→ xy and xPi
→ x¬y → ¬xy, therefore

only one of xPi and xPj can be true for all i 6= j.
Suppose there is a satisfying assignment to F ′

with xA = 1 and xA′ = 1, where A (A′) is a partial
assignment for the variables in the first (respectively,
second) part. We claim that the variable assignment
denoted by A and A′ satisfies F . For suppose this
assignment falsified a clause C, and C1 (C2) is the
disjunction of literals in C involving variables from the
first (respectively, second) part. Then by definition,
xA → x(¬C1) and xA′ → x(¬C2). But the satisfy-
ing assignment to F ′ sets xA = 1 and xA′ = 1, so
x(¬C1) ∧ x(¬C2) is satisfied by the assignment, and
hence (¬xC2) ∧ (¬xC2) is also satisfied. However, the
satisfying assignment to F ′ also satisfies the clause
(xC1

∨ xC2
) in F ′. This is a contradiction. 2

4 SAT and the Communication Complexity of
Disjointness

Next, we connect a major open problem in communi-
cation complexity to the feasibility of CNF-SAT. In the
k-party disjointness problem, we have k computational
parties, and given subsets S1, . . . , Sk ⊆ [m] where the
ith party has access to all sets except for Si. (This
problem is also called “set disjointness in the number
on the forehead model”.) The parties wish to deter-
mine if S1∩· · ·∩Sk = ∅, without communicating many
bits.

The disjointness problem has received much at-
tention in the complexity community, due to its fun-
damental nature and notorious difficulty. The best
known upper bound on its communication complexity
is O(km/2k), by a protocol of Grolmusz [22]. It has
been only recently that progress has been made on lower
bounds. For a long time, only an Ω(logm) lower bound
was known, but Lee and Shraibman [25] and Chattopad-
hyay and Ada [5] have shown Ω

(
m1/(k+1)

)
lower bounds

on communication, which hold even when the parties
can use randomness.

We show that reasonably computable nondetermin-
istic protocols for 3-party set disjointness with o(m)
communication complexity would imply a breakthrough
in satisfiability algorithms. In particular, CNF SAT
would have an algorithm running in 2ωn/3 · 2o(m) time,
where ω is the matrix multiplication exponent, n is the

number of variables, and m is the number of clauses. By
the Sparsification Lemma of Impagliazzo, Paturi, and
Zane [24], such an algorithm can be used to solve the
k-SAT problem in O(1.74n) time for all k. As a conse-
quence of the clause density and clause width duality of
Calabro, Impagliazzo, and Paturi [4], this k-SAT algo-
rithm can be used to solve CNF SAT for formulas with
cn clauses and n variables in the same running time, for
any fixed c > 0. For those researchers who believe that
an algorithm with such a running time is not possible,
they may interpret our theorem as compelling evidence
that 3-party disjointness does require Ω(m) bits of com-
munication.

Let ω < 2.376 be the matrix multiplication expo-
nent [8].

Theorem 4.1. If 3-party disjointness has a nondeter-
ministic protocol with communication complexity o(m)
such that all parties run in deterministic 2o(m) time,
then for every k ≥ 3, the k-SAT problem is in
O(2ωn/3+o(n)) ≤ O(1.74n) time, where n is the num-
ber of variables.

All known algorithms for k-SAT run in O(2ckn)
time for some sequence ck → 1. Assuming k-SAT
cannot be solved in 2o(n) time, the sequence {ck} is
non-decreasing [23].
Proof of Theorem 4.1. Let F be an instance of k-SAT
with n variables and m clauses. By the Sparsification
Lemma of [24], for every ε > 0 we can reduce any k-
CNF F to a 2εn collection of k-CNF formulas F , where
each formula in F has ck,εn clauses, for a constant ck,ε
depending on k and ε. Thus we may assume without
loss of generality that m ≤ cn for some constant. We
also suppose that n is divisible by 3.

Conceptually split the set of variables of F into
three equal parts V1, V2, V3. Let ai be an assignment
on the variables from part Vi. Define Sai ⊆ [m], where
j ∈ Sai if and only if the jth clause is not satisfied after
plugging ai into the jth clause. (That is, j ∈ Sai iff ai
does not assign true to any variable in the jth clause.)
For partial assignments a1, a2, a3 from parts V1, V2, V3

(respectively), it is easy to see that the assignment
a1, a2, a3 satisfies F if and only if Sa1 ∩ Sa2 ∩ Sa3 = ∅.

The SAT algorithm first cycles over every possible
sequence Q of pairs (b1, i1), (b2, i2), . . . , (bk, ik), where
bj ∈ {0, 1}∗,

∑
j |bj | ≤ o(m), and ij ∈ {1, 2, 3}. These

sequences represent all possible o(m)-bit communica-
tions that could take place in a (nondeterministic) com-
munication protocol for 3-party disjointness. Note the
number of such sequences is 2o(m).

Given F and communication sequence Q, we con-
struct an O(2n/3) node graph G that contains a triangle
if and only if there is a variable assignment a1, a2, a3



such that Q represents a communication sequence be-
tween the parties in which they accept, concluding that
Sa1 ∩ Sa2 ∩ Sa3 = ∅.

Let V1, V2, V3 be three disjoint sets of vertices on
O(2n/3) nodes, where each node vi of some Vi is indexed
by an n/3-bit string a(vi). For i = 1, 2, 3, relabel each
node vi in Vi with the set Sa(v).

Put an edge {v2, v3} ∈ V2 × V3 iff it is consistent
for the first party to accept and speak according to
communication sequence Q, while holding the sets
Sa(v2) and Sa(v3), and viewing the communications
(stated in Q) from the other two parties. Similarly put
an edge {v1, v3} ∈ V1 × V3 iff Q is consistent with the
second party, and an edge {v1, v2} ∈ V1 × V2 iff Q is
consistent with the third party. Note the construction
of G can be done in polynomial time. Then, a triangle
v1, v2, v3 in the graph corresponds to a situation where
the parties determine that Sa1 ∩Sa2 ∩Sa3 = ∅ and each
party holds two of the three sets.

Finally, we can determine whether or not G is
triangle-free in O(2ωn/3) time, by taking the cube of
the adjacency matrix of G, and determining if the trace
of the resulting matrix is nonzero. (In general, one
can test if an N -node graph is triangle-free or not, in
O(Nω) time.) 2

The above proof also implies:

Corollary 4.1. If 3-party disjointness has a non-
deterministic protocol with communication complexity
o(m) such that all parties run in deterministic 2o(m)

time, then CNF-SAT can be solved in O?(2ωn/3+o(m))
time, where n is the number of variables and m is the
number of clauses in the instance.

Therefore, the hypothesis implies that CNF-SAT
with cn clauses and n variables can always be solved in
O(1.74n) time for all constants c.

In their work on algebrization, Aaronson and
Wigderson [1] gave a Merlin-Arthur protocol for two-
party set disjointness that uses only Õ(

√
m) bits of com-

munication, which can be generalized to three parties.
Is it possible to adapt their protocol to get a better sat-
isfiability algorithm? This does not seem possible, and
the main problem is the use of randomness. In order
for their protocol to work in our setting, the number of
random bits must be Ω(n), as we need to rule out false
positives over all possible variable assignments.

5 SAT and d-SUM

The d-SUM problem asks whether a set of N numbers
contains a d tuple that sums to zero. It is conjectured
that this problem requires Ω(ndd/2e/polylogn) time,
and this conjecture is instrumental in understanding

the complexity of many problems in computational
geometry (via reductions).

The d-SUM problem hardly needs an introduction.
The seminal work of Gajentaan and Overmars [19] intro-
duced 3SUM for the purpose of arguing that problems
in planar geometry “should” take Ω(n2) time. Show-
ing 3SUM-hardness for a problem is considered routine
today.

In d dimensions, the best algorithms for many nat-
ural problems run in only nO(d) time, a phenomenon la-
belled the “curse of dimensionality” because the prob-
lems quickly become intractable for high dimensions.
The presumed hardness of the d-SUM problem is used
to argue that these running times are likely optimal.
Here, we show a relationship between the difficulty of
d-SUM and the difficulty of k-SAT:

Theorem 5.1. Let d < N0.99 and δ < 1. If d-SUM
over N numbers of O(d lgN) bits can be solved in
O(Nδd) time, then for every k ≥ 3, the k-SAT problem

over n variables can be solved in 2δ
1/O(k)·O(kn) time.

In particular, our result implies:

Corollary 5.1. Let d < N0.99. If d-SUM over N
numbers of O(d lgN) bits can be solved in No(d) time,
then 3-SAT on n variables can be solved in 2o(n) time.

The unparameterized version of d-SUM is, of course,
the Subset-Sum problem, which is well-known to be
NP-complete. For the parameterized version, the stan-
dard hardness reduction (see, for example, the book of
Downey and Fellows [16]) embeds an instance of the k-
clique problem into an instance of O(k2)-SUM. While
this is enough to rule out a fixed parameter solution
with running time f(k) · poly(n), the “lower bound” is
suboptimal: as k-clique can be solved in O(nk) time,

this reduction at most implies an nΩ(
√
d) hardness for

d-SUM.
Proof of Theorem 5.1. Let F be an instance of k-
SAT with n variables and m clauses. By the improved
Sparsification Lemma of Calabro, Impagliazzo, and
Paturi, [4], for any ε > 0, we can reduce F to a
collection of 2εn k-CNF formulas F , all of which have
n variables and n · (k/ε)O(k) clauses. With hindsight,
choose ε = k · δ1/(γk) for an appropriate constant γ.
Then, the number of clauses of each formula will be
m′ = n/

√
δ.

Now convert each formula to a 3-SAT formula
with O(m′k) variables and clauses. Secondly, convert
each 3-SAT formula to a 1-in-3 SAT formula, by the
classic reduction of Schaefer (see [20]). For every
clause (x ∨ y ∨ z), this reduction introduces 6 new
variables a, b, c, d, e, f and clauses R(x, a, d)∧R(y, b, d)∧



R(a, b, e) ∧ R(c, d, f) ∧ R(z, c, False), where R denotes
the 1-in-3 relation. The final formula also has O(m′k)
variables and clauses.

Now we reduce 1-in-3 SAT to the d-SUM problem.
Conceptually split the variables of each 1-in-3 SAT
formula into d blocks of equal size. In each block, try
all 2O(m′k/d) assignments to the variables. For each
assignment, we generate another number in the list.
Our numbers are generated as strings of digits in base
d+1. The first d digits represent the block of variables to
which the number belongs: a number from block k will
have a zero in all positions except the k-th, where it has
a one. The next digits, one per clause, mark the number
of variables in this assignment that are satisfying each
particular clause.

Let X be the number with all digits equal to one.
We can ask for a sum of d values equal to the number X.
(This is a mild generalization of d-SUM, which can be
reduced to the original problem by adding −X/d to all
numbers.) To obtain X as a sum of d values, it must be
that one value comes from each block. Furthermore, it
must be that each clause is satisfied exactly once. Thus,
a d-sum exists if and only if the 1-in-3 SAT formula is
satisfiable.

The size of our d-SUM problem is N = d ·2O(m′k/d).
If the problem can be solved in O(Nδd) time, a 1-in-3
SAT problem can be solved in 2O(δm′k) time. This is

time 2O(δnk/
√
δ)) = 2O(kn

√
δ). We must multiply this

by the number of sparse k-CNF formulas that we have

to solve, which is 2εn = 2kn·δ
1/O(k)

. Thus, the overall

time to solve an arbitrary k-CNF is 2O(kn)·δ1/O(k)

. 2

6 Conclusion

We have demonstrated new connections between algo-
rithms for satisfiability and other diverse problems from
different research threads. The fact that there are some
relationships is probably not too surprising, given the
widespread phenomenon of NP-completeness in general.
The surprising property of our reductions are their strik-
ing tightness: seemingly minor improvements on any of
several well-studied problems would imply faster satis-
fiability algorithms.

To complement these results, it would be interesting
if one could find good evidence for the impossibility
of an improved CNF-SAT algorithm, beyond our mere
intuition.
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[26] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick,
Bart Selman, and Lidror Troyansky. 2+p-SAT: Rela-
tion of Typical-Case Complexity to the Nature of the
Phase Transition. Random Structures and Algorithms
15:414–440, 1999.

[27] Jaroslav Nesetril and Svatopluk Poljak. On the com-
plexity of the subgraph problem. Commentationes
Mathematicae Universitatis Carolinae, 26(2): 415–419,
1985.

[28] Pavel Pudlak. Satisfiability – algorithms and logic.
In Proc. Int. Symp. on Mathematical Foundations of
Computer Science (MFCS’98), Springer-Verlag LNCS
1450, 129–141, 1998.

[29] International Conference on Theory and
Applications of Satisfiability Testing. See
http://www.satisfiability.org/

[30] Rainer Schuler. An algorithm for the satisfiability

problem of formulas in conjunctive normal form. J.
Algorithms 54(1):40–44, 2005.

[31] Gerhard J. Woeginger. Exact algorithms for NP-hard
problems: A survey. In Combinatorial Optimization -
Eureka! You shrink!, Springer-Verlag LNCS 2570, 185–
207, 2003.

[32] Gerhard J. Woeginger. Space and time complexity of
exact algorithms: some open problems. In Proc. Int.
Workshop on Parameterized and Exact Computation
(IWPEC), Springer-Verlag LNCS 3162, 281–290, 2004.

[33] Ryan Williams, Carla Gomes, and Bart Selman. Back-
doors to typical case complexity. In Proc. Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), 2003.

[34] R. Ryan Williams. Algorithms and resource re-
quirements for fundamental problems. PhD Thesis,
Carnegie Mellon University, Pittsburgh, PA, 2007.

A Horn SAT and CNF-SAT

Similar to 2-SAT, the HornSat problem is another
restriction of CNF-SAT that is known to be solvable
in linear time [15]. An instance of HornSat is a
CNF formula with at most one non-negative literal per
clause. HornSat is considered to be a more powerful
restriction than 2-SAT, since HornSat is P-complete
and 2-SAT is NL-complete. Somewhat analogous to
the previous section, we show that better algorithms for
an extension of HornSat imply better algorithms for
CNF-SAT. Owing to the power of HornSat, the result
we prove here will be more general than our result for
2-SAT.

Let k ≥ 2. We define HornSat+kClauses to be a
Horn CNF formula conjoined with k additional clauses
of arbitrary size having only positive literals. Clearly, an
instance of this problem can be solved in O(nk ·(m+n))
time, where n is the number of variables and m is the
number of clauses.

Theorem A.1. If there is a k and ε > 0 such that
HornSat+kClauses is in O((n + m)k−ε) time, then
CNF-SAT has an improved algorithm.

We must admit that we are less certain of a better
algorithm for this problem, since the “gap” between the
runtime of the best algorithm we know and the time
bound we would like is larger. The proof is similar to the
one for 2Sat+2Clauses, but with a few modifications.

Proof. (Sketch) Let F be a CNF of n variables
and m clauses. Split the set of n variables into k
equal-sized parts, and form all possible 2n/k assignments
for the variables in each part. For each of the k2n/k

partial assignments A to some n/k variables, we make
an “assignment variable” xA in the new formula. For
each part i = 1, . . . , k, we make an “assignment clause”
in the new formula, which is just the disjunction of all



2n/k assignment variables from part i. These are the k
clauses of arbitrary length.

Now we describe the rest of the formula, which
is Horn. For each literal ` in F , we make a “literal
variable” x` in the new formula, and add clauses

(¬xA ∨ x`)

for each literal ` that is directly implied by a partial
assignment A. Note an assignment variable xA implies
exactly n/k literal variables. We also add n clauses of
the form

(¬x` ∨ ¬x¬`)

for all pairs of literal variables, forbidding two opposing
literal variables to both be true. (For this reason, at
most one assignment variable from an assignment clause
can possibly be true.)

For each clause C from F , define Ci to be the
restriction of C to just those variables from part i. Each
clause C from F will have 2k “clause variables” in the
new formula. In particular, for each part, there are two
clause variables xCi

and x¬Ci
, representing Ci. A clause

C in F is represented by the Horn clause

(¬x¬C1
∨ · · · ∨ ¬x¬Ck−1

∨ xCk
).

Suppose Ci = (`1 ∨ · · · ∨ `j). Then we make the Horn
clauses

(¬x¬`1∨· · ·∨¬x¬`j∨x¬Ci
), (¬x`1∨xCi

), . . . , (¬x`j∨xCi
).

We add clauses forbidding both xCi
and x¬Ci

, for all
clause variables Ci:

(¬xCi
∨ ¬x¬Ci

).

Finally, we claim that this new formula is satisfiable iff
F is satisfiable. Namely, the chosen partial assignment
variables from each of the k assignment clauses corre-
spond to a satisfying assignment for F . 2


