On the Possibility of Faster SAT Algorithms

Mihai Pǎtraşcu Ryan Williams

at\&t

Dagstuhl Dec. 2009

$$
\begin{aligned}
\text { SAT } & =\left\{\Phi=\left(x_{1} \vee x_{7} \vee \overline{x_{8}}\right) \wedge\left(\overline{x_{5}} \vee x_{8}\right) \wedge \cdots \mid \Phi \text { satisfiable }\right\} \\
k \text {-SAT } & =\text { all clauses have } \leq k \text { literals }
\end{aligned}
$$

Parameters:

$$
\begin{aligned}
\mathrm{n} & =\text { number of variables } \\
\mathrm{m} & =\text { number of clauses }
\end{aligned}
$$

Upper bounds:
SAT:

$$
2^{n\left(1-\frac{1}{o(\log (m / n))}\right)} \cdot \operatorname{poly}(m)=2^{n-o(n)}
$$

k-SAT:

$$
2^{n\left(1-O\left(\frac{1}{k}\right)\right)} \cdot \operatorname{poly}(m)=2^{s_{k} n}
$$

ETH: 3-SAT cannot be solved in $2^{o(n)}$

Assuming ETH, s_{k} is increasing. [IP'01]

Hard SAT: SAT requires $2^{n-o(n)}$
If SAT takes $2^{\delta n}, s_{k} \leq \delta\left(1-\Omega\left(\frac{1}{k}\right)\right)$. [IP'01]
Strong ETH: $s_{k} \rightarrow 1$

Open problem. Say $s_{k} \rightarrow \frac{1}{2}$. Can SAT be solved in $2^{0.99 n}$?

Applications: Lower Bounds

d-SUM

Given $S=\{n$ numbers $\}$, are there $x_{1}, \ldots, x_{d} \in S$ with $x_{1}+\cdots+x_{d}=0 ?$
$\mathrm{ETH} \Rightarrow n^{\Omega(d)}$ time.

k-Dominating Set

Given graph, find $S \subset V,|S|=k$ such that $N(S)=V$.
Hard SAT $\Rightarrow O\left(n^{k-\varepsilon}\right)$ impossible.

3-Party Set Disjointness

Alice, Bob, Carmen hold $A, B, C \subset[n]$.
Goal: determine whether $A \cap B \cap C=\emptyset$.
Number on forehead
Strong ETH \Rightarrow no o(n) protocol.

k-Dominating Set Requires $n^{k-o(1)}$

n variables $\mapsto k$ blocks of $\frac{n}{k}$ variables
Block $\mapsto 2^{n / k}$ nodes (partial assignments)
... Plus one supernode connected to block's assignments \Rightarrow much select exactly one assignment in each block
m clauses $\mapsto m$ nodes
Edges from close C_{i} to partial assignment satisfying it

Harder Reductions: Sparsity Matters

When doing reductions, m matters!
Is sparse SAT still hard? No: $2^{(1-\varepsilon) n}$.

How about sparse k-SAT?

Lemma (Sparsification Lemma)

Complexity of k-SAT with $m=f(k, \varepsilon) \cdot n$ $\leq[$ Complexity of general $k-S A T] / 2^{\varepsilon n}$
$\mathrm{ETH} \Rightarrow$ may assume $m=O(n)$.

Reduction to d-SUM

Problem	Variables	Clauses	Why
k-SAT			
k-SAT	n	$\mathrm{m}=\mathrm{O}(\mathrm{n})$	sparsification
3-SAT	$O(n k)$	$O(n k)$	[Cook]
1-in-3-SAT	$N=O(n k)$	$M=O(N)$	[GJ]

Partition variables $\rightarrow d$ blocks of $\frac{N}{d}$ variables
Block $\rightarrow 2^{N / d}$ numbers of M digits digit $[i]=1 \Longleftrightarrow$ clause i satisfied

Must find numbers to sum to $11 \ldots 11$.

Reduction to Set Disjointness

Partition variables $\rightarrow X \cup Y \cup Z,|X|=|Y|=|Z|=\frac{n}{3}$.
x induces $S(x)=\{$ clauses not satisfied by x$\} \subseteq[m]$

$$
\Phi(x y z)=\operatorname{true} \Longleftrightarrow S(x) \cap S(y) \cap S(z)=\emptyset
$$

Run communication protocol for " $S(x) \cap S(y) \cap S(z)=\emptyset$?"

- $O(m)=O(n)$ bits of communication
[Sparsity!]
- so enumerate all transcripts π ending in "Disjoint!"

Tripartite graph $G: V=X \cup Y \cup Z$
$(x, y) \in X \times Y \Longleftrightarrow$ Alice follows π on $S(x), S(y)$
$(y, z) \in Y \times Z \Longleftrightarrow$ Bob follows π on $S(y), S(z)$
$(x, z) \in X \times Z \Longleftrightarrow$ Carmen follows π on $S(x), S(z)$
Find triangle in $O\left(N^{2.376}\right)=O\left(\left(2^{n / 3}\right)^{2.376}\right)=O\left(1.74^{n}\right)$.

Thank you!

$\mathcal{T H E} \mathcal{E N D}$

