# On the Possibility of Faster SAT Algorithms

Mihai Pătraşcu Ryan Williams





▲御▶ ▲ 国▶ ▲ 国▶ -

크

Dagstuhl Dec. 2009

Pătraşcu and Williams Lower Bounds from SAT

## SAT Problems

SAT = {
$$\Phi = (x_1 \lor x_7 \lor \overline{x_8}) \land (\overline{x_5} \lor x_8) \land \cdots \mid \Phi$$
 satisfiable}  
*k*-SAT = all clauses have < *k* literals

#### Parameters:

- n = number of variables
- m = number of clauses

# Upper bounds:

SAT:

$$2^{n\left(1-\frac{1}{O(\log(m/n))}\right)} \cdot \operatorname{poly}(m) = 2^{n-o(n)}$$

k-SAT:

$$2^{n(1-O(\frac{1}{k}))} \cdot \operatorname{poly}(m) = 2^{s_k n}$$

▲□ → ▲ □ → ▲ □ → □

æ

ETH: 3-SAT cannot be solved in  $2^{o(n)}$ 

Assuming ETH,  $s_k$  is increasing. [IP'01]

Hard SAT: SAT requires  $2^{n-o(n)}$ 

If SAT takes  $2^{\delta n}$ ,  $s_k \leq \delta (1 - \Omega(\frac{1}{k}))$ . [IP'01]

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

Strong ETH:  $s_k \rightarrow 1$ 

**Open problem.** Say  $s_k \rightarrow \frac{1}{2}$ . Can SAT be solved in  $2^{0.99n}$ ?

#### d-SUM

Given  $S = \{n \text{ numbers}\}$ , are there  $x_1, \ldots, x_d \in S$  with  $x_1 + \cdots + x_d = 0$ ?

 $\mathsf{ETH} \Rightarrow n^{\Omega(d)}$  time.

#### k-Dominating Set

Given graph, find  $S \subset V$ , |S| = k such that N(S) = V.

Hard SAT  $\Rightarrow O(n^{k-\varepsilon})$  impossible.

#### 3-Party Set Disjointness

Alice, Bob, Carmen hold  $A, B, C \subset [n]$ . Goal: determine whether  $A \cap B \cap C = \emptyset$ . Number on forehead

#### Strong ETH $\Rightarrow$ no o(n) protocol.

< 日 > < 回 > < 回 > < 回 > < 回 > <

# *k*-Dominating Set Requires $n^{k-o(1)}$

*n* variables  $\mapsto k$  blocks of  $\frac{n}{k}$  variables

Block  $\mapsto 2^{n/k}$  nodes (partial assignments) ... Plus one supernode connected to block's assignments  $\Rightarrow$  much select exactly one assignment in each block

*m* clauses  $\mapsto$  *m* nodes Edges from close *C<sub>i</sub>* to partial assignment satisfying it

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

# Harder Reductions: Sparsity Matters

When doing reductions, *m* matters!

Is sparse SAT still hard? No:  $2^{(1-\varepsilon)n}$ .

```
How about sparse k-SAT?
```

Lemma (Sparsification Lemma)

Complexity of k-SAT with  $m = f(k, \varepsilon) \cdot n$  $\leq \left[ \text{ Complexity of general } k\text{-SAT} \right] / 2^{\varepsilon n}$ 

ETH  $\Rightarrow$  may assume m = O(n).

▲御▶ ▲理▶ ▲理▶

## Reduction to *d*-SUM

| Problem    | Variables | Clauses  | Why            |
|------------|-----------|----------|----------------|
| k-SAT      |           |          |                |
| k-SAT      | n         | m=O(n)   | sparsification |
| 3-SAT      | O(nk)     | O(nk)    | [Cook]         |
| 1-in-3-SAT | N = O(nk) | M = O(N) | [GJ]           |

Partition variables  $\rightarrow d$  blocks of  $\frac{N}{d}$  variables

Block  $\rightarrow 2^{N/d}$  numbers of *M* digits digit  $[i] = 1 \iff$  clause *i* satisfied

Must find numbers to sum to 11...11.

・ 回 ・ ・ 目 ・ ・ 日 ・

# **Reduction to Set Disjointness**

Partition variables 
$$\rightarrow X \cup Y \cup Z$$
,  $|X| = |Y| = |Z| = \frac{n}{3}$ .

 $\begin{array}{l} x \text{ induces } S(x) = \{ \text{clauses not satisfied by } x \} \subseteq [m] \\ \Phi(xyz) = \text{true} \iff S(x) \cap S(y) \cap S(z) = \emptyset \end{array}$ 

Run communication protocol for " $S(x) \cap S(y) \cap S(z) = \emptyset$ ?"

- o(m) = o(n) bits of communication [Sparsity!]
- so enumerate all transcripts π ending in "Disjoint!"

Tripartite graph *G*:  $V = X \cup Y \cup Z$ 

 $(x, y) \in X \times Y \iff$  Alice follows  $\pi$  on S(x), S(y) $(y, z) \in Y \times Z \iff$  Bob follows  $\pi$  on S(y), S(z) $(x, z) \in X \times Z \iff$  Carmen follows  $\pi$  on S(x), S(z)Find triangle in  $O(N^{2.376}) = O((2^{n/3})^{2.376}) = O(1.74^n).$ 

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

# $\mathcal{THE} \ \mathcal{END}$

Pătraşcu and Williams Lower Bounds from SAT

< 日 > < 回 > < 回 > < 回 > < 回 > <

3