On the Possibility of Faster SAT Algorithms

Mihai Pătraşcu Ryan Williams

Dagstuhl Dec. 2009
SAT Problems

\[\text{SAT} = \{ \Phi = (x_1 \lor x_7 \lor \overline{x_8}) \land (\overline{x_5} \lor x_8) \land \cdots | \Phi \text{ satisfiable} \} \]

\[k\text{-SAT} = \text{all clauses have} \leq k \text{ literals} \]

Parameters:

\[n = \text{number of variables} \]
\[m = \text{number of clauses} \]

Upper bounds:

\[\text{SAT:} \quad 2^n \left(1 - \frac{1}{O(\log(m/n))}\right) \cdot \text{poly}(m) = 2^{n-o(n)} \]

\[k\text{-SAT:} \quad 2^n \left(1 - O\left(\frac{1}{k}\right)\right) \cdot \text{poly}(m) = 2^{s_k n} \]
Hardness Assumptions

ETH: 3-SAT cannot be solved in $2^{o(n)}$

Assuming ETH, s_k is increasing. [IP’01]

Hard SAT: SAT requires $2^{n-o(n)}$

If SAT takes $2^{\delta n}$, $s_k \leq \delta \left(1 - \Omega\left(\frac{1}{k}\right)\right)$. [IP’01]

Strong ETH: $s_k \to 1$

Open problem.
Say $s_k \to \frac{1}{2}$. Can SAT be solved in $2^{0.99n}$?
Applications: Lower Bounds

\(d\)-SUM
Given \(S = \{n \text{ numbers}\}\), are there \(x_1, \ldots, x_d \in S\) with \(x_1 + \cdots + x_d = 0\) ?

ETH \(\Rightarrow n^{\Omega(d)}\) time.

\(k\)-Dominating Set
Given graph, find \(S \subset V, |S| = k\) such that \(N(S) = V\).

Hard SAT \(\Rightarrow O(n^{k-\varepsilon})\) impossible.

3-Party Set Disjointness
Alice, Bob, Carmen hold \(A, B, C \subset [n]\).
Goal: determine whether \(A \cap B \cap C = \emptyset\).

Number on forehead

Strong ETH \(\Rightarrow\) no \(o(n)\) protocol.
k-Dominating Set Requires $n^{k-o(1)}$

n variables $\mapsto k$ blocks of $\frac{n}{k}$ variables

Block $\mapsto 2^{n/k}$ nodes (partial assignments)
... Plus one supernode connected to block’s assignments
 \Rightarrow much select exactly one assignment in each block

m clauses $\mapsto m$ nodes
Edges from close C_i to partial assignment satisfying it
When doing reductions, m matters!

Is sparse SAT still hard? No: $2^{(1-\varepsilon)n}$.

How about sparse k-SAT?

Lemma (Sparsification Lemma)

Complexity of k-SAT with $m = f(k, \varepsilon) \cdot n$

\[\leq \left[\text{Complexity of general } k\text{-SAT} \right]/2^{\varepsilon n} \]

ETH \Rightarrow may assume $m = O(n)$.

Pătrașcu and Williams Lower Bounds from SAT
Reduction to d-SUM

<table>
<thead>
<tr>
<th>Problem</th>
<th>Variables</th>
<th>Clauses</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-SAT</td>
<td>n</td>
<td>m=O(n)</td>
<td>sparsification</td>
</tr>
<tr>
<td>3-SAT</td>
<td>$O(nk)$</td>
<td>$O(nk)$</td>
<td>[Cook]</td>
</tr>
<tr>
<td>1-in-3-SAT</td>
<td>$N = O(nk)$</td>
<td>$M = O(N)$</td>
<td>[GJ]</td>
</tr>
</tbody>
</table>

Partition variables \rightarrow d blocks of $\frac{N}{d}$ variables

Block \rightarrow $2^{N/d}$ numbers of M digits

digit $[i] = 1 \iff$ clause i satisfied

Must find numbers to sum to 11...11.
Reduction to Set Disjointness

Partition variables \(\rightarrow X \cup Y \cup Z, \ |X| = |Y| = |Z| = \frac{n}{3}. \)

\(x \) induces \(S(x) = \{ \text{clauses not satisfied by } x \} \subseteq [m] \)
\(\Phi(xyz) = \text{true} \iff S(x) \cap S(y) \cap S(z) = \emptyset \)

Run communication protocol for “\(S(x) \cap S(y) \cap S(z) = \emptyset \)?”

- \(o(m) = o(n) \) bits of communication [Sparsity!]
- so enumerate all transcripts \(\pi \) ending in “Disjoint!”

Tripartite graph \(G: V = X \cup Y \cup Z \)
\((x, y) \in X \times Y \iff \) Alice follows \(\pi \) on \(S(x), S(y) \)
\((y, z) \in Y \times Z \iff \) Bob follows \(\pi \) on \(S(y), S(z) \)
\((x, z) \in X \times Z \iff \) Carmen follows \(\pi \) on \(S(x), S(z) \)
Find triangle in \(O(N^{2.376}) = O((2^{n/3})^{2.376}) = O(1.74^n). \)
THE END