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Abstract

Dynamic connectivity is a well-studied problem, but so ta& tost compelling progress has been
confined to the edge-update model: maintain an understamdiconnectivity in an undirected graph,
subject to edge insertions and deletions. In this paper,tudydwo more challenging, yet equally
fundamental problems:

Subgraph connectivity asks to maintain an understanding of connectivity undetexenpdates:
updates can turn vertices on and off, and queries refer tgubgraph induced bgn vertices. (For
instance, this is closer to applications in networks of eesitwhere node faults may occur.)

We describe a data structure supporting vertex updateéi’/?) amortized time, where: denotes
the number of edges in the graph. This greatly improves dweiptevious result [Chan, STOC'02],
which required fast matrix multiplication and had an updatee of O(m%°*). The new data structure
is also simpler.

Geometric connectivityasks to maintain a dynamic setmfgeometric objects, and query connec-
tivity in their intersection graph. (For instance, the isection graph of balls describes connectivity in a
network of sensors with bounded transmission radius.)

Previously, nontrivial fully dynamic results were knownlypfor special cases like axis-parallel line
segments and rectangles. We provide similarly improvedteptimesO(n?/3), for these special cases.
Moreover, we show how to obtain sublinear update boundsiftually all families of geometric ob-
jects which allow sublinear-time range queries. In palticuwe obtain thdirst sublinear update time
for arbitrary 2D line segmentsd* (n%/19); for d-dimensional simplicesO* (n'~ =471 ); and ford-
dimensional ballsO* (n' ~ @ras ).



1 Introduction

1.1 Dynamic Graphs

Dynamic graphs inspire a natural, challenging, and welllisd class of algorithmic problems. A rich body
of the STOC/FOCS literature has considered problems rgnigom the basic question of understanding
connectivity in a dynamic graph [16, 20, 37, 6, 34], to mdiniteg the minimum spanning tree [23], the
min-cut [39], shortest paths [11, 38], reachability in diesl graphs [12, 28, 29, 35, 36], etc.

But what exactly makes a graph “dynamic”? Computer netwdwkge long provided the common
motivation. The dynamic nature of such networks is captimetivo basic types of updates to the graph:

e edge updates: adding or removing an edge. These correspaetting up a new cable connection,
accidental cable cuts, etc.

e vertex updates: turning a vertex on and off. Vertices (n&)tean temporarily become “off” after
events such as a misconfiguration, a software crash andtredtoo Problems involving only vertex
updates have been calldgnamic subgrapiproblems, since queries refer to the subgraph induced by
vertices which are on.

Loosely speaking, dynamic graph problems fall into two gates. For “hard” problems, such as
shortest paths and directed reachability, the best knownimg times are at least linear in the number of
vertices. These high running times obscure the differemteden vertex and edge updates, and identical
bounds are often stated [11, 35, 36] for both operations. tik@mremainder of the problems, sublinear
running times are known for edge updates, but sublinear dmtor vertex updates seems much harder to
get. For instance, even iterating through all edges intittea vertex may take linear time in the worst case.
That vertex updates are slow is unfortunate. Referring éocttimputer-network metaphor, vertex updates
are cheap “soft” events (misconfiguration or reboot), wkachur more frequently than the costly physical
events (cable cut) that cause an edge update.

Subgraph connectivity. As mentioned, most previous sublinear dynamic graph algos address edge
updates but not the equally fundamental vertex updates. nOtable exception, however, was a result of
Chan [6] from STOC’02 on the basic connectivity problem fengral sparse (undirected) graphs. This al-
gorithm can support vertex updates in thi(m“*) and decide whether two query vertices are connected
in time O(m!/3).

Though an encouraging start, the nature of this result miileggpear more like a half breakthrough.
For one, the update time is only slightly sublinear. Worse @han’s algorithm requires fast matrix multi-
plication (FMM). TheO(m®*) update time follows from the theoretical FMM algorithm of ge@rsmith
and Winograd [9]. If Strassen’s algorithm is used instehd, update time becomez(m’?84). Even if
optimistically FMM could be done in quadratic time, the ufgdéime would only improve ta@ (m%89).
Chan [6] conjectured that FMM was essential to our problem.

Our result.  In this paper, we present a new algorithm for dynamic corwvigctachieving an improved
vertex-update time of)(m?/3), with an identical query time a(m'/3). First of all, this is aguantitative
improvement, and it represents the first convincingly sidar running time. More importantly, it is a

We usemn andn to denote the number of edges and vertices of the graph lté&iiwc@() ignores polylogarithmic factors
andO*(-) hidesn® factors for an arbitrarily small constant> 0. Update bounds in this paper are, by default, amortized.
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Figure 1: Isb reachable froma staying on the roads?

gualitativeimprovement, as our bound does not require FMM. Our alguoritivolves a number of ideas,
some of which can be traced back to earlier algorithms, butiseeknown edge-updatable connectivity
structures to maintain a more cleverly designed intermedjeaph. The end product is not straightforward
at all, but still turns out to beimplerthan the previous method [6].

1.2 Dynamic Geometry

We next turn to another important class of dynamic connggfproblems—those arising from geometry.

Geometric connectivity. Consider the following question (Figure 1). Maintain a seliree segments in
the plane, under insertions and deletions, to answer guefite form: “given two pointa andb, is there
a path between andb along the segments?”

This simple-sounding problem turns out to be a challenge.o@mhand, understanding any local ge-
ometry does not seem to help, because the connecting pattedang and windy. On the other hand, the
graph-theoretic understanding is based on the intersegtiaph, which is too expensive to maintain. A
newly inserted (or deleted) segment can intersect a langgaucof objects in the set, changing the intersec-
tion graph dramatically.

Abstracting away, we can consider a broad class of problditiedorm: maintain a set of geometric
objects, and answer connectivity queries in their intdrsegraph. Such graphs arise, for instance, in VLSI
applications in the case of orthogonal segments, or geasmigsion systems, in the case of touching disks
(see Figure 2). A more compelling application can be foundensor networks: if is the radius within
which two sensors can communicate, the communication mktiwéohe intersection graph of balls of radius
r/2 centered at the sensors. While our focus is on theoreticd@rstanding rather than the practicality of
specific applications, these examples still indicate tharahappeal of geometric connectivity problems.

Figure 2: Do the gears transmit rotation frano 5?
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All these problems have a trivia[ND(n) solution, by maintaining the intersection graph throughesd
updates. A systematic approach to beating the linear timadwas proposed in Chan’s paper as well [6],
by drawing a connection to subgraph connectivity. Assurag dhparticular object type allows data struc-
tures for intersection range searching with spa¢e) and query timel'(n). It was shown that geometric
connectivity can essentially be solved by maintaining glref sizem = O(S(n) + nT'(n)) and running
O(S(n)/n + T'(n)) vertex updates for every object insertion or deletion. gsire previous subgraph con-
nectivity result [6], an update in the geometric connettiproblem takes timé&([S(n)/n+T(n)]-[S(n)+
nT(n)]%%4). Using our improved result, the bound becons&$S (n)/n + T(n)] - [S(n) + nT(n)]*/?).

The prime implication in the previous paper is that conmgtiof axis-parallel boxes in any constant
dimension (in particular, orthogonal line segments in tte@) reduces to subgraph connectivity, with a
polylogarithmic cost. Indeed, for such boxes range treeliyi(n) = n - 1g°@ n andT'(n) = 1g°@ n.
Unfortunately, while nontrivial range searching results lenown for many types of objects, very efficient
range searching is hard to come by. Consider our main mistiyakamples:

o for arbitrary (non-orthogonal) line segments if,Rne can achievé@'(n) = O*(y/n) andS(n) =
O*(n), or T(n) = O*(n'/?) andS(n) = O*(n*/3) [31].

o for disks in R, one can achiev@(n) = O*(n??) andS(n) = O*(n), or T(n) = O*(n'/?) and
S(n) = O*(n*/2) [3].

Even with our improved vertex-update time, fi#n)/n + T'(n)] - [S(n) + nT(n))?/® bound is too weak

to beat the trivial linear update time. For arbitrary lingmsents in B, one would need to improve the
vertex-update time te:'/2~¢, which appears unlikely without FMM (see Section 2). The liegment case
was in fact mentioned as a major open problem, implicitly@Ghdnd explicitly in [1]. The situation gets
worse for objects of higher complexity or in higher dimemsio

Our results. In this paper, we are finally able to break the above barriedfmamic geometric connec-
tivity. At a high level, we show that range searching wathy sublinear query time is enough to obtain
sublinear update time in geometric connectivity. In paittic we get thdirst nontrivial update times for
arbitrary line segments in the plane, disks of arbitraryiratd simplices and balls in any fixed dimension.
While the previous reduction [6] involves merely a straightard usage of “biclique covers”, our result
here requires much more work. For starters, we need to daVidegree-sensitive” version of our improved
subgraph connectivity algorithm (which is of interest igeif); we then use this and known connectivity
structures to maintain not one but two carefully designéerinediate graphs.

Essentially, if7'(n) = O(n'~?) andS(n) = O(n), we can support dynamic geometric connectivity
with update timeO (n!~*/(2+%)) and query timeD (n®(2t)). For non-orthogonal line segments it R
this gives an update time @*(n%/19) and a query time 0O*(n!/%). For disks in R, the update time is
O*(n?%/21), with a query time oD* (n'/7).

Known range searching techniques [2] from computationahggry almost always provide sublinear
query time. For instance, MatouSek [31] showed that 1/2 is attainable for line segments, triangles, and
any constant-size polygons inRmore generallyh ~ 1/d for simplices or constant-size polyhedra iff.R
Further results by Agarwal and Matousek [3] yiélds 1/(d + 1) for balls in R?. Most generally, fomny
class of objects that are semialgebraic sets defined by afsian@t number of bounded-degree polynomials
in any constant dimension, a strictly positive constantriiaboior b can be established (although determining
the best value o may not be easy depending on the family of semialgebraicusetsr consideration [3]).



More results. Our general sublinear results undoubtedly invite furtlesearch into finding better bounds
for specific classes of objects. In general, the compleXitaoge queries provides a natural barrier for the
update time, since upon inserting an object we at least medetérmine if it intersects any object already in
the set. Our result currently has a gap when compared to tige searching bound: #(n) = n'~?, then
the update time of our algorithm igl —©®*).

In Section 5, we make a positive step towards closing this gagpshow that if the updates are given
offline (i.e. are known in advance), the amortized update time camdmen!~©®). We need FMM this
time, but the usage of FMM here is more intricate (and intargy than typical. For one, it is crucial to
use fastrectangular matrix multiplication. Along the way, we even find ourselvesleriving Yuster and
Zwick’s sparse matrix multiplication result [41] in a morergeral form. The juggling of parameters is also

1+a—ba
more unusual, as one can suspect from looking at our actdateound, which i©* (n1te=ta/2), where
a = 0.294 is an exponent associated with rectangular FMM.

2 Related Work

Before proceeding to our new algorithms, we mention moiged work, for the sake of completeness.

Graphs. Most previous work on dynamic subgraph connectivity consepecial cases only. Frigioni and
Italiano [17] considered vertex updates in planar graphg,described a polylogarithmic solution.

If vertices have constant degree, vertex updates are dguivia edge updates. For edge updates, Hen-
zinger and King [20] were first to obtain polylogarithmic e times (randomized). This was improved by
Holm et al. [23] to a deterministic solution with(1g? m) time per update, and by Thorup [37] to a random-
ized solution withO(lgm - (Iglgm)3) update time. The randomized bound almost matche$them)
lower bound from [33]. All these data structures maintaiparming forest as a certificate for connectivity.
This idea fails for vertex updates in the general case, shmeeertificate can change substantially after just
one update.

In many practical settings, these planar-graph and condegree special cases are unfortunately inad-
equate. In particular, large networks of routers are oftesighed as overlay graphs over a (small-degree)
geographic graph. Long fiber-optic links bypass intermediedes, in order to minimize the latency cost
of passing through the electric domain repeatedly.

For more difficult dynamic graph problems, the goal is tyfiycehanged from getting polylogarithmic
bounds to finding better exponents in polynomial boundsefample, see all the papers on directed reach-
ability [12, 28, 35, 36]. Evidence suggests that dynamiaysash connectivity fits this category. It was
observed [6] that finding triangles (3-cycles) or quadetiats (4-cycles) in directed graphs can be reduced
to O(m) vertex updates. Thus, an update bound better {hanappears unlikely without FMM, since the
best running time for finding triangles without FMM@(m?/2), dating back to STOC’77 [27]. Even with
FMM, known results are only slightly better: finding triasgland quadrilaterals takes tirogm!4!) [5]
andO(m!*®) [40] respectively. Thus, current knowledge prevents aratetound better thamn®-4%.

Geometry. It was shown [6] that subgraph connectivity can be reduced/f@mic connectivity of axis-
parallel line segments in 3 dimensions. Thus, as soon asaiae&gough combinatorial richness in the host
geometric space, subgraph connectivity becomesithepossible way to solve geometric connectivity.

When the geometry is less combinatorially rich, it is poestb findad hocalgorithms that do not rely
on subgraph connectivity. Special cases that have beestigated include the following:



o for orthogonal segments or axis-parallel rectangles iptaee, Afshani and Chan [1] proposed a data
structure with update tim@(n'%/!!) and constant query time. This is incomparable to our result o
update timeO(n?/3) and query timeD(n'/3).

e for unit axis-parallel hypercubes, the problem reducesdmtaining the minimum spanning tree un-
der the/, metric. Eppstein [14] describes a general technique foaohya geometric MST, ultimately
appealing to range searching, and obtains polylogarithimie per operation.

¢ for unit balls, the problem reduces to dynamic Euclidean M&fich in turn reduces to range search-
ing by Eppstein’s technique [14]. In two dimensions, Chatysamic nearest-neighbor data struc-
ture [7] implies anO(1g'° n) update time for this problem.

Dynamic geometric connectivity is a natural continuatidrstatic geometric connectivity problems,
which have been studied since the early 1980s. As in our ¢hsanain challenge is to avoid working
explicitly with the intersection graph, which could be ofegluatic size. Known results include(n lgn)-
time algorithms [25, 26] for computing the connected conguts of axis-aligned rectangles in the plane,
and O(n4/3)—time algorithms [19, 30] for arbitrary line segments in flane. More generally, Chan [6]
(and later Eppstein [15]) noted the connection of staticngetoic connectivity to range searching, which
implied subquadratic algorithms for objects with const@scription complexity. The connection carries
over to the incremental (insertion-only) and decremerdalgtion-only) cases [6], e.qg., yieldir@(nl/3)
update time for arbitrary line segments, reproving andreditey some older results [4].

Another related problem is maintaining connectivity in Kueetic setting, where objects move contin-
uously according to known flight plans. See [21, 22] for theecaf axis-parallel boxes, and [18] for unit
disks.

3 Dynamic Subgraph Connectivity with O(m?/3) Update Time

In this section, we present our new method for the dynamigrsydh connectivity problem: maintaining a
subsetS of vertices in a grapld-, under vertex insertions and deletionsSinso that we can decide whether
any two query vertices are connected in the subgraph indogéd We will call the vertices inS theactive
vertices. For now, we assume that the grépltself is static.

The complete description of the new method is given in th@fpob the following theorem. It is sub-
stantially shorter than the method from Chan’s paper [6]e ptevious method requires several stages of
development, addressing the offline and semi-online speases, along with the use of FMM—we com-
pletely bypass these intermediate stages, and FMM, herbeéaed below, one can find a number of differ-
ent ideas (some also used in [6]): rebuilding periodicaftgraa certain number of updates, distinguishing
“high-degree” features from “low-degree” features (esge [5, 40]), amortizing by splitting smaller subsets
from larger ones, etc. The key lies in the definition of a nest,deceptively simple, intermediate gra@h,
which is maintained by known polylogarithmic data struetifor dynamic connectivity under edge updates
[20, 23, 37]. Except for these known connectivity structutbe description is entirely self-contained.

Theorem 1. We can design a data structure for dynamic subgraph conigcfor a graphG = (V, E)
with m edges, having amortized vertex update titen>/%), query timeO(m!/?), and preprocessing time
O(m*/3). The size of the data structure@¥m?*/?).

Proof. We divide the update sequence into phases, each consi$ting=0 m /A updates (wher&\ is a
parameter to be set later). The active vertices are paiionto two setd” and ), where P undergoes
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Figure 3: The grapit’. The components aP are in the upper side and the verticeslofre in the lower
side. White vertices of are also vertices af. High components are shaded. In this exam@le, v] = 2.

only deletions and) undergoes both insertions and deletions. Each vertextiosés done to(). At the
end of each phase, we move the element9 &6 P and reset) to the empty set. This way)| is kept at
mostq at all times.

Call a connected component in (the subgraph inducedPdyighif the sum of the degrees of its vertices
(in G) exceedsA, andlow otherwise. Since& has at mostn edges, there are at moS{m/A) high
components.

The data structure.

e We store the components &f in a data structure for decremental (deletion-only) cotivige that
supports edge deletions in polylogarithmic amortized time

¢ We maintain a bipartite multigraph betweenl” and the componentgin P: for eachuv € F where
v lies in componenty, we create a copy of an edge € T". This is depicted in Figure 3.

e For each vertex pait,v, we maintain the valu€'[u,v| defined as the number of low components
in P that are adjacent to bothhandv, i.e., have edges to bothandv in T". (Notice that since low
components have onlx edges, onlyO(mA) entries ofC[-, -] are nonzero and need to be stored.)

e We define a graplir* whose vertices are the vertices@fand the high components &f:

(a) Foreachi,v € Q, if C[u,v] > 0, then create an edgey € G*.
(b) For each vertex. € @ and high component in P, if uy € T, then create an edgey € G*.
(c) Foreachs,v € Q, if uv € E, then create an edge € G*.

The graphG* is depicted in Figure 4. We mainta{®* in another data structure for dynamic connec-
tivity supporting polylogarithmic-time edge updates.

Justification. We claim that two vertices @ are connected in the subgraph induced by the active vertices
in G iff they are connected iG*. The “if” direction is obvious. For the “only if” directionsuppose two
verticesu, v € ) are “directly” connected it by being adjacent to a common componenh P. If v is

high, then edges of type (b) ensure thatndwv are connected itr*. If insteadry is low, then edges of type

(a) ensure that andv are connected it*. By concatenation, the argument extends to show that any two
verticesu, v € () connected by a path iy are connected ifr*.



Figure 4: The graplé-*. Dotted edges and low degree components aféanid are not part aofr*.

Queries. Given two vertices;; andwo, if both are inQ, we can simply test whether they are connected
in G*.

Ifinsteadv; (j € {1,2}) isinahigh component;, then we can replacg with any vertex o)) adjacent
toy; in G*. If no such vertex exists, then because of type-(b) edges,an isolated component and we can
simply test whether; andw, are both in the same component/ef

If on the other hand; is in a low componenty;, then we can exhaustively search for a vertexin
adjacenttoy; in T, in 6(A) time, and replace; with such a vertex. Again if no such vertex exists, then
is an isolated component and the test is easy. The queryscfésni).

Preprocessing per phase. At the beginning of each phase, we can compute the multigfaimhé(m)
time. We can compute the matriX[-, -] in O(mA) time, by examining each edgey € I and each of the
O(A) verticesu adjacent to a low componentand testing whetheyu € T'. The graphG* can then be
initialized. The cost per phase@(mA). We can cover this cost by charging every update operatitim wi
amortized cosO(mA /q) = O(A?).

Update of a vertexwu in Q. We need to updat®(q) edges of types (a) and (c), aot{m/A) edges of
type (b) inG*. The costiD(q +m/A) = O(m/A).

Deletion of a vertex from a low componenty in P. The componeny is split into a number of subcom-
ponents. Since the total degreeyins O(A), we can update the multigraghin 5(A) time. Furthermore,
we can update the matriX[-, -] in 5(A2) time, by examining each vertex pairv adjacent toy and decre-
mentingC|u, v] if v andw lie in different subcomponents. Consequently, we need tatg®) (A?) edges
of type (). The cost i®(A2).

Deletion of a vertex from a high componentyin P. The componeny is split into a number of subcom-
ponentsy,, . .., v, with, say,y; being the largest. We can update the multigrépim time O(deg(72) +
.-+ deg(~¢)) by splitting the smaller subcomponents from the largestsuiponent. Consequently, we
need to updat®(deg(vs) + - - - + deg(v,)) edges of type (b) i*. SinceP undergoes deletions only, a
vertex can belong to the smaller subcomponents in at @ggtn) splits over the entire phase, and so the
total cost per phase @(m), which is absorbed in the preprocessing cost of the phase.

For each low subcomponent, we update the matri€'[-, -] in 5(deg(fyj)A) time, by examining each
edgey;v € I and each of th&)(A) verticesu adjacent toy; and testing whethey;u € I'. Consequently,
we need to updat®(deg(v;)A) edges of type (a) id*. Since a vertex can change from being in a high
component to a low component at most once over the entireeptiestotal cost per phase(NDE{mA), which
is absorbed by the preprocessing cost.



Finale. The overall amortized cost per update operatioR (&2 + m/A). SetA = m!/3. O

Note that edge insertions and deletiong+itan be accomodated easily (e.g., see Lemma 2 of the next
section).

4 Dynamic Geometric Connectivity with Sublinear Update Time

In this section, we investigate geometric connectivitybfeas: maintaining a sef of n objects, under
insertions and deletions of objects, so that we can decidetheh two query objects are connected in the
intersection graph aof. (In particular, we can decide whether two query points aremected in the union
of S by finding two objects containing the two points, via rangarsking, and testing connectedness for
these two objects.)

By the biclique-cover technique from [6], the result frone threvious section immediately implies a
dynamic connectivity method for axis-parallel boxes wittn?/?) update time and)(n'/3) query time in
any fixed dimension.

Unfortunately, this technique is not strong enough to leadublinear results for other objects, as we
have explained in the introduction. This is because (i) the sf the maintained graphmy = O(S(n) +
nT'(n)), may be too large and (ii) the number of vertex updates tregyby an object updat€)(S(n)/n +
T(n)), may be too large.

We can overcome the first obstacle by using a different gjyatteat rebuilds the graph more often to
keep it sparse; this is not obvious and will be describedipedc later during the proof of Theorem 5.
The second obstacle is even more critical: here, the keyabserve that although each geometric update
requires multiple vertex updatasanyof these vertex updates involves verticesoo degrees.

4.1 A degree-sensitive version of subgraph connectivity

The first ingredient we need is a dynamic subgraph conngctivethod that works faster when the degree
of the updated vertex is small. Fortunately, we can provdalh@ving lemma, which extends Theorem 1 (if
we setA = m!/3). The method follows that of Theorem 1, but with an extra twist only do we classify
components of’ as high or low, but we also classify vertices@fas high or low.

Lemma 2. Let1 < A < n. We can design a data structure for dynamic subgraph coiviigctor a graph
G = (V, E) with m edges, where update for a vertexakes amortized update time

O(A? + min{m/A, deg(u)}),

a query takes tim@(A), preprocessing takes tirr@(mA), and an edge update takes amortized time
O(A?).

Proof. The data structure is the same as in the proof of Theorem &pefar one difference: the definition
of the graphG™.

Call a vertexhigh if its degree exceeds:/A, andlow otherwise. Clearly, there are at magtA) high
vertices.

e We define a graplir* whose vertices are the vertices@fand the (high and low) components Bf

() Foreach high vertex € Q and each vertex € Q, if C[u,v] > 0, then create an edge € G*.
(b) For each vertex. € @ and high component in P, if uy € T, then create an edgey € G*.

9



(b') For each low vertex € Q and each componentin P, if uy € T, then create an edge; € G*.
(c) Foreachs,v € Q, if uv € E, then create an edge € G*.

We maintainG* in a data structure for dynamic connectivity with polylogfamic-time edge updates.

Justification. We claim that two vertices @ are connected in the subgraph induced by the active vertices
in G iff they are connected id*. The “if” direction is obvious. For the “only if” directionsuppose two
verticesu, v € Q) are “directly” connected itz by being adjacent to a common componenh P. If v is

high, then edges of type (b) ensure thatndv are connected itr*. If v andv are both low, then edges of
type (B) ensure that: andv are connected i*. In the remaining case, at least one of the two vertices, say,
u is high, andy is low; here, edges of type’jeensure that, andv are again connected i@*. The claim
follows by concatenation.

Queries. Given two vertices); andws, if both are in@, we can simply test whether they are connected in
G*. Ifinsteadv; (j € {1,2}) is in a componeny;, then we can replace; with any vertex ofQ) adjacent to

7; In G*. If no such vertex exists, then because of typg-€dges;y; can only be adjacent to high vertices
of Q). We can exhaustively search for a high vertexjimdjacent toy; in I', in 6(A) time, and replace;

with such a vertex. If no such vertex exists, thgns an isolated component and we can simply test whether
v1 andw, are both iny;. The costisO(A).

Preprocessing per phase. At the beginning of each phase, the cost to preprocess tlesttaicture is
O(mA) as before. We can charge every update operation with anizewrost ofO(mA /q) = O(A?).

Update of a high vertexu in Q. We need to updat®(q) edges of types (pand (c), andd(m/A) edges
of type (b) inG*. The costigD(q + m/A) = O(m/A).

Update of a low vertexu in Q. We need to updat®(A) edges of type (3 andO(deg(u)) edges of
types (b), (b, and (c) inG*. The cost igD(deg(u) + A).

Deletion of a vertex from a low/high componenty in P. Proceeding exactly as in the proof of Theo-
rem 1, we can update the data structure with amortized(@(A®).

Edge updates. We can simulate the insertion of an edgeby inserting a new low vertex adjacent to
only v andv to Q. Since the degree is 2, the costl$l). We can later simulate the deletion of this edge by
deleting the vertex from Q). O

4.2 Range searching tools from geometry

Next, we need known range searching techniques. Theseideelsngive near-linear-space data structures
(S(n) = O(n)) that can retrieve all objects intersecting a query objestiblinear timeT'(n) = O(n'~?))
for many types of geometric objects. We assume that our ofaggometric objects satisfies the following

property for some constaht> 0—this property neatly summarizes all we need to know frormugztoy.
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Property 3. Given a setP of n objects, we can form a collectiahof canonical subsetsf total size@(n),

in 5(n) time, such that the subset of all objectgdintersecting any object can be expressed as the union
of disjoint subsets in a subcollectigh of O(n'~%) canonical subsets, i®(n'~%) time. Furthermore, for
everyl < A <n,

(i) the number of subsets ih of size exceeding/A is O(A'?);
(i) the total size of all subsets @, of size at most/A is O(n/AP).

The property can be derived from a well-known class of gedmeata structures calleghulti-level)
partition trees for example, see the work by MatouSek [31] or the survey lgarval and Erickson [2].
Each canonical subset corresponds to a node in the tre¢userifmore precisely, the subset of all objects
stored at the leaves underneath the node). Matousek shbad= 1/d — ¢ is attainablé for simplices
or constant-size polyhedra in?R(The most basic version of MatouSek’s partition tree issimplex range
searching, i.e., retrieving points inside a query simpbex,a multi-level version [32, 8] of the data structure
can handle simplex intersection searching, i.e., retigpg@implices intersecting a query simplex.) Further
results by Agarwal and Matousek [3] yiebd= 1/(d 4 1) — ¢ for balls in R? and nontrivial values of for
other families of curved objects (semialgebraic sets oktamt degree). The special case of axis-parallel
boxes corresponds to= 1.

The specific bounds in (i) and (ii) may not have been expjicthted in previous papers, but they follow
from known patrtition tree constructions. These constamsiactually guarantee a stronger inequality

Z |C|1—b < 5(n1—b).

CecC.
(For example, see [32, 8].) This inequality immediately liepthat
() HC €C.:[C| > n/A} < O(!~/(n/A)'™") = O(A);

(i) Ycec.o1<n/alCl < (/D) Y cee. joj<na O < O((n/A)n!=Y) = O(n/Ab).

As anillustration, we can use the above property to devettgiastructure for a special case of dynamic
geometric connectivity where insertions are done in “b&jdbut arbitrary deletions are to be supported.
Although the insertion time is at least linear, the resutided if the block sizes is sufficiently large. This
subroutine will make up a part of the final solution.

Lemma 4. We can maintain the connected components among & sébbjects in a data structure that
supports insertion of a block efobjects inO(n + sn'~?) amortized timeq{ < n), and deletion of a single
object inO(1) amortized time.

Proof. We maintain a multigraplif in a data structure for dynamic connectivity with polylagamic edge
update time (which explicitly maintains the connected congmts), where the vertices are the objectS .of
This multigraph will obey the invariant that two objects geometrically connected iff they are connected
in .S. We do not insist tha#f has linear size.

%A recent improvement by Chan [8] can obtairtegt 1/d without thee term while maintainingﬁ(n) randomized preprocessing
time.
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Insertion of a block Bto S. We first form a collectiorC of canonical subsets f¢f U B as in Property 3.
For eachz € B and eachC € C,, we assignz to C. For each canonical subsét e C, if C' is assigned
at least one object aB, then we create new edgesihlinking all objects ofC' and all objects assigned to
C in a path. (If this path overlaps with previous paths, we ter@aultiple copies of edges.) The number of
edges inserted is th@®(n + | B|n!™?).

Justification. The invariant is satisfied since all objects in a canonichkstC' intersect all objects as-
signed toC', and are thus all connected if there is at least one objeigresktoC.

Deletion of an objectz from S. For each canonical subgg€tcontaining or assigned the objegtwe need

to delete at most 2 edges and insert 1 edge to maintain the patisoon as the path contains no object
assigned ta’, we delete all the edges in the path. Since the length of ttieqaa only decrease over the
entire update sequence, the total number of such edge gpga@i®portional to the initial length of the path.
We can charge the cost to edge insertions. O

4.3 Putting it together

We are finally ready to present our sublinear result for dynaggaometric connectivity. We again need the
idea of rebuilding periodically, and splitting smaller sé&tom larger ones. In addition to the gragh(of
superlinear size) from Lemma 4, which undergoes insertomg in blocks, the key lies in the definition of
another subtly crafted intermediate gra@gh(of linear size), maintained this time by the subgraph conne
tivity structure of Lemma 2. The definition of this graph itves multiple types of vertices and edges. The
details of the analysis and the setting of parameters get mtaresting.

Theorem 5. Assume) < b < 1/2. We can maintain a collection of objects in amortized update
O(n!'~v*/(2+h)) and answer connectivity queries in tirGgn?/ (2+0)).

Proof. We divide the update sequence into phases, each consiéting-on® updates. The current objects
are partitioned into two set& andY’, whereX undergoes only deletions andundergoes both insertions
and deletions. Each insertion is donefto At the end of each phase, we move the elements tf X and
resetY” to the empty set. This way'| is kept at mosy at all times.

At the beginning of each phase, we form a collectibaf canonical subsets foX by Property 3.

The data structure.
¢ We maintain the components &f in the data structure from Lemma 4.

¢ We maintain the following grapty for dynamic subgraph connectivity, where the vertices ajeats
of X UY, components oX, and the canonical subsets of the current phase:
(a) Create an edge 1@ between each component &fand each of its objects.
(b) Create an edge i@ between each canonical subset and each of its objedfs in

(c) Create an edge i@ between each objeet € Y and each canonical subséte C,. Here, we
assignz to C.

(d) Create an edge i@ between every two intersecting objectsyin

12



(e) We make a canonical subset activeSiiff it is assigned at least one object¥n Vertices that
are objects or components are always active.

Note that there aré(n) edges of types (a) and ())(yn'~") edges of type (c), an@(y?) edges of
type (d). Fory = n’, the size ofG is thusO(n).

Justification. We claim that two objects are geometrically connected’iv Y iff they are connected in
the subgraph induced by the active vertices in the gi@pfihe “only if” direction is obvious. For the “if”
direction, we note that all objects in an active canonicakstC' intersect all objects assignedd@band are
thus all connected.

Queries. We answer a query by querying in the graghThe cost i@(A).

Preprocessing per phase. Before a new phase begins, we need to update the componeXtsagwe
move all elements of to X (a block insertion). By Lemma 4, the cost@n + yn'~*) = O(n). We can
now reinitialize the grapldz containingO(n) edges of types (a) and (b) ®(nA) time by Lemma 2. We
can charge every update operation an amortized castof\ /y) = O(n'~"A).

Update of an objectz in Y. We need to updaté(nl—b) edges of type (c) an@(y) edges of type (d) in
G. The cost according to Lemma 2GEn!'~?A2). B

Furthermore, because of (e), we may have to update the sthassmany ag)(n'~") vertices. The
number of such vertices of degree exceedirigh is 5(A1—b) by Property 3(i), and the total degree among
such vertices of degree at mostA is O(n/Ab) by Property 3(ii). Thus, according to Lemma 2, the cost
of these vertex updates@(n'!~?A2 + A=t . n/A + n/AP) = O(n*~PA2 + n/AD).

Deletion of an objectz in X. We first update the components &t By Lemma 4, the amortized cost is
O(1). We can now update the edges of type (afsinThe total number of such edge updates per phase is
O(nlgn), by always splitting smaller components from larger ondg dmortized number of edge updates

is thusO(n/y). The amortized cost i©((n/y)A2) = O(n!~PA2).

Finale. The overall amortized cost per update operatioR(s!~?A2 + n/AP). SetA = n?/+0)

Note that we can still prove the theorem for- 1/2, by handling theD(y?) intersections among (the
type (d) edges) in aless naive way. However, we are not aarg/specific applications withe (1/2,1).

5 Offline Dynamic Geometric Connectivity

For the special case of offline updates, we can improve thdtresSection 4 for small values df by a
different method using rectangular matrix multiplication

Let M[n1,n2, n3] represent the cost of multiplying a Booleanx ns matrix A with a Booleam, x ng
matrix B. Let M[ny,n2, ng | my, ms] represent the same cost under the knowledge that the nurhbsr o
in A is my and the number of 1's iB is my. We can reinterpret this task in graph terms: Suppose we are
given a tripartite graph with vertex classeg, V5, V3 of sizesny, no, ng respectively where there are;
edges betweel; andV, andm, edges betweel, andVs. ThenM [nq, ne, n3 | m1, ms| represent the cost
of deciding, for eachx € V; andv € V3, whetheru andv are adjacent to a common vertexlip.
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5.1 An offline degree-sensitive version of subgraph connegity

We begin with an offline variant of Lemma 2:

Lemma6. Let1l < A < g < m. We can design a data structure for offline dynamic subgrapimectivity
for a graphG = (V, E)) with m edges and: vertices, where each vertex is labeledtragh or low by the
user, under the assumption that at mogtA) vertices are high and at mosiy edges are incident to high
vertices. Update of a low vertextakes amortized time

5(M[Av n,q | mH, ’I’)’L]/q + deg(u))>

update of a high vertex takes amortized tiﬁNh@), a query takes timé(A), and preprocessing takes time
O(M[Av n,q | mm, ’I’)’L])

Proof. We divide the update sequence into phases, each consistipdow-vertex updates. The active
vertices are partitioned into two setsand@, with Q C @y, whereP andQq are static and) undergoes
both insertions and deletions. Each vertex insertionfidelés done ta?). At the end of each phase, we reset
Qo to hold allO(A) high vertices plus the low vertices involved in the updatithe next phase, resét to
hold all active vertices not i, and reset) to hold all active vertices id)y. Clearly,|Q| < |Qo| = O(q).

The data structure is the same as the one in the proof of Lemmé#t2one key difference: we only
maintain the valu€’'[u, v] whenw is a high vertex inQ, andv is a (high or low) vertex irQy. Moreover,
we do not need to distinguish between high and low componeeaisall components are considered low.

During preprocessing of each phase, we can now com@ite] by matrix multiplication in time
O(M[A,n,q|mm,m]), since there ar®(A) choices for the high vertex andO(q) choices for the vertex
v € Qo. The amortized cost per low-vertex update for this step(i8/[A, n, q | mmg, m|/q).

Updating a high vertex in @ now requires updating(q) edges of types (pand (c) (there are no edges
of type (b) now). The cost i®(q).

Updating a low vertex: in @ requires updating)(A) edges of type (3 andO(deg(u)) edges of types
(b') and (c) inG*. The cost isD(deg(u)).

Deletions inP do not occur now. O

5.2 Sparse and dense rectangular matrix multiplication

Sparse matrix multiplication can be reduced to multiplysmgaller dense matrices, by using a “high-low”
trick [5]. Fact 7(i) below can be viewed as a variant of [6, Lreen3.1] and a result by Yuster and Zwick [41].
Fact 7(ii) below states one known bound on dense rectanmdaix multiplication which we will use.

Fact 7.
(i) Forany givert, we haveM [ny, na, n3 | my, ma] = O(M[ny, my/t,ns] + mat).
(i) Leta = 0.294. If n; < min{ng, n3}?, thenM[ny, na, n3] = O*(nangs).

Proof. For (i), consider the tripartite graph setting with vertéassesl;, V5, V3. Call a vertex inl%, high

if it is incident to at least vertices inV;, andlow otherwise. There are at moSt(m; /t) high vertices.
For eachu € V; andv € V3, we can determine whetharandv are adjacent to a common high vertex, in
O(M]|n1,m1/t,ns)) total time. On the other hand, we can enumeratéuall) € V; x V3 such thaw and

v are adjacent to a common low vertex(ximst) time, by examining each edgev with (w,v) € Vo x V3
and each of the at mosneighborsu € V; of w.
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For (ii), Coppersmith [10] has shown th&f[n®, n,n] = M[n,n® n] = O*(n?). Thus,

M[ny,ng,n3] = O( {n2/ni/a—‘ . {ng/n}/a—‘ -M[nl,ni/a,n}/a]) = O*({ng/n}/a—‘ . ’7713/711/&—‘ -nf/a).
O

Remark. The main resultin Yuster and Zwick’s paper [41] is thdfn, n, n | m, m] = O*(n?+m%n!2).
A simple(r) proof of their bound directly follows from Fac(i)¥ By known results on dense rectangular
matrix multiplication [24], we have

M{n,r,n] = O*(n? + n“PrP) wheres := (w —2)/(1 — «).

(For example, substituting = n givesO*(n®), while substituting: = n® givesO*(n? 4+ n*~#1-a)) =
O*(n?).) Thus,M[n,n,n|m,m] = O(M[n,m/t,n] +mt) = O*(n? + n“=#(m/t)? + mt). Setting
t = (n@=P/m!=A)1/(1+8) yields O* (n? + m28/ (1B p(w=B)/0+8)) = O*(n? + m®Tn'?) as desired.

5.3 Putting it together

We now present our offline result for dynamic geometric catigidy using Lemma 6. Although we also
use Property 3, the design of the key graphs quite different from the one in the proof of Theorem 5.
For instance, the size of the graph is larger (and no Ioﬁi{aﬂ), but the number of edges incident to high
vertices remains linear; furthermore, each object updajgers only a constant number of vertex updates
in the graph. All the details come together in the analysisdd to some intriguing choices of parameters.

Theorem 8. Assumé) < b < 1. Leta = 0.294. We can maintain a collection of objects in amortized time
1+a—ba . L. . A ~ a

O*(n1+e=ta/2) for offline updates and answer connectivity queries in g I+o—ta/2 ),

Proof. We divide the update sequence into phases, each consistingpumates, wherg is a parameter

satisfyingA < ¢ < n/A'~b. The current objects are partitioned into two s&tsandY’, with Y C Y,

where X andY} are static and” undergoes both insertions and deletions. Each inser&t@iidn is done

to Y. At the end of each phase, we re3gtto hold all objects involved the objects of the next phasdp

hold all current objects not ifip, andY” to hold all current objects ily. Clearly,|Y| < |Yy| = O(q).

At the beginning of each phase, we form a collectibof canonical subsets foX U Yj according to
Property 3.

The data structure.
¢ \We maintain the components &f in the data structure from Lemma 4.

¢ We maintain the following grapty¥ for offline dynamic subgraph connectivity, where the vediare
objects ofX U Y}, components o, and canonical subsets of size exceedific:
(a) Create an edge i@ between each component &fand each of its objects.

(b) Create an edge i@ between each canonical subgébf size exceeding./A and each of its
objects inX UY.

(c) Create an edge i@ between each objeet € Y, and each canonical subset € C, of size
exceeding:/A. Here, weassignz to C'.
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(d) Create an edge ¥ between each objeet € Yy and each object in the union of the canonical
subsets i, of size at most/A.

(e) We make a canonical subset activeiiff it is assigned at least one objectih. We make the
vertices inX UY active, and all components active. Tighvertices are precisely the canonical
subsets of size exceeding A; there areD(A) such vertices.

Note that there aré( ) edges of types (a) and (b())( A'~?) edges of type (c) by Property 3(i),
and O(qn/Ab) edges of type (d) by Property 3(ii). So the graph has size- O(n + qn/Ab) =
O(gn/AY), and the number of edges incident to high vertices.js = O(n + ¢A!~?) = O(n).

Preprocessing per phase. Before a new phase begins, we need to update the componeXtsagwe
deleteO(q) vertices from and inse(q) vertices toX. By Lemma 4, the cost i©(n + qn'~?). We can
then determine the edges of type (a)drin O(n) time. We can now initializ&7 in O(M[A,n,q|n,m])
time by Lemma 8. We can charge every update operation withmamtized cost 0O (M[A, n, q | n, m]/q+
n/q+nt=b).

Update of an objectz in Y. We need to make a single vertex update G, which has degreé(n/Ab)
by Property 3(ii). Furthermore, we may have to change thestf as many a®(A'~?) high vertices by
Property 3(i). According to Lemma 8, the cost of these veuggdates i<)(M[A,n, q |n,m]/q + n/A® +
Al_bq).

Finale. By Fact 7, assuming th&t < ¢® andq < n/t, we haveM [A,n,q|n,m] = O(M[A,n/t,q] +
mt) = O*(ng/t + nqt/Ab). Choosingt = A2 givesO*(ngq/AY/?).
The overall amortized cost per update operation is @t/ A2 + A'=bq+n/q+n'"?). SetA = ¢~
1
andq = nT™r/2 and the result follows. (Note that indeeéd < ¢ < n/A'~® andq < n/t for these
choices of parameters.) O

Compared to Theorem 5, the dependence oif the exponent in the update bound is ofly- ©(b)
rather thanl — ©(b?). The bound is better, for example, for< 1/4.

6 Open Problems

Our work opens up many interesting directions for furtheesrch. For subgraph connectivity, an obvious
question is whether thé(m?2/3) vertex-update bound can be improved (without or with FMM§;vee
have mentioned, improvements beyope: without FMM are not possible without a breakthrough on the
triangle-finding problem. An intriguing question is whetlier dense graphs we can achieve update time
sublinear im, i.e.,O(n'~¢) (or possibly even sublinear in the degree).

For geometric connectivity, it would be desirable to defeerthe best update bounds for specific shapes
such as line segments and disks in two dimensions. Alisectedsettings of geometric connectivity arise
in applications and are worth studying; for example, whersees’ transmission ranges are balls of different
radii or wedges, a sensor may lie in another sensor’s rantp@utithe reverse being true.

For both subgraph and geometric connectivity, we can retheguery time at the expense of increas-
ing the update time, but we do not know whether constant orggédrithmic query time is possible with
sublinear update time in general (see [1] for a result on tHarensional orthogonal special case). We do
not know how to obtain our update bounds with linear space¢fém 1 require)(m*/?) space), nor do
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we know how to get good worst-case update bounds (since therkpolylogarithmic results for connec-
tivity under edge updates are all amortizéd)\Iso, the queries we have considered are about connectivity
between two vertices/objects. Can nontrivial results biobd for richer queries such as counting the
number of connected components (see [1] on the 2-dimersiait@gonal case), or perhaps shortest paths
or minimum cut?
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