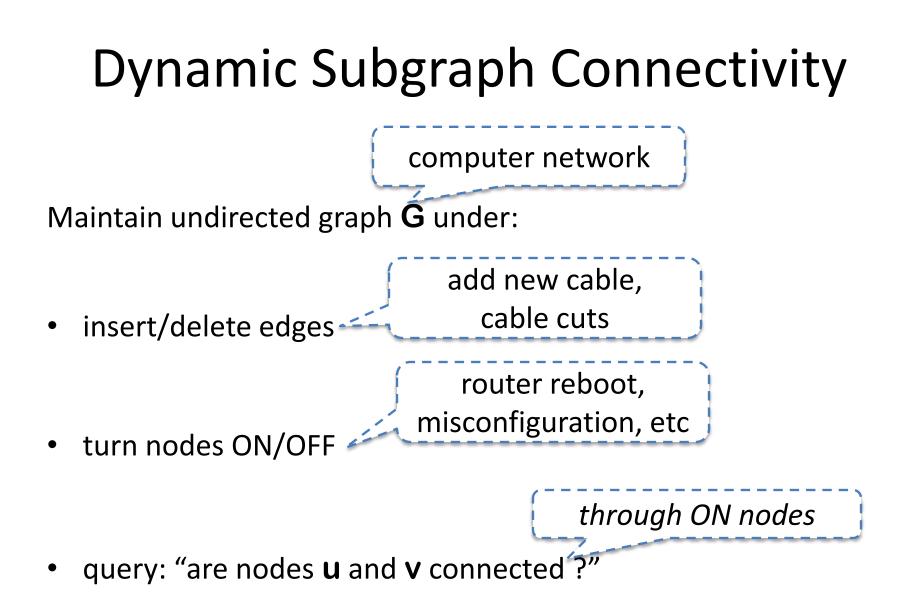
Dynamic Connectivity: Connecting to Networks and Geometry

Timothy Chan Mihai Pătrașcu Liam Roditty Waterloo

Part I:

Graph Theory



Results

[Chan STOC'02]

- $t_u = O(m^{0.94}), t_q = \tilde{O}(\sqrt[3]{m})$ using <u>Fast Matrix Mult</u>.
- $t_u = O(m^{0.89})$ in the ideal case of FMM in $O(n^2)$
- "moral $\Omega(\sqrt{m})$ " from triangle-finding, etc
- conjecture: no $O(m^{1-\epsilon})$ without FMM

[CPR FOCS'08]

- $t_u = \tilde{O}(m^{2/3}), t_q = \tilde{O}(\sqrt[3]{m})$
- cute, simple^(?), no FMM

Dynamic Graph Problems

edge updates	Amortized	Worst-case
• dynamic connectivity	O(lgn∙(lglgn)³)) O(√n)
• dynamic MST	O(lg ² n)	O(√n)
^		
 dyn. reachability (directed) 	O(n ²)	O(n ²)
 dynamic APSP 	Õ(n²)	Õ(n ^{2.75})
node updates		

Dynamic Graph Problems

edge updates	Amortized	Worst-case
dynamic connectivity	O(lgn∙(lglgn)³)	O(√n)
• dynamic MST	O(lg ² n) C)(√n)
subgraph connectivity	Õ(m ^{2/3}) C)(m)
• dyn. reachability (directed)) O(n²)	O(n²)
dynamic APSP	Õ(n²)	Õ(n ^{2.75})
node updates		

The Algorithm: Idea 1

- can always do t_u = degree * Õ(lg n)
 ... be smart about large degree nodes!
- H = graph of nodes with degree ≥ m^{1/3}

 * O(m^{2/3}) nodes
 * edges = contract components of low-degree nodes
 How fast?
 Update high-degree node: O(lg n)

The Algorithm: Idea 2

- H = high-degree nodes + components with ≥ m^{1/3} edges
 * O(m^{2/3}) nodes
 - * edges = contract small components

construction time: O(m^{4/3})

O(m^{2/3}) amortized

turn ON a small degree node:

* add to **H**, rebuild after $m^{2/3}$ insertions

The Algorithm: Idea 3

Furn OFF a node from a small component

* recompute adjanced edges of H in (m^{1/3})² time

? Furn OFF a node from a large component

* use dynamic connectivity to find subcomponents
 * leave largest subcomponent in place, move other(s)
 ⇒ O(lg m) work per edge in total (halving trick)

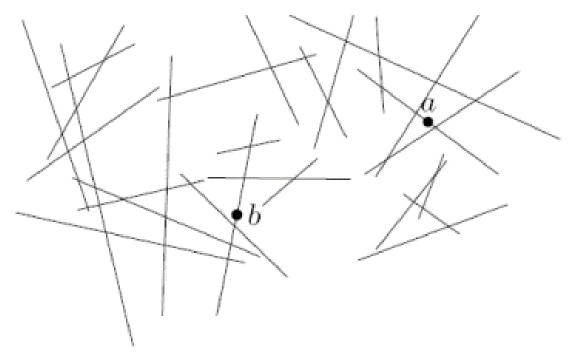
Part II:

Computational Geometry

Dynamic Geometric Connectivity

Maintain collection **S** of objects:

- update: insert/delete objects
- query: "are objects **u** and **v** connected thru intersections?"

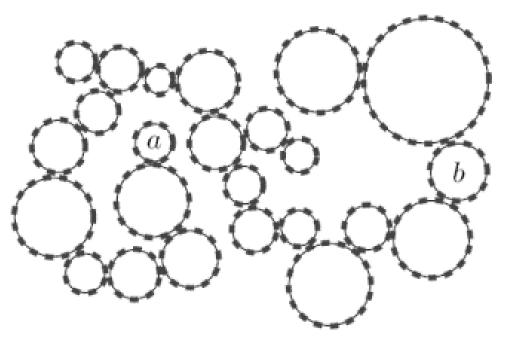


Is b reachable from a staying on the roads?

Dynamic Geometric Connectivity

Maintain collection **S** of objects:

- update: insert/delete objects
- query: "are objects **u** and **v** connected thru intersections?"



Do the gears transmit rotation from a to b?

Connecting to Subgraph Connectivity

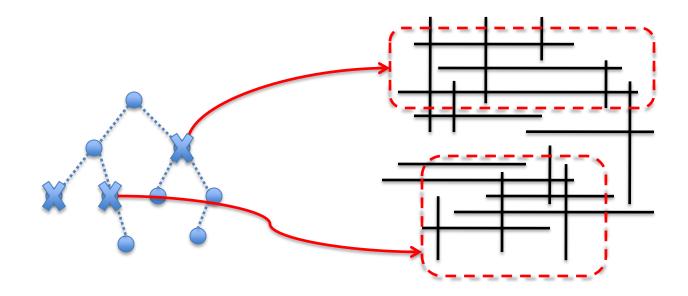
[Chan STOC'02]

If objects allow range reporting in space S, query τ...

Geometric connectivity reduces to subgraph connectivity * graph has m=S edges * update slow down by a factor of τ

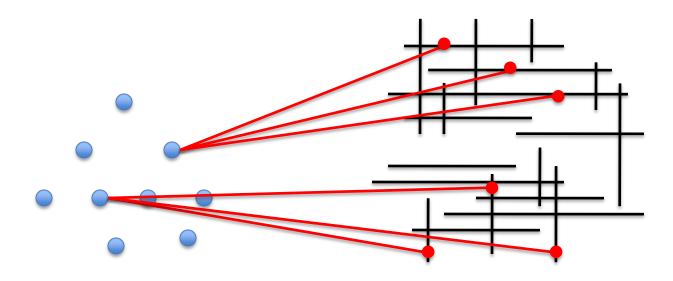
Example: axis parallel boxes (reduction loses polylogs)

Connecting to Subgraph Connectivity



Query answers = union of objects in $O(\tau)$ nodes

Connecting to Subgraph Connectivity



Query answers = union of objects in O(τ) nodes => turn those nodes ON

Results

[Chan STOC'02]

- axis-parallel boxes ⇒ subgraph connectivity
- in 3D⁺, subgraph connectivity \Rightarrow axis-parallel boxes

[Afshani, Chan ESA'06]

• axis-parallel, 2D: $t_u = \tilde{O}(n^{10/11}), t_q = O(1)$

[Eppstein'95]

- equal-radius balls \Rightarrow MST \Rightarrow range searching
- in 2D: t_u=O(lg¹⁰n) via [Chan SODA'06]

Our Result

[Agarwal, Matousek] anything under the sun

If objects allow range reporting in space $\tilde{O}(n)$, query $O(n^{1-\alpha})$ \Rightarrow geometric connectivity can be solved in $O(n^{1-\beta})$

Examples:

- 2D line segments $\tilde{O}(n^{9/10})$
- 3D disks Õ(n^{35/36})

Open Problems

Graph Theory:

- beat $t_u = \tilde{O}(m^{2/3})$? ...ideally $O(\sqrt{m})$
- what query time is possible? spanning tree?
- o(n), for any m? ... likely impossible
- worst-case o(m)? ... "batched dynamic connectivity"

Geometry:

• "real algorithms" for interesting special cases

