
Lower Bounds for 2-Dimensional Range Counting

Mihai Pǎtraşcu
MIT

mip@mit.edu

ABSTRACT
Proving lower bounds for range queries has been an active
topic of research since the late 70s, but so far nearly all re-
sults have been limited to the (rather restrictive) semigroup
model. We consider one of the most basic range problem,
orthogonal range counting in two dimensions, and show al-
most optimal bounds in the group model and the (holy grail)
cell-probe model.

Specifically, we show the following bounds, which were
known in the semigroup model, but are major improvements
in the more general models:

• In the group and cell-probe models, a static data struc-
ture of size n lgO(1) n requires Ω(lg n/ lg lg n) time per
query. This is an exponential improvement over pre-
vious bounds, and matches known upper bounds.

• In the group model, a dynamic data structure takes
time Ω

`
(lg n
lg lg n

)2
´

per operation. This is close to the

O(lg2 n) upper bound, whereas the previous lower bound
was Ω(lg n).

Proving such (static and dynamic) bounds in the group
model has been regarded as an important challenge at least
since [Fredman, JACM 1982] and [Chazelle, FOCS 1986].

Categories and Subject Descriptors
E.1 [Data Structures]

General Terms
Algorithms, Performance, Theory

Keywords
orthogonal range queries, lower bounds,
cell-probe complexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07, June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
Range-query problems include some of the most natural

and fundamental problems in computational geometry and
data structures. The goal is to represent a set of n points
in d dimensions, such that queries about points in a given
range can be answered efficiently. In this line of research,
the dimension d is a small constant. Range-query problems
also have dynamic versions, which support insertions and
deletions of points.

Usual choices for the query include counting the number
of points in the range, reporting all points in the range, and
testing emptiness (testing whether the range contains any
point). By far, the most common choice for the range is axis-
parallel rectangles [a1, b1]×· · ·×[ad, bd]. The term orthogonal
range queries is typically used for this, though the choice is
so common that talking about range queries without further
qualification usually means orthogonal range queries. An
important special case is dominance queries, where query
rectangles have the form [0, b1] × · · · × [0, bd]. Outside or-
thogonal queries, other choices for the range are half-spaces,
simplices, balls etc.

Range queries have been studied intensively, and an overview
is well beyond the scope of this work. We instead refer
the reader to a survey by Agarwal [1]. It should also be
noted that orthogonal range queries, which are simply con-
junctions of comparisons, are also very important outside
the realm of computational geometry. In fact, they are one
of the most natural examples of what computers might be
queried for. The introductory lecture of any database course
is virtually certain to contain an example like “find employ-
ees with a salary under 75000 hired before 2001”.

1.1 Models and Lower Bounds
Given these problems have been studied actively for four

decades, it is not surprising that a large variety of models
has been considered. The strongest accepted model for up-
per bounds is the word RAM, but there is also interest in
weaker models such as pointer machines or functional im-
plementations.

In addition, the counting problem (or, rather, its weighted
version) is considered in algebraic models. In the group and
semigroup models, each point has an associated weight from
an arbitrary commutative (semi)group and the “counting”
query asks for the sum of the weights of the points in the
range. The data structure can only manipulate weights
through the black-box addition (and, in the group model,
subtraction), and must work for any choice of the (semi)group.
The running time of a query is the number of algebraic op-

erations performed. Any other computation, i.e. planning
algebraic operations based on coordinates, is free.

On the lower-bound side, proving bounds in the cell-probe
model is considered the holy grail. In this model, memory
cells have w = Ω(lg n) bits, and store arbitrary information
about the input. The cost of the query is the number of
memory cells that are read, and any computation on the
read data is free. One can see the model is stronger than
the RAM, the pointer machine, and likely any imaginable
model of computers available today. As a technicality, note
that the cell-probe model is incomparable to the algebraic
models, because these allow unbounded computation on all
data except the (semi)group elements.

The semigroup model has seen a lot of progress on the
lower-bound side. Many problems have been considered,
and remarkably precise bounds have been shown; see the
survey by Agarwal [1] for a comprehensive list of examples.
In general, semigroup lower bounds hide arguments of a very
geometric flavor. To see why, note than when a value is in-
cluded in a sum, it can never be taken out again (no sub-
traction is available). In particular, if a the sum stored in
one cell includes an input point, this immediately places a
geometric restriction on the set of ranges that could use the
cell (the range must include the input point). Thus, semi-
group lower bounds are essentially bounds on a certain kind
of “decomposability” of geometric shapes.

On the other hand, bounds in the group or cell-probe
model require a different, information theoretic understand-
ing of the problem. In the group model, the sum stored
in a cell does not tell us anything, as terms could easily be
subtracted out. The lower bound must now find certain bot-
tlenecks in the manipulation of information that make the
problem hard. On the bright side, when such bottlenecks
were found, it was generally possible to use them both for
group-model lower bounds (arguing about dimensionality
in vector spaces), and for cell-probe lower bounds (arguing
about entropy).

Philosophically speaking, the difference in the type of
reasoning behind semigroup lower bounds and group/cell-
probe lower bounds is parallel to the difference between “un-
derstanding geometry” and “understanding computation”.
Since we have been vastly more successful at the former,
it should not come as a surprise that progress outside the
semigroup model has been extremely slow.

1.2 Orthogonal Range Counting
We summarize the known results for orthogonal range

queries in Table 1, along with our improvements. Before
diving into formal details, let us quickly glance at the table.

Orthogonal range counting provides an excellent illustra-
tion of the major rift between the semigroup model and the
stronger models, which was the topic of the discussion in
the previous section. In the semigroup model, we have tight
bounds in all cases, at least up to lg lg n factors. For the
stronger models, however, known bounds are nowhere close
to that. Not only do known lower bounds fail to grow ap-
propriately with the dimension, but they are even far from
optimal for d = 2. For example, in the static case, the lower
bound for d = 2 is exponentially weaker than the upper
bound.

As one might expect, proving good bounds outside the
restrictive semigroup model has been recognized as an im-
portant challenge for a long time. As early as 1982, Fredman

[5] asked for better bounds in the group model for dynamic
range counting. In FOCS’86, Chazelle [2] echoed this, and
also asked about the static case.

In this paper, we address these challenges for the case
d = 2, where we obtain an almost perfect understanding.
Unfortunately, our techniques cannot obtain better bounds
in higher dimensions. Depending on mood, the reader may
view this as a breakthrough (e.g. providing the first con-
vincingly superconstant bounds for the static case), or as a
lucky discovery that moves the borderline of the big open
problem from d = 2 to d = 3. We believe there is truth in
both views.

Formal details. Having delighted ourselves with analyz-
ing the entries of Table 1, let us now see what they mean.
For static data structures, the complexity is described by a
space/query tradeoff. To simplify exposition, we list the best

query time achievable by a data structure of size n lgO(1) n.
For dynamic data structures, one has an update/query trade-
off, but we concentrate on the case when query and update
times are equal (i.e. one wants a bound on the slowest op-
eration).

The upper bounds have been stated in a variety of sources;
see e.g. [2]. Interestingly, the known upper bounds (for the
static and the dynamic cases) are the same in all three mod-
els. The only exception is the dynamic problem in the cell-
probe model. However, we will obstinately avoid a discus-
sion of this problem until the Conclusion.

Dynamic semigroup problems come in two flavors, de-
pending on whether a delete operation is allowed. This
distinction exists only for semigroups, since otherwise we
can delete a value ∆ by inserting a value −∆.

In the cell-probe model, there is also a question about the
representation of coordinates. Using a predecessor struc-
ture for each of the d coordinates, and running two queries
in each, it is possible to reduce all coordinates to rank space:
[n] = {0, . . . , n−1}. On the other hand, it is known [8] that
the complexity of the (colored) predecessor query is a lower
bound even for dominance range queries in 2 dimensions.
Thus, the optimal query time is equal to the optimal run-
ning time in rank space, plus the predecessor bound. Since
the predecessor bound is well understood [12], we can as-
sume all coordinates are in [n], and concentrate on the pure
range counting hardness. In almost all cases, the predeces-
sor bound is a asymptotically smaller, so the additional term
is inconsequential anyway.

Our results. The following theorems give formal statements
for our lower bounds. We note that the tradeoffs we obtain
are very similar to the ones known in the semigroup model.
The space/time tradeoffs are known to be tight for space
Ω(n lg1+ε n). The query/time tradeoff is tight for update
time tu = Ω(lg2+ε n).

Lower bounds are shown for a fixed set of input points
in [n]2, and dominance queries chosen uniformly at random
in [n]2. When we mention expected running times, we are
taking expectation over the choice of the query. By fixing
coin flips, this means bounds also hold for Las Vegas ran-
domization.

Theorem 1. In the group model, a static data structure
of size n · σ must take Ω(lg n

lg σ+lg lg n
) expected time for dom-

inance counting queries.

Problem Model Lower Bounds Dimension

static semigroup Ω
`
(lg n/ lg lg n)d−1

´
[2]

group Ω(lg lg n) ? [3] d = 2

O
`
(lg n
lg lg n

)d−1
´

Ω(lg n/ lg lg n) new d = 2

cell-probe Ω(lg lg n) [12] d = 2
Ω(lg n/ lg lg n) new d = 2

dynamic semigroup, with delete Ω(lgd n) [4]
semigroup, no delete Ω(lg n/ lg lg n) [13] d = 1

O(lgd n) Ω
`
(lg n/ lg lg n)d

´
[2]

Ω(lg n) [7] d = 1
group Ω(lg n/ lg lg n) [6] d = 1

Ω(lg n) [9] d = 1
Ω

`
(lg n/ lg lg n)2

´
new d = 2

Table 1: Old and new results for orthogonal range counting. (?) The bound of [3], starred, says that for
n input points and n queries, the offline problem takes Ω(n lg lg n) time.

This is the central contribution of our paper, and is shown
in Section 2.

Theorem 2. In the cell-probe model with w-bit cells, a
deterministic static data structure of size n · σ must take
Ω(lg n

lg σ+lg w
) time for dominance counting queries.

The proof is quite similar to that for the group model.
To avoid particularly tedious complications, Section 3 only
argues this bound for deterministic data structures. The
randomized lower bound is deferred to the final version of
this paper.

Theorem 3. In the group model, a dynamic data struc-
ture which supports updates in expected time tu requires tq =
Ω

`
(lg n
lg tu+lg lg n

)2
´
expected time for dominance counting queries.

This bound is shown in Section 4. Note that the space is
irrelevant for the dynamic lower bound. We can also obtain
a similar bound in the cell-probe model, though not as gen-
eral as we might want it to be. We describe this result in
the concluding remarks (Section 5).

1.3 Technical Contributions

The group model. A key idea, and starting point is to
consider roughly n/ lg n queries at the same time, and bound
the number of cells that they read together. The analysis is
a somewhat elaborate exercise in juggling between this idea
and the ancient folk wisdom that hardness of orthogonal
range problems comes from bit-reversal permutations.

It is interesting to note that the previous lower bound in
the group model, due to Chazelle [3], was shown in the of-
fline version of the problem: given n points and n rectangles
(offline), compute all answers using a minimum number of
operations. Though proving a superlinear bound for such
an offline problem is a significant achievement, the data-
structural implications are weak. We obtain exponentially
better bounds for data structures, by considering just n/ lg n
queries (which, in addition, seems to require a radically dif-
ferent analysis). Unfortunately, our approach cannot prove
a superlinear bound for the offline problem. It would be very
interesting if one could get the best of both worlds, proving
an Ω(n lg n

lg lg n
) bound for the offline problem.

Static cell-probe bounds. Switching to the cell-probe model,
we note that our bound is part of a richer context. Until re-
cently, the best known technique for proving cell-probe lower

bounds on static data structures was a simple reduction to
asymmetric communication complexity [8]. Among the most
important limitations of this approach is that it is insensitive
to polynomial changes in the space. This makes is useless for
orthogonal range queries (in rank space), where the problem
can be solved trivially in constant time with O(n4) space.

Together with Mikkel Thorup, we recently [11] showed
the first separation between linear- and polynomial-size data
structures. This original separation was only doubly loga-
rithmic, but even more recently [10] we were able to show a
better query bound of Ω(w

lg σ+lg w
) for space n · σ, which is

currently the highest cell-probe lower bound known for any
problem. In the usual case w = Θ(lg n), this is the same
bound that we are proving for range counting. Thus, we are
exhibiting a second (and, as argued below, much more natu-
ral) example achieving the highest bound currently known.

The fact that we achieve the same bound as [10] is no
coincidence. The only known idea for breaking the com-
munication complexity barrier, used by [11], [10] and the
current paper, is to consider many queries at the same time,
and reduce them en masse to communication complexity.
The bound that we achieve is the highest possible by this
technique.

It is quite instructive to compare the differences between
the current paper and [11, 10]. When considering k queries
simultaneously, the previous papers took an additional step
of breaking the input into k independent subproblems. Each
subproblem was paired up with one query, a standard sce-
nario for communication complexity, which could be ana-
lyzed by available tools. Then, it only remained to show a
direct sum property, implying that the hardness of k inde-
pendent instances is Ω(k) times higher.

This turns out to be the right idea for the predecessor
problem, where we obtained [11] matching upper and lower
bounds (but remember that the bound was only doubly-
logarithmic). However, in the case of the better bound from
[10], the idea is less natural. That bound was shown for
some very hard problems, such as exact nearest neighbor
searching, where we expect the correct bound to be expo-
nentially higher. Given that the problems were so hard, it
is not too surprising that we could force some particular
structure onto them.

Unfortunately, the direct sum structure is hopeless for
easier problems like range counting. To see why, start by
observing that the querier must send Θ(lg n) bits about
the query (unless the data structure sends a prohibitive

amount). Now imagine that we are in a subproblem with n
k

points. After a predecessor search of negligible complexity,
we can reduce to rank space inside the subproblem. But
now the querier is down to sending Θ(lg n

k
) bits, so the di-

rect sum property is not true. In fact, it seems very natu-
ral that the querier’s communication complexity should get
smaller as the subproblem gets smaller. The cases where
this is not true are pathologically hard problems (like exact
nearest neighbor), and the technique seems limited to such
applications.

The proofs of the current paper manage to show hardness
of multiple queries from basic principles, without direct sum
arguments. At some level of abstraction, one can view our
proofs as implicitly breaking the input into subproblems,
but in an adaptive way, only after seeing what the queries
do.

The main point that we wish to emphasize is that general
tools (direct-sum results) turn out to be too weak for our
problem. Thus, we keep just the most basic idea of [11, 10],
namely considering multiple queries at the same time. The
main contribution of this paper is problem specific, namely
understanding range counting in the information-theoretic
context of simultaneous multiple queries. It seems this is a
lesson that might also be useful for other problems of loga-
rithmic complexity: direct sum doesn’t seem to work, and
the bounds need to understand the structure of the problem
in the presence of multiple queries.

Dynamic lower bounds. The Ω
`
(lg n
lg lg n

)2
´

lower bound for
dynamic range counting in the group model is obtained by
combining our static lower bound with a classic tool in dy-
namic lower bounds: the chronogram technique of Fredman
and Saks [6]. In the chronogram technique, one constructs
a nearly logarithmic number of epochs, and, traditionally,
argues that the query must read at least one cell from each
epoch with constant probability. Armed with our static
lower bound, however, we can argue that a query must in
fact read almost lg n cells per epoch, and thus obtain an
almost lg2 n lower bound.

This is obviously not such a surprising idea, but this is the
first time it has been applied successfully. We find this argu-
ment an interesting proof of concept, which should become
mainstream as static lower bounds become better under-
stood.

2. THE GROUP MODEL

2.1 The Hard Instance
Let B and h be parameters to be fixed, where B is a

power of two. We will construct a set S with n = Bh points.
Specifically, S is fixed according to the bit-reversal permu-
tation: S = {(i,rev(i)) | i ∈ [n]}, where rev(x) reverses
the lg n bits of x.

We will typically think of numbers in base B. Let s be a
string of digits in base B (note that initial zeros are relevant,
e.g. the string 01 is different from the string 1). We write λ
for the empty string. If d is a digit in [B], we write sd when
appending the digit d to the string s. For some N and H
satisfying N = BH , we define [N]s? = {sd|s|+1 · · · dH | di ∈
[B], (∀)|s| < i ≤ H}. That is, [N]s? represents all H-digit
numbers (numbers in [N]), which start with prefix s.

For a prefix of digits p, define Sp = {y | (x, y) ∈ S, x ∈
[n]p?}. Note that Sp = ∪d∈[B]Spd. If p has k digits, |Sp| =

Bh−k, because there is one point at every vertical x ∈ [n]p?.
Furthermore, consecutive elements in Sp are at distance Bk,
because the first k lg B bits of x are fixed, meaning the last
k lg B bits of y are fixed. The remaining bits take all possible
values.

We will prove the lower bound by considering a set Q of
n

B2 dominance queries, Q = {(xi, yi) | i ∈ [n
B2]}. Remember

that a query (x, y) asks for the sum of the values associated
with points in the rectangle [0, x]× [0, y].

The point (xi, yi) is chosen uniformly at random from
B2i ≤ xi < B2(i + 1), 0 ≤ yi < n. As for input points, for a
prefix p of digits, we define Qp = {y | (x, y) ∈ Q, x ∈ [n]p?}.
From the restriction on (xi, yi) it follows that for all p of h−2
digits, |Qp| = 1 (and it contains an independent random
value from [n]).

For two sets TL (left) and TR (right), we define the in-

terleave pattern χ(TL, TR) to be a string in {L, R}|TL|+|TR|

as follows. Sort the elements of TL and TR together, plac-
ing elements of TL first in case of ties. The i-th position of
the string indicates whether the i-th element in sorted order
came from the left or from the right.

We will take special interest in interleave patterns of the
form χ(Sp, Qp). These are particularly nice to analyze when
values in Qp are spread out. Consider an element (x, y) ∈ Q,
where the digits of x are d0 · · · dh−1. We say (x, y) is well
separated at level k, if in χ(Sd0···dk , Qd0···dk), the R value
corresponding to y is flanked by at least 2B consecutive
L’s on each side. For uniformity of notation, this definition
considers interleave pattern as a circular string, where the
last position is followed by the first.

We define Q? to be the elements of Q which are well-
separated at all levels. Let Q?

p = Qp ∩ Q?. For the rest of
the proof, we essentially only look at elements of Q?. This
is made possible by:

Observation 4. Assume B ≥ 20000h. Then with proba-
bility at least 99

100
, |Q?| ≥ 99

100
|Q|.

Proof. Let p have i digits. A query from Qp is not well
separated on level i if its y-coordinate lands close to an-
other value from Qp, in terms of rank in Sp. As observed
above, Sp has Bh−i uniformly spaced elements, so the rank
of a random query is uniformly distributed. There are only
Bh−k−2 queries in Qp, so our fixed query will conflict with

another one with probability < Bh−i−2·2B
Bh−i = 2

B
. By a union

bound over h levels, an element is not included in Q? with
probability at most 2h

B
≤ 1

10000
. The conclusion follows by

linearity of expectation and the Markov bound.

To aggregate information about the interleave patterns,
define Υi to be the collection of the patterns χ(Sp, Q?

pd), for
all prefixes p of i digits, and all d ∈ [B].

Observation 5. The set Q? is determined completely from
Υ0, . . . , Υh−1.

Proof. From Υh−1, we know the x coordinates of all
points in Q (each set in this collections is either a singleton
or empty). We now extract the y coordinates by looking
at the Υi’s in reverse. Let us concentrate on some point
with some x coordinate given by digits d0 · · · dh−1. We show
by induction that after seeing Υi, . . . , Υh−1, we know its y
coordinate relative to Sd0···di . Knowing the y coordinate
relative to Sλ is full information, as Sλ = [n].

Assume the property for i + 1 by induction. We know
where the y coordinate fits in Sd0···di+1 (say, between y1

and y2). Furthermore, since the point is well separated, it is
the only y coordinate from Qd0···di+1 fitting between y1 and
y2. Then, we see Υi, which tells us the interleave of Sd0···di

and Qd0···di+1 . Since we know y is unique is Qd0···di+1 ∩
[y1, y2), the interleave pattern tells us where it lies among
Sd0···di .

2.2 Information as Entropy and Rank
Since the data structure must work for any group, we can

choose the group (<, +). This choice makes it easy to inter-
pret everything in vector spaces, and make dimensionality
arguments.

Consider a set of queries Q ⊂ [n]2. A query (x, y) asks for
a linear combination of point weights (in particular, the sum
of all weights for points in [0, x] × [0, y]). The collection of
answers to all queries in Q represent a linear map from the
input weights to |Q| values. It makes sense to talk about the
rank of Q, that is the rank of the linear map defined by Q.
The following observation justifies our interest in the rank:

Observation 6. Assume that an algorithm can answer
any query in Q by seeing only a set M of memory cells.
Then, |M | ≥ rank(Q).

Proof. In the group model, the answer to any query is
a linear map of the cells probed. Then, the rank of the
computed answers is at most |M |.

Let E be an event, and assume for simplicity that it fixes
|Q?| to some value ≥ 9

10
|Q|. Conditioned on E, certain

choices for the set Q are still possible, while others are not.
We let Q[E] be the union of all possible choices for Q, i.e. all
queries that could still be asked given E. The crux of the
argument is that if E is not too revealing (from an entropy
perspective), rank(Q[E]) must be large.

It turns out that the right entropy to measure is H(Υi |
E, Υi+1, . . . , Υh−1).

Observation 7. H(Υi | E, Υi+1, . . . , Υh−1) ≤ |Q| lg B.

Proof. Note that Υi+1 describes the interleaving pat-
terns for every prefix of i + 1 digits. When switching to
prefixes of i digits, B − 1 points get inserted between ev-
ery two points that were consecutive. Thus, it suffices to
describe where each query fits among B choices.

We now show that if the entropy is high for at least one
i, we get a lower bound on rank(Q[E]).

Lemma 8. If there exists an i < h− 2 such that

H(Υi | E, Υi+1, . . . , Υh−1) ≥
9

10
|Q| lg B,

then rank(Q[E]) ≥ 1
40
|Q| ·B1/3.

Proof. By inspecting Υh−1, Υh−2, . . . , Υi+1 and follow-
ing the reasoning of Observation 5, we learn for any query
in Q? where its y coordinate fits relative to the correspond-
ing Sd0···di+1 . In this analysis, we discovered some queries
outside Q? (those which fail to be well-separated for some
level above i). We eliminate such queries from discussion.

Furthermore, we preventively eliminate queries which are
“close” on level i, according to the following criterion. Say
after looking at Υh−1, Υh−2, . . . , Υi+1, we concluded that

some query fits in [y1, y2) and some other in [y′1, y
′
2). If

[y1, y2)∩ [y′1, y
′
2) 6= ∅, we remove both queries from consider-

ation. Note that between y1 and y2, which are consecutive
elements with regard to Υi+1, exactly B − 1 elements get
inserted. Similarly for y′1, y

′
2. Then, if the intervals inter-

sect, the two queries have at most 2(B − 1) consecutive L’s
between them at level i. Thus, they were not well-separated
at level i, implying our rule never removes points from Q?.

After all this pruning, we are left with all queries in Q?

and possibly more. We now perform one final step, possibly
eliminating queries from Q?: we remove queries with di+1 <
B
16

. Originally, there were exactly |Q|/16 such queries. We

are now working with at least |Q?| ≥ 9
10
|Q| queries, so even

after eliminating those with bad di+1, we still have more
than 4

5
|Q| queries left.

Fix some prefix p of i digits. Since for every value in Qp

(that we haven’t eliminated) we know where it fits in some
Spd, there are B choices for where it can fit in Sp. By the
second step of pruning, which eliminated close queries, these
choices are distinct for all remaining queries. We now want
to lower bound the number of choices, based on the high
entropy.

For every query that was eliminated, we can lose at most
lg B bits of entropy. Thus, the entropy remaining at the
end is at least 7

10
|Q| lg B. As we still have 4

5
|Q| queries

remaining, it follows by subadditivity that the entropy of at
least 2

5
|Q| queries is at least 3.5

10
lg B. For these queries, the

support is at least B1/3.
Thus, |Q[E]| ≥ 2

5
|Q|B1/3, but this does not imply Q[E]

also has this rank. For that, we need a few more observa-
tions. First, let us consider prefixes in order. Queries in Qp

include weights from Sq when q < p (compared as numbers),
but queries in Qq do not include weights from Sp. (In other
word, the matrix describing the linear map associated with
Q is “subdiagonal” by blocks.) Thus, it suffices to lower
bound the rank of Qp when projected onto the subspace
spanned by Sp. These ranks are then additive.

We can lower bound the rank by projecting just on the
subspace spanned by elements of Sp with di+1 < B

16
. Since

all remaining queries Qp have di+1 ≥ B
16

, whether a point
is included in some query is now a one-dimensional prob-
lem depending on the interleaving of y’s. Since the support
intervals of all query are linearly separated with respect to
the y-axis (by step 2 of pruning), the rank lower bound is
the number of interleaves between the support of Qp, and
Sp restricted to di+1 < B

16
. Due to the structure of the bit

reversal permutation, two values of Sp which are consecu-
tive among points with di+1 < B

16
are separated by exactly

15 values from all Sp. Thus, the number of interleaves is at
most 16 times lower than the support for Qp.

2.3 Proof of the Lower Bound
We are finally ready to prove our lower bound. By Obser-

vation 5, the sequence of Υi’s reveals Q?, so it has entropy
at least |Q?| lg n. By Observation 4, |Q?| ≥ 99

100
|Q| with

probability 99
100

, so H(Υ0, . . . , Υh−1) ≥ 98
100

|Q| lg n.
Let t be an upper bound on the expected running time of

a query. The |Q| queries, taken together, read a set M of
cells from the memory. Since query i is uniformly random
in the range [B2i, B2(i + 1)− 1]× [n], a random query from
Q will actually be uniform in [n]2. Thus, by linearity of
expectation, E[|M |] ≤ |Q|t. Note that M is a function of Q
since Q contains all random choices ever made. By Markov,

|M | ≤ 3|Q|t with probability 2/3.
Since there are S cells in total, we have H(M | |M | ≤

3|Q|t) = O(lg
`

nσ
3|Q|t

´
) = O(|Q|t lg nσ

|Q|t). By averaging, there

exists a choice M0, with |M0| ≤ 3|Q|t such that the event
E =

ˆ
M = M0 ∧ |Q?| ≥ 9

10
|Q|

˜
reveals O(|Q|t lg nσ

|Q|t) bits

of information with respect to the universe (i.e. conditioning
on E reduces entropy by at most this much). We can now
write:

H(Υ0, . . . , Υh−1 | E) =
X

i

H(Υi | E, Υ0, . . . , Υi−1)

≥ 98

100
|Q| lg n−O

„
|Q|t lg

nσ

|Q|t

«
Assume for contradiction that t ≤ ε lg n/ lg nσ

|Q|t , for a small

enough constant ε. With an appropriate choice of ε, the
lower bound from above is at most 97

100
|Q| lg n.

Remember that lg n = h lg B. Furthermore, H(Υh−1)
and H(Υh−2) are each at most |Q| lg B, so they are at most
1

100
|Q| lg n, for h bigger than a constant. Then, by averaging

among the terms for i < h − 2, we can find an i such that
H(Υi | E, Υ0, . . . , Υi−1) ≥ 96

100
|Q| lg B.

Now Lemma 8 implies that rank(Q[E]) ≥ 1
40
|Q| · B1/3.

By Observation 6, rank(Q[E]) ≤ |M0| ≤ 3|Q|t. Thus, 3t ≥
1
40

B1/3. But B is still an unspecified parameter, so setting

B = max{109t, 20000 · h} gives a contradiction. What this
contradicts is our earlier assumption that t ≤ ε lg n/ lg nσ

|Q|t =

ε lg n/ lg nσ
(n/B2)t

. Thus, we have shown a lower bound on t.

Since we have h, t, h = O(lg n), we always have B = lgO(1) n,
so the lower bound is t = Ω(lg n

lg σ+lg lg n
).

3. THE CELL-PROBE MODEL
The hard set of points is fixed in the same way, but the

weights are now uniform random bits. Equivalently, this is
the counting problem without weights: the data structure
is given a random set S′ ⊂ S, where each element of S
is included in S′ with probability 1/2. We ask the query to
report only the parity of the points inside the rectangle. This
is sufficient for the lower bound, and has nice consequences,
like turning range counting into a decision problem.

For the lower bound, we again consider a set of queries
Q in parallel. We reduce this to a communication game
where Alice has the set Q, Bob has the set S′, and they
must compute the answer vector in {0, 1}|Q|. The game
will have t rounds, where t is the cell-probe complexity. In
round i, Alice sends the set of probes made by all queries in
step i. Sending this set requires on the order of lg

`
nσ
|Q|

´
=

Θ(|Q| lg nσ
|Q|) bits. Then, Bob replies with the contents of

the cells, using |Q| ·w bits, and Alice can simulate step i for
her queries.

We now apply a standard rectangle argument in commu-
nication complexity, fixing each message to its most likely
value. At the end, we obtain a rectangle (a cartesian prod-
uct of a set of inputs for Alice and a set of inputs for Bob).
Because there are no more messages, Alice must be able to
output the answer to the queries without additional infor-
mation.

Let the sides of the rectangle be S for Bob and Q for Alice.
Before the rectangle argument, we can restrict our attention
to Q such that |Q?| ≥ 99

100
|Q|, ensuring this condition holds

for Q ∈ Q.

For the analysis, assume Q and S are uniformly distributed
as before (note that randomization is only for the sake of
the analysis). Observe that H(Q) − H(Q | Q ∈ Q) =
O(t · |Q| lg nσ

|Q|), because in each round Alice communicated

O(|Q| lg nσ
|Q|) bits, and we fixed the most likely message. The

event E used by the group lower bound can now be defined
by Q ∈ Q.

Assume for contradiction t lg nσ
|Q| < ε lg n, for small enough

ε. The information revealed by E is as small as before, so
we can apply the same analysis culminating in Lemma 8,
which shows rank(Q[E]) ≥ |Q|BΩ(1).

Before, this implied a lower bound immediately, because
the number of read cells bounded the rank. Now, we con-
vert this into an equally simple entropy argument. Remem-
ber that Alice can now output answers without additional
communication. The set of queries which can be asked for
various inputs in the rectangle are precisely Q[E]. Thus, the
output to all these queries must be fixed, regardless of the
Bob’s input S′ ∈ S. This follows from the fact that we are
in a rectangle.

Fixing the output on Q[E] imposes rank(Q[E]) linearly
independent constraints over Bob’s input (viewed as a vector
in Zn

2). This is only possible if H(S′) − H(S′ | S′ ∈ S) =
Ω(rank(Q[E])). On the other hand, H(S′) − H(S′ | S′ ∈
S) = O(t · |Q|w), by the bound on Bob’s messages. Hence,

we have a contradiction if |Q|BΩ(1) = Ω(t|Q|w), i.e. for B =

(tw)O(1) = wO(1).

4. DYNAMIC LOWER BOUNDS
Let β be a parameter to be determined. For i = 1, . . . , logβ n,

we define epoch i to contain βi queries. Epochs occur in time
from biggest to smallest. At the end of epoch 1, we run a
uniformly random query in [n]2.

To construct the updates of epoch i, consider the hard in-
stance from Section 2 on the grid [βi]2. We then blow up this
grid by (x, y) 7→ (x · n

βi , y · n
βi). Note that we still have just

βi points, but arranged more sparsely. This transformation
means a uniform query in [n]2 is hard for these points, be-
cause we might as well invert the transformation, and bring
everything back to [βi]2. (The query will not have integer
coordinates, but rounding does not change the answer.)

At the time of the query we associate each cell with the
last epoch that updated it. Since the update sequence is
fixed, the query knows which cells were written in each
epoch. We now wish to argue that on average over the
choice of the query, for any i, the query needs to read
Ω

`
lg(βi)/ lg(tu lg βi)

´
cells from epoch i. This is done by

transforming epoch i into a data structure. Consider the
following types of cells:

• cells written during epoch i. There are βitu such cells,
and we collect them into a data structure of size βiσ =
βitu.

• cells written before epoch i can be assumed to be zero
(i.e. any probe to them is ignored). Indeed, such cells
cannot reflect updates from epoch i (they occurred
back in time), so any terms they contain must can-
cel eventually during the query’s computations.

• cells written after epoch i, which may of course contain
useful sums of weights from epoch i. There are βi−1tu

such cells. We assume the query reads them all.

The last step seems deadly, seems it increases the query
complexity significantly. However, remember that our lower
bound for n points is shown by considering n/ lgc n queries
(for some constant c), and bounding the cells that they must
read together. The cells written after epoch i are shared by
all these queries, so they only contribute additively. Thus,
if we set β such that βi−1tu = βi/ lgc(βi), this additive
increase is a lower order term, and we can immediately use
the lower bound for the static problem that we have shown
in Section 2 (for n = βi, σ = tu). Our choice implies β =

tu lgO(1) n.
We can now sum the lower bounds over all epochs, by

linearity of expectation, because the same query distribution
works for all epochs. Note that for half of the epochs βi ≥√

n, so we obtain Ω
`
(lg n
lg tu+lg lg n

)2
´
.

5. CONCLUSIONS
So far, we have not talked about the dynamic problem in

the cell-probe model. There, it is not as easy to apply the
chronogram technique to relate the static and dynamic prob-
lems. The trouble (which is standard in dynamic cell-probe
complexity [9]) is that the data structure can be adaptive,
so the query has no idea which cells where written in which
epochs.

We mention that it is possible to use the set-separator
machinery of [9] (a.k.a. Bloomier filters), and obtain an
Ω

`
(lg n
lg lg n

)2
´

lower bound, but only under two assumptions.
First, we change from pure counting to the weighted version
of the problem, and assume weights have w bits, matching
the word size. Second, we assume w = lg2+ε n. Thus, the
weights (and consequently, the words), need to be somewhat
big.

Note that these assumptions are not all that bad, and this
may be regarded as an interesting lower bound. Nonetheless,
we feel it is a very important open problem to circumvent
these limitations, and prove a dynamic lower bound for the
regular counting problem without weights.

6. REFERENCES
[1] P. K. Agarwal. Range searching. In J. E. Goodman

and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry (2nd edition). Chapman &
Hall/CRC, 2004.

[2] B. Chazelle. Lower bounds for orthogonal range
searching II. The arithmetic model. Journal of the
ACM, 37(3):439–463, 1990. See also FOCS’86.

[3] B. Chazelle. Lower bounds for off-line range searching.
Discrete & Computational Geometry, 17(1):53–65,
1997. See also STOC’95.

[4] M. L. Fredman. A lower bound on the complexity of
orthogonal range queries. Journal of the ACM,
28:696–705, 1981.

[5] M. L. Fredman. The complexity of maintaining an
array and computing its partial sums. Journal of the
ACM, 29(1):250–260, 1982.

[6] M. L. Fredman and M. E. Saks. The cell probe
complexity of dynamic data structures. In Proc. 21st
ACM Symposium on Theory of Computing (STOC),
pages 345–354, 1989.

[7] H. Hampapuram and M. L. Fredman. Optimal
biweighted binary trees and the complexity of
maintaining partial sums. SIAM Journal on
Computing, 28(1):1–9, 1998. See also FOCS’93.

[8] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998. See also STOC’95.

[9] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM Journal on
Computing, 35(4):932–963, 2006. See also SODA’04
and STOC’04.

[10] M. Pǎtraşcu and M. Thorup. Higher lower bounds for
near-neighbor and further rich problems. In Proc. 47th
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 646–654, 2006.

[11] M. Pǎtraşcu and M. Thorup. Time-space trade-offs for
predecessor search. In Proc. 38th ACM Symposium on
Theory of Computing (STOC), pages 232–240, 2006.

[12] M. Pǎtraşcu and M. Thorup. Randomization does not
help searching predecessors. In Proc. 18th
ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 555–564, 2007.

[13] A. C.-C. Yao. On the complexity of maintaining
partial sums. SIAM Journal on Computing,
14:277–288, 1985.

