Lower Bounds for 2-Dimensional Range Counting

Mihai Pătrașcu

Range Counting

```
SELECT count(*)
FROM employees
WHERE salary <= 70000
AND startdate <= 1998
```


Some Theory

- d dimensions
- range trees (roughly):
 space S=nlg^{d-1}n, query t=lg^{d-1}n
- space S=n^{2d}, query t=O(1)

geometric extensions:
 range = disks, half-spaces, polygons...

PROBLEM: lower bounds

The Semigroup Industry

Let (U,+) be a semigroup Points have weights in U

Given w₁,...,w_n:

precompute 5 sums

query:
add t precomputed sums

Why "Industry"?

 tight semigroup lower bounds [Fredman JACM'81] [Chazelle FOCS'86]

many, many excellent bounds for many range problems

Semigroup = Low Dimension

- say $Mem[17]=w_2+w_6$
- can Mem[17] help with this query?
 NO: cannot subtract w₆
- Mem[17] described by bounding boxcan only be used when query dominates bounding box

"How well do rectangles decompose into rectangles?"

X (disks, half-planes...)

All these objects are low-dimensional!

Computation = High Dimension

New concept...
weights come from a group (U,+,-)

- can cancel any weight => no bounding box
- relevant information about Mem[17]:
 O(1)-D rectangle → linear combination of n variables
- decomposability in O(1)-D → decomposability in n-D
- n-D means: geometry → information theory

The Ultimate Frontier

The cell-probe model:

- plain old counting (weights {0,1})
- each cell stores any function of inputs
- query probes t cells (adaptively), computes any function

"Theory of the computer in your lap"

To boldly go where no one has gone before

General lack of group lower bounds (never mind cell-probe!)
[Chazelle STOC'95] Ω(Iglg n)

[Fredman JACM'82] [Chazelle FOCS'86] [Agarwal '9x, '0x] etc etc

yeah, we have nice semigroup lower bounds but prove something in the group model

Our Small Step

If $S=n\lg^{O(1)}n$, then $t=\Omega(\lg n/\lg \lg n)$

- group model!
- ...and cell-probe model!
- © tight in 2D

Maybe not so giant leap for mankind...

⊗ does not grow with d

=> really only relevant for 2D

Basic Idea

```
Remember: \begin{cases} \bullet \text{ space } S = n \lg^{d-1} n, \text{ query } t = \lg^{d-1} n \\ \bullet \text{ space } S = n^{2d}, \text{ query } t = O(1) \end{cases}
```


Hard Instance

The bit-reversal permutation (see FFT, etc):

X	0	1	2	3	4	5	6	7
$\pi(x)$	0	4	2	6	1	5	3	7

e.g.
$$\pi(6) = \pi(110) = 011 = 3$$

Well-known hard instance:

- points at $(x, \pi(x))$
- random query [0,a]X[0,b]
 [in fact, many independent random queries]

×	0	1	2	3	4	5	6	7
$\pi(x)$	0	4	2	6	1	5	3	7

	0							
$\pi(x)$	0	4	2	6	1	5	3	7

				3				
$\pi(x)$	0	4	2	6	1	5	3	7

				3				
$\pi(x)$	0	4	2	6	1	5	3	7

							6	
$\pi(x)$	0	4	2	6	1	5	3	7

X	0	1	2	3	4	5	6	7
$\pi(x)$	0	4	2	6	1	5	3	7

X	0	1	2	3	4	5	6	7
$\pi(x)$	0	4	2	6	1	5	3	7

Proof Sketch (I)

- k queries, space 5
 => one probe revels lg (s) = Θ(klg(s/k))
 bits of information about the queries
- t probes => Θ(tklg(5/k)) bits
- k=n/lgn S=nlg^{O(1)}n t=o(lgn/lglgn)
 => o(klgn) bits revealed by the probes about the queries

Proof Sketch (II)

```
    I(queries) ≤ I(shuffling at level 1)
        + I(shuffling at level 2)
        + ...
        + I(shuffling at level lgn)
        ≤ o(klgn)
```

- so for one level the data structure learns o(k)
 bits of information about the queries
 [i.e. doesn't know where most queries fit]
- so it cannot precompute useful sums [see Proceedings]

