Tight Bounds for the Partial-Sums Problem

Mihai Pătrașcu
(presenting)

Erik Demaine

MIT CSAIL
The Problem

Maintain $A[1..n]$ under:

- **update**(k, Δ) modify $A[k] = A[k] + \Delta$
- **sum**(k) report $A[1] + ... + A[k]$
- **select**(x) return k such that $\text{sum}(k) \leq \sigma < \text{sum}(k+1)$

Motivation

- range query (1D)
- many applications in the literature
 - list indexing, dynamic ranking [Dietz 89]
 - dynamic arrays [Raman et al 2001]
 - arithmetic coding [Fenwick 94]
 - ...
- playground for lower bound techniques (many results)
Restricted models: group, semigroup

- can only use algebraic operations as black box

General models: RAM, cell probe

- integers
- word size: $b \geq \lg n$
- update parameter Δ limited to δ bits ($\delta \leq b$)
 - natural in applications
 - all previous studies considered this
Results, old and new

<table>
<thead>
<tr>
<th>Model</th>
<th>Upper Bounds</th>
<th>Lower Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>semigroup</td>
<td>$O(\lg n)$</td>
<td>$\Omega(\lg n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(\lg n / \lg \lg n)$ [Yao85]</td>
</tr>
<tr>
<td>group</td>
<td>$O(\lg n)$</td>
<td>$\Omega(\lg n)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Omega(\lg n / \lg \lg n)$ [HF98]</td>
</tr>
<tr>
<td>RAM cell probe</td>
<td>$O(\lg n / \lg \lg n)$ for $\delta = O(\lg \lg n)$ [Die89]</td>
<td>$\Omega(\lg n / \lg b)$ [FS89]</td>
</tr>
<tr>
<td></td>
<td>$O(\lg n / \lg (b / \delta))$</td>
<td>$\Omega(\lg n / \lg (b / \delta))$ NEW</td>
</tr>
</tbody>
</table>

Upper bounds don’t use precomputed table standard operations (multiplication, shifts, bitwise)

New, powerful lower bound technique
Upper bounds: The Big Picture

Build a tree with branching factor $B \approx b/\delta$
Handle all operations in $O(1)$ for arrays of size B
$\Rightarrow O(lg n / lg B)$ running times
Upper Bounds: The Small Picture

- even with small δ, partial sums can get large after many updates
- break each sum in two components: $S[i] = B[i] + C[i]$
 - $B[i]$ holds value of $S[i]$ from some past moment
 - $C[i]$ holds more recent changes
- after a few updates, $B[i]$ is rebuilt (constant time, amortized)
- $C[i]$ must remain small after few updates
 - hold packed in a word and use multiplication tricks to update

Select

- break into runs of sums, separated by big gaps
- use the fusion structure [FW93] to select among runs
 - big gaps \Rightarrow infrequent updating
- sums inside each run are close \Rightarrow delta-encode relative to head
 - can pack in a word, and use more bit tricks
Lower Bounds: Trees Again?

- bound only read instructions
- build a tree over the sequence of operations (i.e. update, sum)
- each read instruction is characterized by:
 - read time \(r \): the read happens while handling operation \(r \)
 - write time \(w \): the cell was last written while handling operation \(w \)
Lower Bounds: Node Complexity

- associate each read with $\text{LCA}(r, w)$
- prove average case lower bound for each node
- sum up lower bounds
 - not double-counting
 - holds in average case
Lower Bounds: Encoding

To prove lower bound for one node, consider scenario:

- you don’t know anything about the left subtree
- but you know all reads with r in the right subtree, and w in the left subtree

 - can simulate data structure, get output to queries from right subtree

- output encodes a lot of info about left subtree

 - many read instructions
Lower Bounds: Last Slide

- idea works well for $\delta = b$
- problem for smaller δ:
 - one word (or one read instruction) can contain a lot of information
- solution:
 - future request are unpredictable
 - unlikely that one read instruction helps future queries

[~ round elimination lemma in communication complexity]
Open Problems / Recent progress

SOLVED: lower bound for select problem: output of query encodes little information
SOLVED: lower bounds on tradeoff between update & query times
SOLVED: technique applied to other problems (dynamic connectivity)

These are harder. Require: smart encoding schemes, more probabilities

OPEN: offline problem (likely very hard)
OPEN: bit-probe model
 problem: cell addresses (not cell contents) make encoding large
The End