Tight Bounds for the Partial-Sums Problem

Mihai Pătrașcu (presenting)

Erik Demaine

MIT CSAIL

1

SODA Jan 11, 2004

Partial Sums

The Problem

Maintain A[1...n] under:

update(k, Δ) modify A[k] = A[k] + Δ sum(k) report A[1] + ... + A[k]select(x) return k such that $sum(k) \le \sigma < sum(k+1)$

Motivation

range query (1D)

. . .

- many applications in the literature list indexing, dynamic ranking [Dietz 89] dynamic arrays [Raman et al 2001] arithmetic coding [Fenwick 94]
- playground for lower bound techniques (many results)

Restricted models: group, semigroup

can only use algebraic operations as black box

General models: RAM, cell probe

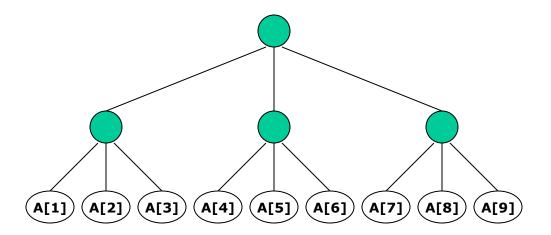
- integers
- word size: $b \ge \lg n$
- update parameter Δ limited to δ bits (δ ≤ b) natural in applications all previous studies considered this

Results, old and new

Model	Upper Bounds	Lower Bounds
semigroup	O(lg n)	$\Omega(\lg n / \lg \lg n)$ [Yao85]
		Ω(lg n) [HF98]
group	O(lg n)	$\Omega(\lg n / \lg \lg n)$ [FS89]
		Ω(lg n)
		NEW
RAM	O(lg n / lglg n)	Ω(lg n / lg b)
cell probe	for $\delta = O(g g n)$ [Die89]	[FS89]
	$O(\lg n / \lg (b / \delta))$ NEW	
		Ω(lg n / lg (b / δ))
<u> </u>	unds don't use precomputed tabl	NEW
Upper bounds don't use precomputed table other: bit_probe model, dynamic word problems standard operations (lifutiplication, shifts, bitwise)		
New, powerful lower bound technique		

Upper bounds: The Big Picture

Build a tree with branching factor $B \approx b/\delta$ Handle all operations in O(1) for arrays of size B \rightarrow O(lg n / lg B) running times



Upper Bounds: The Small Picture

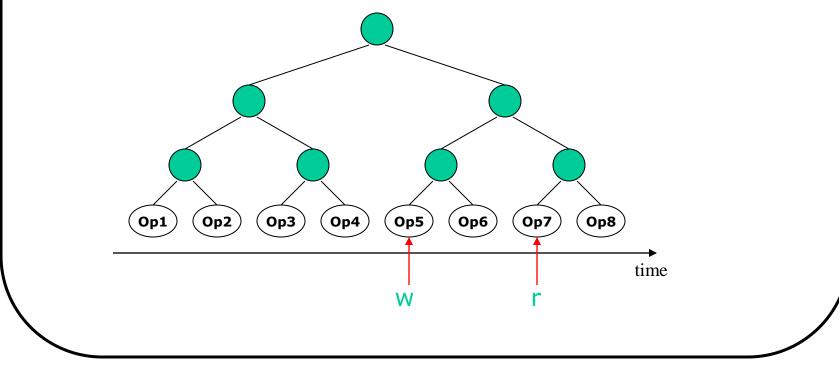
- even with small δ , partial sums can get large after many updates
- break each sum in two components: S[i] = B[i] + C[i] B[i] holds value of S[i] from some past moment C[i] holds more recent changes
- after a few updates, B[i] is rebuilt (constant time, amortized)
- C[i] must remain small after few updates
 - \rightarrow hold packed in a word and use multiplication tricks to update

Select

- break into runs of sums, separated by big gaps
- use the fusion structure [FW93] to select among runs big gaps → infrequent updating
- sums inside each run are close
 delta-encode relative to head
 can pack in a word, and use more bit tricks

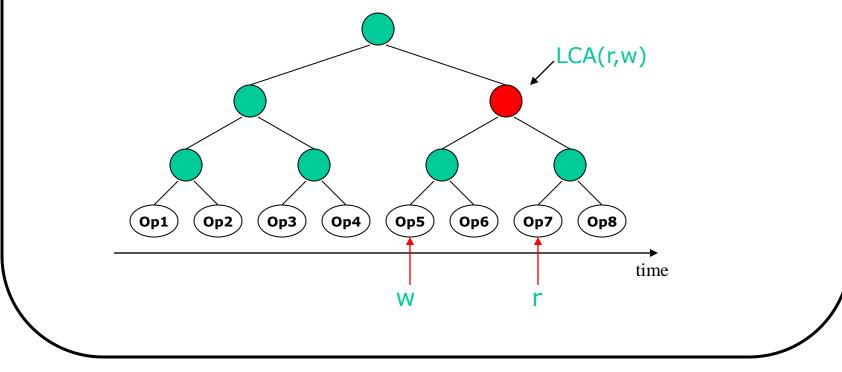
Lower Bounds: Trees Again?

- bound only read instructions
- build a tree over the <u>sequence of operations</u> (i.e. update, sum)
- each read instruction is characterized by: read time r: the read happens while handling operation r write time w: the cell was last written while handling operation w



Lower Bounds: Node Complexity

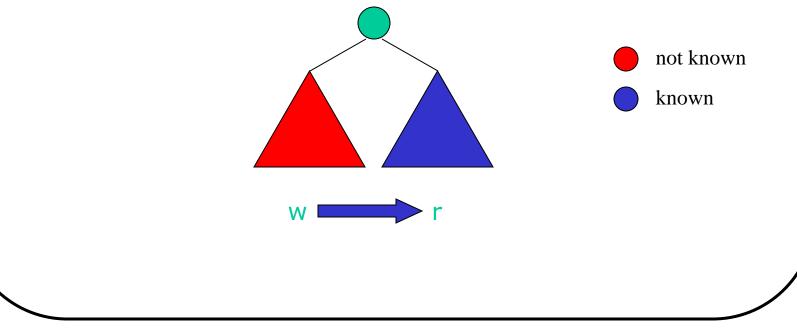
- associate each read with LCA(r, w)
- prove average case lower bound for each node
- sum up lower bounds
 - ➔ not double-counting
 - \rightarrow holds in average case



Lower Bounds: Encoding

To prove lower bound for one node, consider scenario:

- you don't know anything about the left subtree
- but you know all reads with r in the right subtree, and w in the left subtree
- → can simulate data structure, get output to queries from right subtree
- output encodes a lot of info about left subtree
- many read instructions



Lower Bounds: Last Slide

- idea works well for $\delta = b$
- problem for smaller δ :
 - one word (or one read instruction) can contain a lot of information
- solution:

future request are unpredictable

→ unlikely that one read instruction helps future queries

[~ round elimination lemma in communication complexity]

Open Problems / Recent progress

SOLVED: lower bound for select

problem: output of query encodes little information SOLVED: lower bounds on tradeoff between update & query times SOLVED: technique applied to other problems (dynamic connectivity)

These are harder. Require: smart encoding schemes, more probabilities

OPEN: offline problem (likely very hard) OPEN: bit-probe model problem: cell addresses (not cell contents) make encoding large

