
Transdichotomous Results in Computational Geometry, II:

Offline Search∗

Timothy M. Chan† Mihai Pǎtraşcu‡

September 24, 2010

Abstract

We reexamine fundamental problems from computational geometry in the word RAM model,
where input coordinates are integers that fit in a machine word. We develop a new algorithm
for offline point location, a two-dimensional analog of sorting where one needs to order points
with respect to segments. This result implies, for example, that the convex hull of n points in
three dimensions can be constructed in (randomized) time n · 2O(

√

lg lgn). Similar bounds hold
for numerous other geometric problems, such as planar Voronoi diagrams, planar off-line nearest
neighbor search, line segment intersection, and triangulation of non-simple polygons.

In FOCS’06, we developed a data structure for online point location, which implied a bound
of O(n lgn

lg lgn
) for three-dimensional convex hulls and the other problems. Our current bounds

are dramatically better, and a convincing improvement over the classic O(n lg n) algorithms.
As in the field of integer sorting, the main challenge is to find ways to manipulate information,
while avoiding the online problem (in that case, predecessor search).

1 Introduction

1.1 Sorting in Two Dimensions

Consider the following toy problem (in fact, a special case of offline point location), which we call
the slab problem. We are given a vertical slab in the plane, m nonintersecting segments cutting
across the slab, and n points in the slab. The goal is to identify the segment immediately below
each of the n points. In other words, we would like to sort the points “relative to” the segments.

This is an appealing and natural generalization to two dimensions of the one-dimensional notion
of sorting. It captures both an intuitive notion of ordering, and the non-orthogonal flavor so common
in computational geometry. Indeed, as described below, an impressive collection of fundamental
problems in computational geometry are known to be reducible to this simple problem, so there is
a formal sense in which the slab problem is as central in computational geometry as sorting is in
the one-dimensional world.

Classically, the slab problem is solved by binary searching among segments for each input point,
for a cost of O(lgm) per point. This is optimal when one searches by binary decisions or assumes

∗A preliminary version of this work with the title “Voronoi Diagrams in n · 2O(
√

lg lg n) Time” appeared in Proc.

39th ACM Symposium on Theory of Computing, pages 31–39, 2007.
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (tm-

chan@uwaterloo.ca). This work has been supported by an NSERC grant.
‡AT&T Labs, Florham Park NJ, USA (mip@alum.mit.edu). Part of this work was done while the author was at

MIT.

1

the input has infinite precision, as on a real RAM. However, a more reasonable assumption is that
input has finite precision. We will assume, in particular, that all coordinates come from some
universe [2w] = {0, . . . , 2w−1}, and that we are working on a word RAM with w-bit words (i.e. one
coordinate fits in one word). See Section 1.3 for a discussion of these assumptions.

Until recently, successful use of the word RAM in computational geometry was limited to a re-
stricted class of problems, especially problems involving orthogonal objects. However, in FOCS’06,
we proposed improved data structures for the online slab problem, a problem of a fundamentally

nonorthogonal nature [8]. The running time was asymptotically min
{

lgm
lg lgm ,

√
w
lgw

}
per point.

This represents a marginal improvement over O(lgm) for any universe, and a roughly quadratic
improvement for small (polynomial) universes.

In the current paper, we describe an algorithm for the (offline) slab problem running in time
n ·2O(

√
lg lgm)+O(m). Note that this bound does not depend on the universe (aside from assuming

a coordinate fits in a word), and is deterministic. The bound is a dramatic improvement over our
old bounds—note, for example, that the new bound grows more slowly than n lgεm + m for any
constant ε > 0. In addition, the new bound represents a much more convincing improvement over
the standard O(n lgm) bound, demonstrating the power granted by bounded precision.

The relation between our current algorithm and our results from [8] is best understood by a
parallel to integer sorting. There, the online problem (predecessor search) is known to require

comparatively large running times (e.g. in terms of n alone, an Ω(
√

lgn
lg lgn) lower bound per point

is known [4]). Yet, one can find ways of manipulating information in the offline problem, such that
the bottleneck of using the online problem is avoided (e.g. we can sort in O(n

√
lg lg n) expected

time [14]). It should be understood that the purpose of this work is not to study “bit tricks” in
the word RAM model, but to study how information about points and lines can be decomposed in
algorithmically useful ways.

1.2 Applications

From [8] it follows that improved bounds for the slab problem lead to improved upper bounds for
many fundamental problems in computational geometry [10, 11, 16, 17, 18]. We list some here. As
before, the bounds do not depend on the universe for the coordinates. All the reductions below,
except the last, are randomized.

1. We can compute the convex hull of n points in three dimensions in expected time n·2O(
√
lg lgn).

If the hull has H vertices, the bound can be reduced to n · 2O(
√
lg lgH).

2. We can compute the Voronoi diagram and the Delaunay triangulation of n points in the
plane in expected time n · 2O(

√
lg lgn). As a consequence, we can also compute the Euclidean

minimum spanning tree or solve the largest empty circle problem within the same time bound.

3. Given n red points and n blue points in the plane, we can compute the red point nearest to
each blue point in expected time n · 2O(

√
lg lgn).

4. We can compute all K intersections of n line segments in the plane in expected time n ·
2O(

√
lg lgn) +O(K). We can also construct the trapezoidal decomposition of the line segments

within the same time bound.

5. We can triangulate a polygon with holes (or an environment with multiple disjoint polygons)
with n vertices total in time n · 2O(

√
lg lgn).

2

Problems like convex hulls and Voronoi diagrams date back to the dawn of computational
geometry, and for these problems standard O(n lg n) bounds have long been regarded as “optimal.”
The previous paper [8] has demonstrated that on the word RAM, O(n lg n) can be beaten slightly,
by O(n lgn

lg lgn) bounds. The current paper shows that O(n lg n) can be improved significantly.

Planar point location. The slab problem is actually a special case of the offline planar point
location problem. Here, the input consists of a connected polygonal subdivision defined by a set of
m segments in the plane, where segments are only allowed to touch at endpoints. Given n query
points (offline), the goal is to identify the polygon (face) which contains each point.

In fact, reductions discussed above are to the offline planar point location problem. However,
the general case of point location turns out to be reducible to the special case of the slab problem.
In [8], we considered three different ways to achieve this reduction. These three approaches hold
both in the offline and online cases. They all generate a multiplicative penalty of at most O(lg lgm)
per point, which is absorbed by our time bound, but differ in the cost per segment:

(i) random sampling gives a randomized (n+m) · 2O(
√
lg lgm) running time.

(ii) persistence and exponential trees give a deterministic n · 2O(
√
lg lgm) + O(sort(m)) bound,

where sort(m) denotes the cost of sorting m integers.

(iii) planar separators are the most complicated (and least practical) strategy but give the best
deterministic running time of n · 2O(

√
lg lgm) +O(m).

Higher dimensions. We can also solve the analog of the slab problem in any constant dimension.
Instead of a slab, we are given a vertical prism, and instead of segments, we are given hyperplanes
cutting across the prism where no two hyperplanes intersect inside the prism. The running time of
our solution is n · 2O(

√
lg lgm) lg1+o(1) w + O(m). Although the bound now has an extra lg1+o(1) w

factor, this factor is relatively small. This result has a few applications as well, for example, to
offline exact nearest neighbor search in higher dimensions and curve-segment intersection in two
dimensions (see [8]).

Recent work. Subsequent to our conference publication, Buchin and Mulzer [6] announced a
better result for planar Voronoi diagrams. They show that constructing Voronoi diagrams is equiv-
alent to sorting, in the Word RAM augmented with one non-standard operation. In the standard
Word RAM, they obtain an unconditional running time of O(n

√
lg lg n) by adapting the best known

sorting algorithm of [14].
This improves the running time of all problems mentioned in item 2. above. However, this

algorithm exploits special properties about Voronoi diagrams and nearest neighbor graphs, and
does not imply improved results for the other problems considered here, such as 3-d convex hulls
and offline point location.

1.3 Computational Geometry on a Grid

It is superfluous to state that bounded precision is a fact of life. Input data are given with finite
precision and computers represent it internally in a bounded number of bits. Low-dimensional
computational geometry has typically seen the negative consequences of this state of affairs. Algo-
rithms are designed in idealized models of real arithmetic, and practitioners struggle to keep the
algorithms working with imperfect precision.

Yet, there is also a good side to bounded precision, and our result shows it can be used to achieve
significantly better algorithms. Again, we emphasize that our improved bound is independent of

3

whatever the bound on the precision happens to be. We just require that coordinates can be
manipulated in constant time, which has always been a standard assumption.

The philosophical question that we wish to address briefly is whether these benefits of bounded
precision should be explored in theory. We believe firmly they should, examining the question both
with an eye to practice and to theory.

Practice. From a theoretical perspective, the classic solutions to online point location using linear
space and logarithmic query time would seem attractive. However, as pointed out in a survey on the
topic [20], the most efficient and popular practical implementations do not use them. Instead, they
use grid-pruning heuristics, not unlike some of our ideas. Thus, we can hope to gain theoretical
understanding for what is already known to be effective in the real world—a standard goal for
theory.

Turning this around, we can hope that theoretical improvements will suggest new ideas with an
impact in practice. As presented, our results are theoretical because of large hidden constants, in
both the slab problem and subsequent reductions. However, since the improvement over O(n lg n)
is now quite significant, we find it plausible that some of the techniques developed here can provide
inspiration for useful practical “tricks.” A key step would be to circumvent the reductions and
apply our techniques directly to target problems.

Theory. Even at theory’s end of computational geometry, the assumption of bounded precision
has been used fairly often. Unfortunately, this body of work (see the bibliographies of [8]) has
been plagued by close ties to one-dimensional problems. For example, two-dimensional convex
hulls can be found in linear time once points are sorted by x-coordinate. More typically, the
problems considered involved orthogonal objects, and such orthogonal problems can more easily be
decomposed into one-dimensional problems.

Our recent data structures for point location [8] broke this barrier, by presenting an improvement
for a fundamentally nonorthogonal problem. The current paper tries to demonstrate that there
are deeper questions to be explored in this direction of research. In our algorithm, we are forced
to consider questions of decomposability and compressibility of information about two-dimensional
objects, which seem fundamentally different from questions in one dimension. We feel this should
have a theoretical appeal in itself.

For example, consider two standard tools in sorting. One is radix sort, which gives linear-time
sorting in polynomial universes. Another is hashing, which is used in virtually all advanced RAM
sorting algorithms, including [2, 3, 12, 13, 14, 15, 21]. In two dimensions, neither of these tools
seems relevant. It is interesting that even without such basic tools, we can still obtain a rather
efficient, determinstic algorithm (even outperforming some of the older RAM sorting results).

1.4 Overview

The remainder of this paper is organized as follows. In Section 2, we describe a simple algorithm for
the slab problem, running in time O(n

√
lgm+m). This demonstrates the basic divide-and-conquer

strategy behind our solution. In Section 3, we implement this strategy much more carefully to obtain
an interesting recurrence that ultimately leads to the stated time bound of n · 2O(

√
lg lgm) +O(m).

The challenges faced by this improvement are similar to issues in integer sorting, and indeed we
borrow (and build upon) some tools from that field.

Unfortunately, the implementation of Section 3 requires a nonstandard word operation. In
Section 4, we describe how to implement the algorithm on a standard word RAM, using only ad-

4

s2

s4
s3

s1

s0

s2

s̃2

s̃0

s4

s0

Figure 1: Proof of Observation 1: an example (with ℓL = ℓR). The left diagram shows the segments
in B.

dition, multiplication, bitwise-logical operations, and shifts. Interestingly, the new implementation
requires some new geometric observations that affect the design of the recursion itself.

2 An Initial Algorithm for the Slab Problem

2.1 The Basic Recursive Strategy

We begin with a recursive strategy based on a simple observation, taken from [8]. (Later in Section 4,
we will replace this with a more complicated recursive structure.) In the following, the notation ≺
refers to the belowness relation.

Observation 1. Fix b and h. Let S be a set of m sorted disjoint segments, where all left endpoints
lie on an interval IL of length 2ℓL on a vertical line, and all right endpoints lie on an interval IR
of length 2ℓR on another vertical line. In O(b) time, we can find O(b) segments s0, s1, . . . ∈ S in
sorted order, which include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(1a) there are at most m/b segments of S between si and si+1.

(1b) the left endpoints of si and si+1 lie on a subinterval of length 2ℓL−h.

(1c) the right endpoints of si and si+1 lie on a subinterval of length 2ℓR−h.

(2) there exist segments s̃0, s̃2, . . . cutting across the slab, satisfying all of the following:

(2a) s0 ≺ s̃0 ≺ s2 ≺ s̃2 ≺ · · · .
(2b) distances between the left endpoints of the s̃i’s are all multiples of 2ℓL−h.

(2c) distances between right endpoints are all multiples of 2ℓR−h.

Proof: Let B contain every ⌊m/b⌋-th segment of S, starting with the lowest segments s0. Impose
a grid over IL consisting of 2h subintervals of length 2ℓL−h, and a grid over IR consisting of 2h

subintervals of length 2ℓR−h. We define si+1 inductively based on si, until the highest segment is
reached. We let si+1 be the highest segment of B such that either the left or the right endpoints
of si and si+1 are in the same grid subinterval. This will satisfy (1b) or (1c). If no such segment
above si exists, we simply let si+1 be the successor of si, satisfying (1a). (See Figure 1.)

Let s̃i be obtained from si by rounding each endpoint to the grid point immediately above
(ensuring (2b) and (2c)). By construction of the si’s, both the left and right endpoints of si and
si+2 are in different grid subintervals. Thus, s̃i ≺ si+2, ensuring (2a). �

5

Slab(Q,S):

0. if m = 0, set all answers to null and return
1. let s0, s1, . . . be the O(b) segments from Observation 1
2. let ϕ be the projective transform mapping IL to {0} × [0, 2h] and IR to {2h} × [0, 2h].

Compute round(ϕ(Q)) and ϕ(s̃0), ϕ(s̃2), . . .
3. Slab0(round(ϕ(Q)), {ϕ(s̃0), ϕ(s̃2), . . .})
4. for each q ∈ Q with ans[round(ϕ(q))] = ϕ(s̃i) do

set ans[q] = the segment from {si−4, . . . , si+7} immediately below q
5. for each si do

Slab({q ∈ Q | ans[q] = si}, {s ∈ S | si ≺ s ≺ si+1})

Figure 2: A recursive algorithm for the slab problem. Parameters b and h are fixed in the analysis;
round(·) maps a point to its nearest integral point.

The above observation naturally suggests a recursive algorithm. In the pseudocode in Figure 2,
the input is a set Q of n points and a sorted set S of m disjoint segments, where the left and right
endpoints lie on intervals IL and IR of length 2ℓL and 2ℓR respectively. At the end, ans[q] stores
the segment from S immediately below q for each q ∈ Q. A special null value for ans[q] signifies
that q is below all segments. We assume a (less efficient) procedure Slab0(Q,S), with the same
semantics as Slab(Q,S), which is used as a bottom case of the recursion. The choice of Slab0()
is a crucial component of the analysis.

We first explain why the pseudocode works. In step 2, an explicit formula for the transform ϕ
has already been given in [8]; this mapping preserves the belowness relation. According to property
(2) in Observation 1, we know that the transformed segments ϕ(s̃0), ϕ(s̃2), . . . all have h-bit integer
coordinates from [2h]. After rounding, the n points ϕ(Q) will lie in the same universe.

Any unit square can intersect at most two of the ϕ(s̃i)’s, since these segments have vertical
separation at least one and thus horizontal separation at least one (as slopes are between −1 and
1). If ϕ(s̃i) ≺ round(ϕ(q)) ≺ ϕ(s̃i+2), then we must have ϕ(s̃i−4) ≺ ϕ(q) ≺ ϕ(s̃i+6), implying
that si−4 ≺ s̃i−4 ≺ q ≺ s̃i+6 ≺ si+8. Thus, at step 4, ans[q] contains the segment from s0, s1 . . .
immediately below q. Once this is determined for every point q ∈ Q, we can recursively solve the
subproblem for the subset of points and segments strictly between si and si+1 for each i, as is done
at step 5. An answer ans[q] = null from the i-th subproblem is interpreted as ans[q] = si.

Let ℓ = (ℓL + ℓR)/2 (ℓ ≤ w). Denote by T (n,m, ℓ) the running time of Slab(), and T0(n, b
′, h)

the running time of the call to Slab0() in step 3. Steps 1, 2 and 4 can be implemented naively in
O(n+m) time. We have the recurrence:

T (n,m, ℓ) = T0(n, b
′, h) + O(n+m) +

b′∑

i=0

T (ni,mi, ℓi), (1)

where b′ = O(b),
∑

i ni = n,
∑

imi = m− b′. Furthermore, according to property (1) in Observa-
tion 1, for each i we either have mi ≤ m

b or ℓi ≤ ℓ− h
2 . This implies that the depth of the recursion

is O(logb m+ ℓ
h).

6

2.2 An O(n
√
lgm+m) Algorithm

In the previous paper [8], we have noticed that for b′h ≈ w, Slab0() can be implemented in
T0(n, b

′, h) = O(n) time by packing b′ segments from an h-bit universe into a word. By setting
b ≈ logεm and h ≈ w/ logεm, this leads to an O((n +m) lgm

lg lgm) algorithm.
Instead of packing multiple segments in a word, our new idea is to pack multiple points in a

word. To understand why this helps, remember that the canonical implementation for Slab0()
runs in time O(n lgm) by choosing the middle segment and recursing on points above and below
this segment. By packing t segments in a word, we can hope to reduce this time to O(n logtm).
However, by packing t points in a word, we can potentially reduce this to O(nt lgm), a much bigger
gain. (One can also think of packing both points and segments, for a running time of O(nt logtm).
Since we will ultimately obtain a much faster algorithm, we ignore this slight improvement.)

To implement this idea, step 2 will pack round(ϕ(Q)) with O(w/h) points per word. Each
point is alotted O(h) bits for the coordinates, plus lg b = O(h) bits for the answer ans[round(ϕ(q))]
which Slab0() must output. This packing can be done in O(n) time, adding one point at a time.

Working on packed points, Slab0() has the potential of running faster, as evidenced by the
following lemma. For now, we do not concern ourselves with the implementation on a word RAM,
and assume nonstandard operations (an operation takes two words as input, and outputs one word).

Lemma 2. If lg b ≤ h ≤ w, Slab0() can be impemented on a RAM with nonstandard operations
with a running time of T0(n, b, h) = O(n h

w lg b+ b).

Proof: Given a segment and a number of points packed in a word, we can postulate two operations
which output the points above (respectively below) the segment, packed consecutively in a word.
Choosing a segment, we can partition the points into points above and below the segment in
O(⌈n h

w ⌉) time. In the same asymptotic time, we can make both output sets be packed with ⌊wh ⌋
points per word (merging consecutive words which are less than full).

We now implement the canonical algorithm: partition points according to the middle segment
and recurse. As long as we are working with ≥ w

h points, the cost is O(hw) per point for each
segment, and each point is considered O(lg b) times. If we are dealing with less than w

h points, the
cost is O(1), and that can be charged to the segment considered. Thus, the total time after packing
is O(n h

w lg b+ b).
The last important issue is the representation of the output. By the above, we obtain the sets

of points which lie between two consecutive segments. We can then trivially fill in the answer for
every point in the lg b bits alotted for that. However, we want an array of answers for the points
in the original order. To do that, we trace the algorithm from above backwards in time. We use
an operation which is the inverse of splitting a word into points above and below a segment. �

Plugging the lemma into (1), we get T (n,m, ℓ) = O(n h
w lg b+ n +m) · O(logb m+ ℓ

h). Setting
lg b =

√
lgm and h = w/

√
lgm, we obtain T (n,m,w) = O((n+m)

√
lgm). This can be improved to

O(m+n
√
lgm) by the standard trick of considering only one in O(

√
lgm) consecutive segments. For

every point, we finish off by binary searching among O(
√
lgm) segments, for a negligible additional

time of O(n lg lgm).

7

3 An n · 2O(
√
lg lgm) +O(m) Algorithm

3.1 Preliminaries

To improve on the O(m+n
√
lgm) bound, we bootstrap: we use an improved algorithm for Slab()

as Slab0(), obtaining an even better bound for Slab(). To enable such improvements, we can
no longer afford the O(n) term in the recurrence (1). Rather, a call to Slab() is passed Q in
word-packed form, and we want to implement the steps between recursive calls in sublinear time
(close to the number of words needed to represent Q, not to n = |Q|).

This task will require further ideas and more sophisticated word-packing tricks. To understand
the complication, let us contrast implementing steps 2 and 5 of Slab() in sublinear time. Computing
round(ϕ(Q)) in Step 2 is solved by applying a function in parallel to a word-packed vector of points.
This is certainly possible, at least using nonstandard word operations. However, step 5 needs to
group elements of Q into subsets (i.e. sort Q according to ans[q]). This is a deeper information-
theoretic limitation, and it is rather unlikely that it can always be done in time linear in the number
of words needed to store Q. The problem has connections to applying permutations in external
memory, a well-studied problem which is believed to obey similar limitations [1].

To implement step 5 (and also step 4), we will use a subroutine Split(Q, label). This receives
a set Q of ℓ-bit elements, packed in O(n ℓ

w) words. Each elements q ∈ Q has a (lgm)-bit label

label[q] with lgm ≤ ℓ. The labels are stored in the same O(n ℓ
w) words. We can think of each

word as consisting of two portions, the first containing O(wℓ) elements and the second containing
the corresponding O(wℓ) labels. The output of Split(Q, label) is a collection of sublists, so that
all elements of Q with the same label are put in the same sublist (in arbitrary order).

In addition, we will need Split() to be reversible. Suppose the labels in the sublists have been
modified. We need a subroutine Unsplit(Q), which outputs Q in the original order before Split(),
but with the modified labels attached.

The following lemma states the time bound we will use for these two operations. The imple-
mentation of Split() is taken from a paper by Han [12] and has been also used as a subroutine in
several integer sorting algorithms [13, 14]. As far as we know, the observation that Unsplit() is
possible in the same time bound has not been stated explicitly before.

Lemma 3. Assume label[q] ∈ [m] for all q ∈ Q, and let M be a parameter. If w
ℓ lgm ≤ 1

2 lgM

and lgm ≤ ℓ ≤ w, both Split() and Unsplit() require time O(n ℓ
w lg w

ℓ +M).

Proof: Let g = w
ℓ . Each word contains g elements, with g lgm bits of labels. Put words with

the same label pattern in the same bucket. This can be done in O(n/g +
√
M) time, since the

number of different label patterns is at most 2g lgm ≤
√
M . For each bucket, we form groups of g

words and transpose each group to get g new words, where the i-th element of the j-th new word is
the j-th element of the i-th old word. Transposition can be implemented in O(lg g) standard word
operations [21]. Elements in each new word now have identical labels. We can put these words in
the correct sublists, in O(n/g +m) time. There are at most g leftover elements per bucket, for a
total of O(

√
Mg) = o(M); we can put them in the correct sublists in o(M) time. The total time is

therefore O((n/g) lg g +M).
To support unsplitting, we remember information about the splitting process. Namely, whenever

we transpose g words, we create a record pointing to the g old words and the g new words. To
unsplit, we examine each record created and transpose its g new words again to get back the g

8

old words (with labels now modified). We can also update the leftover elements by creating o(M)
additional pointers. �

A particularly easy application of this machinery is to implement the algorithm of Section 2
with standard operations (with a minor lg lgm slowdown). This result is not interesting by itself,
but it will be used later as the base case of our bootstrapping strategy.

Corollary 4. If w
h lg b ≤ 1

2 lgM and lg b ≤ h ≤ w, the algorithm for Slab0() from Lemma 2 can be

implemented on a word RAM with standard operations in time T0(n, b, h) = O(n h
w lg b lg w

h + bM).

Proof: The nonstandard operations used before were splitting and unsplitting a set of points
packed in a word, depending on sidedness with respect to a segment. It is not hard to compute
sidedness of all points from a word in parallel using standard operations: we apply the linear map
defining the support of the segment to all points (which is a parallel multiplication and addition),
and keep the sign bits of each result. The sign bits define 1-bit labels for the points, and we can
apply Split() and Unsplit() for these. �

Since the algorithm is used with b =
√
lgm and h = w/

√
lgm, we incur a slowdown of O(lg w

h) =
O(lg lgm) per point compared to the implementation with nonstandard operations. By setting
M = m2, the algorithm of the previous section would then run in time O(n

√
lgm lg lgm+m3) if

implemented with standard operations. (The dependence of the second term on m can be lowered
as well.)

3.2 The Improved Algorithm

Our fastest algorithm follows the same pseudocode of Figure 2, but with a more careful implemen-
tation of the individual steps. Let ℓ̃ be the number of bits per point and m̃ the original number of
segments in the root call to Slab(). We have lg m̃ ≤ ℓ̃ ≤ w. In a recursive call to Slab(), the input
consists of some n points and m ≤ m̃ segments, all with coordinates from [2ℓ], where ℓ ≤ ℓ̃. Points

will be packed in O(ℓ̃) bits each, so the entire set Q occupies O(n ℓ̃
w) words. At the end, the output

ans[q] is encoded as a label with lg m̃ bits, stored within each point q ∈ Q, with the order of the
points unchanged in the list Q. Note that one could think of repacking more points per word as ℓ
and m decrease, but this will not yield an asymptotic advantage, so we avoid the complication (on
the other hand, repacking before the call to Slab0() is essential).

In step 2, we can compute round(ϕ(Q)) in time linear in the number of words O(n ℓ̃
w), by using

a nonstandard word operation that applies the projective transform (and rounding) to multiple
points packed in a word. Unfortunately, it does not appear possible to implement this efficiently
using standard operations. We will deal with this issue in Section 4, by changing the algorithm for
Slab() so that we only require affine transformations, not projective transformations.

Before the call to Slab0() in step 3, we need to condense the packing of the points round(ϕ(Q))
to take up O(n h

w) words. Previously, we had O(w
ℓ̃
) points per word, but after step 2, only O(h)

bits of each point were nonzero. We will stipulate that points always occupy an number of bits
which is a power of 2. This does not affect the asymptotic running time. Given this property, we
obtain a word of round(ϕ(Q)) by condensing ℓ̃/h words. This operation requires shifting each old
word, and oring it into the new word.

Note that the order of round(ϕ(Q)) is different from the order of Q, but this is irrelevant,
because we can also reverse the condensing easily. We simply mask the bits corresponding to old

9

word, and shift them back. Thus, we obtain the labels generated by Slab0() in the original order

of Q. Both condensing and its inverse take O(n ℓ̃
w) time.

For the remainder of the steps, we need to Split() and Unsplit(). For that, we fix a parameter
M satisfying w

ℓ̃
lg m̃ ≤ 1

2 lgM . In step 4, we first split the list round(ϕ(Q)) into sublists with the
same ans labels. For each sublist, we can perform the constant number of comparisons per point
required in step 4, and then record the new ans labels in the list, in time linear in the number of

words O(n ℓ̃
w). It is standard to implement this in the word RAM by parallel multiplications (see

the proof of Lemma 3). To complete step 4, we Unsplit() to get back the entire list round(ϕ(Q)),

and then copy the ans labels to the original list Q in O(n ℓ̃
w) time. Since both lists are in the same

order, this can be done by masking labels and oring them in.
To perform step 5, we again split Q into sublists with the same ans labels. After the recursive

calls, we unsplit to get Q back in the original order, with the new ans labels.

3.3 Analysis

For w

ℓ̃
lg m̃ ≤ 1

2 lgM and lg m̃ ≤ ℓ̃ ≤ w, the recurrence (1) now becomes:

T (n,m, ℓ) = T0(n, b
′, h) + O

(
n
ℓ̃

w
lg

w

ℓ̃
+M

)
+

b′∑

i=0

T (ni,mi, ℓi), (2)

where b′ = O(b),
∑

i ni = n,
∑

i mi = m− b′, and for each i, we either have mi ≤ m
b or ℓi ≤ ℓ− h

2 .

As before, the depth of the recursion is bounded by O(logb m̃+ ℓ̃
h).

Assume that for w
h lg b ≤ 1

2 lgM and lg b ≤ h ≤ w, an algorithm with running time

T0(n, b, h) ≤ ck

(
n
h

w
lg1/k b lg

(w
h
lg b
)

+ bM

)

is available to begin with. This is true for k = 1 with c1 = O(1) by Corollary 4.
Then the recurrence (2) yields:

T (n, m̃, ℓ̃) = O(ck) ·
([

n
h

w
lg1/k b lg

(w
h
lg b
)

+ n
ℓ̃

w
lg

w

ℓ̃

]
·
(
logb m̃+

ℓ̃

h

)
+ mM

)
.

Set lg b = lgk/(k+1) m̃ and h = ℓ̃
/
lg1/(k+1) m̃. Notice that indeed w

h lg b = w

ℓ̃
lg m̃ ≤ 1

2 lgM and
lg b ≤ h ≤ w. Thus, we obtain an algorithm with running time:

T (n, m̃, ℓ̃) ≤ ck+1

(
n
ℓ̃

w
log1/(k+1) m̃ lg

(
w

ℓ̃
lg m̃

)
+ m̃M

)

for some ck+1 = O(1) · ck.
Iterating this process k times, we get:

T (n, m̃, ℓ̃) ≤ 2O(k)

(
n
ℓ̃

w
lg1/k m̃ lg

(
w

ℓ̃
lg m̃

)
+ m̃M

)

for any value of k. Choosing k =
√

lg lg m̃ to asymptotically minimize the expression, and plugging

in ℓ̃ = w and M = m̃2 (so that indeed w

ℓ̃
lg m̃ ≤ 1

2 lgM), we get:

T (n, m̃, w) = 2O(
√

lg lg m̃) (n + m̃3).

10

We can reduce the dependence on m̃ to linear as follows. First, select one out of every m̃3/4

consecutive segments of S, and run the above algorithm on just these m̃1/4 segments. This takes

time 2O(
√

lg lg m̃)(n+ m̃3/4) time. Now recurse between each consecutive pair of selected segments.
The depth of the recursion is O(lg lg m̃), and it is straightforward to verify that the running time

is n · 2O(
√

lg lg m̃) +O(m̃).

4 Avoiding Nonstandard Operations

The only nonstandard operation used by the algorithm of Section 3 is applying a projective trans-
form in parallel to points packed in a word. Unfortunately, it does not seem possible to implement
this in constant time using standard word RAM operations (since, according to the formula for
projective transform, this operation requires multiple divisions where the divisors are all different).

One idea is to simulate the special operation in slightly superconstant time. We can use the
circuit simulation results of Brodnik et al. [5] to reduce the operation to lgw · (lg lgw)O(1) standard
operations. For the version of the slab problem in dimension 3 or higher, this is the best approach
we know. Note that the results from the previous section hold in any constant dimension, by simply
using the multidimensional analog of Observation 1 from [8].

However, in two dimensions we can get rid of the dependence on the universe, obtaining a time
bound of n · 2O(

√
lg lgm) + O(m) on the standard word RAM. This constitutes the object of this

section.

4.1 The Center Slab

By horizontal translation, we can assume the left boundary of our vertical slab is the y-axis. Let
the abscissa of the right boundary be ∆. For some h to be determined, let the center slab be the
region of the plane defined by ∆/2h ≤ x ≤ ∆ · (1 − 2−h). The lateral slabs are defined in the
intuitive way: the left slab by 0 ≤ x ≤ ∆/2h and the right slab by ∆ · (1− 2−h) ≤ x ≤ ∆.

The key observation is that distances are somewhat well-behaved in the center slab, so we will
be able to decrease both the left and right intervals at the same time, not just one of them. This
enables us to use (easier to implement) affine maps instead of projective maps. Center slabs were
also used in one of our previous papers [19], but as presented there, the idea cannot get rid of the
dependence on the universe. This paper’s definition and use of the center slab is rather different,
and gets rid of this dependence.

The following is a replacement for Observation 1:

Observation 5. Fix b and h. Let S be a set of m sorted disjoint segments, such that all left
endpoints lie on an interval IL and all right endpoints lie on an interval IR, where both IL and
IR have length 2ℓ. In O(b) time, we can find O(b) segments s0, s1, . . . ∈ S in sorted order, which
include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(1a) there are at most m/b segments of S between si and si+1.

(1b) both the left and right endpoints of si and si+1 are at distance at most 2ℓ−h.

(2) there exist segments s̃0 ≺ s̃1 ≺ · · · cutting across the slab, satisfying all of the following:

(2a) distances between the left endpoints of the s̃i’s are multiples of 2ℓ−2h.

(2b) ditto for the right endpoints.

11

si

∆/2h ∆/2h

> 2ℓ−h

s̃i

si+2

center slab

2ℓ−2h

Figure 3: Proof of Observation 5: a center slab.

(2c) inside the center slab, s0 ≺ s̃0 ≺ s2 ≺ s̃2 ≺ · · · .
Proof: Let B contain every ⌊m/b⌋-th segment of S, starting with the lowest segment s0. We
define si+1 inductively. If the next segment after si has either the left or right endpoints at distance
greater than 2ℓ−h, let si+1 be this segment, which satisfies (1a). Otherwise, let si+1 be the highest
segment of B which satisfies (1b).

Now impose grids over IL and IR, both consisting of 22h subintervals of length 2ℓ−2h. We
obtain s̃i from si by rounding each endpoint to the grid point immediately above. This immediately
implies s̃0 ≺ s̃1 ≺ · · · and si ≺ s̃i. Unfortunately, s̃i and si+k may intersect for arbitrarily large k
(e.g. si, . . . , si+k are very close on the left, while each consecutive pair is far on the right). However,
we will show that inside the center slab, s̃i ≺ si+2. (See Figure 3.)

By construction, si and si+2 are vertically separated by more than 2ℓ−h either on the left or
on the right. Since lateral slabs have a fraction of 2−h of the width of the entire slab, the vertical
separation exceeds 2ℓ−h/2h = 2ℓ−2h anywhere in the center slab. Rounding si to s̃i represents a
vertical shift of less than 2ℓ−2h anywhere in the slab. Hence, s̃i ≺ si+2 in the center slab. �

We now describe how to implement Slab(), assuming the intervals containing the left endpoints
(IL) and the right endpoints (IR) both have length 2ℓ. In this section, we only deal with points in
the center slab. It is easy to Split() Q into subsets corresponding to the center and lateral slabs,
and Unsplit() at the end.

We use Observation 5 instead of Observation 1. Since IL and IR have equal length, the map
ϕ is affine. Thus, it can be implemented using parallel multiplication and parallel addition. This

means step 2 can be implemented in time O(n ℓ̃
w) using standard operations.

Because we only deal with points in the center slab, and there si ≺ s̃i ≺ si+2 (just like in the
old Observation 1), steps 4 and 5 work in the same way.

4.2 Lateral Slabs

To deal with the left and right slabs, we use the following simple observation, which we only state
for the left slab by symmetry. Note that the guarantees of this observation (for the left slab) are
virtually identical to that of Observation 5 (for the center slab). Thus, we can simply apply the
algorithm of the previous section for the left and right slabs.

Observation 6. Fix b and h. Let S be a set of m sorted disjoint segments, such that all left
endpoints lie on an interval IL and all right endpoints lie on an interval IR, where both IL and

12

> 2ℓ−h
t̃i

2ℓ−h−1ti

ti+2

∆/2h

Figure 4: Proof of Observation 6: a left slab.

IR have length 2ℓ. In O(b) time, we can find O(b) segments t0, t1, . . . ∈ S in sorted order, which
include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(1a) there are at most m/b segments of S between si and si+1.

(1b) anywhere in the left slab, the vertical separation between si and si+1 is less than 2ℓ−h+1.

(2) there exist segments t̃0 ≺ t̃1 ≺ · · · cutting across the left slab, satisfying all of the following:

(2a) distances between the left endpoints of the t̃i’s are multiples of 2ℓ−2h.

(2b) ditto for the right endpoints.

(2c) inside the left slab, t0 ≺ t̃0 ≺ t2 ≺ t̃2 ≺ · · · .
Proof: Let IA be the vertical interval at the intersection of the right edge of the left slab with
the parallelogram defined by IL and IR. Note IA also has size 2ℓ.

Let B contain every ⌊m/b⌋-th segment of S, starting with the lowest segment t0. Given ti, we
define ti+1 to be the highest segment of B which has the left endpoint at distance at most 2ℓ−h

away. If no such segment above ti exists, let ti+1 be the successor of ti in B (this will satisfy (1a)).
In the first case, (1b) is satisfied because the right endpoints of ti and ti+1 are at distance most 2ℓ,
so on IA, the separation is at most 2ℓ−h(1− 2−h) + 2ℓ · 2−h < 2ℓ−h+1.

Now impose grids over IL and IA, both consisting of 2h+1 subintervals of length 2ℓ−h−1. We
obtain t̃i from ti by rounding the points on IL and IA to the grid point immediately above. Note
that the vertical distance between ti and t̃i is less than 2ℓ−h−1 anywhere in the left slab. On the
other hand, the left endpoints of ti and ti+2 are at distance more than 2ℓ−h. The distance on IA
(and anywhere in the left slab) is at least 2ℓ−h(1 − 2−h) ≥ 2ℓ−h−1. Thus ti ≺ t̃i ≺ ti+2. (See
Figure 4.) �

4.3 Bounding the Dependence on m

Our analysis needs to be modified, because segments are simultaneously in the left, center and
right slabs, so they are included in 3 recursive calls. In other words, in recurrence (2), we have to
replace

∑
i m = m − b′ with a weaker inequality

∑
i m ≤ 3m. Recall that for our choice of b and

h, the depth of the recursion is bounded by O(logb m̃ + ℓ̃
h) = O(lg1/(k+1) m̃). Thus, the cost per

segment is increased by an extra factor of 3O(lg(1/(k+1) m̃) = 3O(
√

lg m̃) for each bootstrapping round;
the cost per point does not change. With k =

√
lg lg m̃ rounds, the overall dependence on m̃ is

13

now increased slightly to 2O(
√

lg lg m̃) · m̃3 · 3O(
√

lg m̃ lg lg m̃)) = O(m̃3+ε). As before, this can be made
O(m̃) by working with m̃1/4 segments and recursing.

5 Open Problems

Though our algorithm for offline point location is deterministic, the reductions to other problems [8]
introduce randomization. It would be nice to derandomize them. Another interesting question is
whether some of these reductions also hold in the other direction. For example, the trapezoidal
decomposition problem of disjoint line segments is clearly no easier than offline point location, but
can the same be said for other problems like 3-d convex hulls?

A problem with an O(n lg n) upper bound that we currently cannot improve is counting in-
tersections between a set of red segments and a set of blue segments, given that no segments of
the same color intersect [9]. Note that this problem is no easier than counting inversions in a
permutation, which takes O(n

√
lg n) time by the best known algorithm [7].

Finally, the complexity of the online point location problem remains open: can the O(lgn
lg lgn)

and O(
√

w
lgw) upper bounds from [8] be improved, or can stronger lower bounds be proved?

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, 1988.

[2] A. Andersson. Faster deterministic sorting and searching in linear space. In Proc. 37th IEEE Sympos.
Found. Comput. Sci., pages 135–141, 1996.

[3] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? J. Comput. Sys. Sci.,
57:74–93, 1998.

[4] P. Beame and F. Fich. Optimal bounds for the predecessor problem and related problems. J. Comput.
Sys. Sci., 65:38–72, 2002.

[5] A. Brodnik, P. B. Miltersen, and J. I. Munro. Trans-dichotomous algorithms without multiplication—
some upper and lower bounds. In Proc. 5th Int. Workshop Algorithms Data Struct., pages 426–439,
London, UK, 1997. Springer-Verlag.

[6] K. Buchin and W. Mulzer. Delaunay triangulations in O(sort(n)) time and more. In Proc. 50th IEEE
Sympos. Found. Comput. Sci., pages 139–148, 2009.

[7] T. M. Chan and M. Pǎtraşcu. Counting inversions, offline orthogonal range counting, and related
problems. In Proc. 21st ACM/SIAM Sympos. Discrete Algorithms, pages 161–173, 2010.

[8] T. M. Chan and M. Pǎtraşcu. Transdichotomous results in computational geometry, I: Point location
in sublogarithmic time. SIAM J. Comput., 32(10):703–729, 2010. Preliminary versions appeared in
FOCS’06.

[9] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic line segment
problems and polyhedral terrains. Algorithmica, 11:116–132, 1994.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[11] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

[12] Y. Han. Improved fast integer sorting in linear space. Inf. Comput., 170:81–94, 2001.

[13] Y. Han. Deterministic sorting in O(n log logn) time and linear space. In Proc. 34th ACM Sympos.
Theory Comput., pages 602–608, 2002.

14

[14] Y. Han and M. Thorup. Integer sorting in O(n
√
log logn) expected time and linear space. In Proc.

43rd IEEE Sympos. Found. Comput. Sci., pages 135–144, 2002.

[15] D. G. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random access machines. Theoret.
Comput. Sci., 28:263–276, 1984.

[16] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs, NJ, 1994.

[17] J. O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd edition, 1998.

[18] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[19] M. Pǎtraşcu. Planar point location in sublogarithmic time. In Proc. 47th IEEE Sympos. Found. Comput.
Sci., pages 325–332, 2006.

[20] J. Snoeyink. Point location. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 767–785. CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.

[21] M. Thorup. Randomized sorting in O(n log logn) time and linear space using addition, shift, and
bit-wise boolean operations. J. Algorithms, 42:205–230, 2002.

15

