
Voronoi Diagrams

in n·2O(√lglgn) Time

Timothy M. Chan Mihai Pătraşcu

STOC’07

Things I hope you heard about:

2D
• Voronoi diagrams

• 3-d convex hull

• Delaunay triangulation

• Euclidean MST

• largest empty circle

• offline nearest neighbor

• segment intersection
• trapezoidal decomposition

• triangulating polygons with holes

Θ(n lgn)

But just in case you didn’t…

Everything reducible to one problem
NB: reductions not obvious, but known

“Sorting in 2 Dimensions”
Given a vertical slab with:

• m segments cutting across

• n points in slab

Output: points sorted w.r.t. segments

O(n lgm) : * compare all points to middle segment
* recurse (up, down)

Things I hope you heard about:

1D
• numbers inside computers are not real

i.e. numbers have bounded precision

• hashing

• tries

• radix sort

popular ideas that make a difference

When

?

Theory for something that works:

“Sorting is not Θ(n lgn)”

• O(n·√lglgn) randomized

• O(n·lglgn) deterministic

Why consider 2D?

Easy answer: [Willard, SODA’92], others

• it is not Θ(n lgn) on my computer (or yours)

• practice uses finite precision (k-d trees, gridding etc)
– can we have theoretical guarantees?

– can we improve practice based on theoretical ideas?

• mathematics:
– information, communication, algorithms – about geometry!

– differences from 1D fascinating

Theory Matters®

(Our) Previous Work

[Chan FOCS’06] [Pătraşcu FOCS’06]

• considered online searching (point location)

=> first sublogarithmic result

• for algorithms, it gave: O(n·min{lgn/lglgn, √w/lgw})
w = precision, in bits

Here, consider offline problem directly (“2D sorting”)

=> n·2O(√lglgn) << n lgn

e.g. < n lg n

beat O(n lgn)
for any precision

significant improvement

for small precision

significant improvement

independent of precision

Review of Previous Technique

• pick B segments and sketch them

• recurse => O(lgBn) cost per point

Throw away bad segments, sketch the rest.

segments closer than 1/2w/B on left or right

Only far segments => precision w/B enough

 Can sketch B segments

 B-ary search fails when universe is reduced

• reduction by 2w/B either left or right

• precision w => at most 2B universe reductions

Optimize O(logBn + B) => O(lgn/ lglgn)

?

X

  

Idea 1: Pack Points

“With precision w/B, can pack B segments per word”

Reimplement old O(n lgm) algorithm:

“compare all points to middle segment; recurse”

• compare B packed points to

a segment in O(1) time => cost 1/B per point

~~ each point compared to O(lgm) segments

• segments too close:

=> recompute sketches, cost O(1) per point

~~ each point resketched B times

*

*
+

B+(lgm)/B *n

Optimize

=> O(n√lg

m)

Idea 2: Repack Points

Before:

• reduce precision by √lgm

• solve reduced problem directly

• recurse between close segments

New idea:

• reduce precision by 10

• recurse in reduced problem

• recurse between close segments

Recursive calls work with

original (unpacked) points

Recursive calls work with

packed points

Repack more tightly

Information manipulation bottleneck (also in 1D):

• working with packed points ~~ external memory

• external memory permutation is ω(n/B)

• “having things in the right order” is not free

Tools from integer sorting

+ Careful balancing

n·2O(√lglgn)

Idea 3: Different Packing

Before:

“universe reduction”

= either on left or right side

Low-precision grid looks like:

projective map

 not word parallelizable

with standard operations

Now:

“universe reduction”

= both on left and right side

So “universe” looks like:

affine map

 word parallelizable,

standard operations

Minor trouble:
rounding to low-precision no longer works

Can be fixed with some geometry…

Open Problems

all reductions to 2D sorting randomized

=> still no o(n lgn) deterministic

• better bounds? can randomization help?

• red-blue intersection counting

-- only one with no o(n lgn)

T
H

E

E
N

D

