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Abstract

We consider two algorithmic problems arising in the lives of Yogi Bear and Ranger Smith. The
first problem is the natural algorithmic version of a classic mathematical result: any(n + 1)-
subset of{1, . . . , 2n} contains a pair of divisible numbers. How do we actually find such a
pair? If the subset is given in the form of a bit vector, we give a RAM algorithm with an optimal
running time ofO(n/ lg n). If the subset is accessible only through a membership oracle, we
show a lower bound of4

3
n−O(1) and an almost matching upper bound of

`
4
3

+ 1
24

´
n+O(1)

on the number of queries necessary in the worst case.
The second problem we study is a geometric optimization problem where the objective

amusingly influences the constraints. Suppose you want to surroundn trees at given coordinates
by a wooden fence. However, you have no external wood supply, and must obtain wood by
chopping down some of the trees. The goal is to cut down a minimum number of trees that can
be built into a fence that surrounds the remaining trees. We obtain efficient polynomial-time
algorithms for this problem.

We also describe an unusual data-structural view of the Nim game, leading to an intriguing
open problem.
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1. Introduction

Yogi Bear is on his constant search for picnic baskets in Jellystone National Park, while his
sidekick Boo Boo Bear tries to distract Yogi by teaching him some mathematics.

“You see, Yogi,” continued Boo Boo, “one numberdividesanother number if you can
multiply the first number to make the second number.”

“Yogi is smarter than the average bear,” responded Yogi, “but he never learned how to
multiply.”

“OK, forget multiplication. Think about division as splitting a number into a smaller num-
ber of groups of equal size. For example, we split the 12 months of the year into 4 seasons of 3
months each. So 4 divides 12, because you can split 12 into 4 groups of 3.”

“Wait a minute, Boo Boo. I smell something. . . ”
The bears came across a large camping ground near the lake. The campers were out for

a quick swim in the lake before their lunch picnic. Yogi, being smarter than the average bear,
seized the opportunity to steal several picnic baskets and take them back to his cave.

“There are so many different kinds of food,” said Yogi, “that I don’t know which to eat
first.”

“Then why don’t you eat two kinds of food first?” suggested Boo Boo.
“But look at this basket, Boo Boo. There are 2 sandwiches, 3 apples, 5 grapes, and 6

strawberries. You’ve taught me enough about numbers to know that none of these numbers are
the same. If I ate a grape with each apple, I’d have two grapes left over. That’s not a balanced
diet.”

“But Yogi, here is where you can use division. Suppose there were 6 grapes. You can
break 6 grapes into 3 groups of 2—3 divides 6—so you can eat 2 grapes for every apple and
everything will balance.”

“You are too abstract, Boo Boo. I see only 5 grapes.”
“That’s true, but even in this basket there are divisible numbers. Can you find them?”
Yogi stared at the food for a few minutes, while his stomach grumbled. Then his eyes lit

up, and he put 3 strawberries on each of the 2 sandwiches, then ate both the combinations.
“Very good, Yogi!” said Boo Boo. “Now, what about this basket? There are 3 peaches, 4

pears, 5 nectarines, 7 oranges, and 9 peanuts.”
Yogi’s brow started to sweat as the problems got bigger. Finally he paired up 3 peanuts with

every peach and ate his creations.
“This is getting hard, Boo Boo,” complained Yogi. “Is there some easy way to find divisible

numbers?”
Boo Boo got out some chalk and started writing on the cave wall. He noticed that the

baskets encountered so far always have the property that the size of the largest group is at least
two less than twice the number of groups. In other words, the group sizes form a subset of
{1, 2, . . . , 2n} of size at leastn + 1. Luckily, he observed, such sets always contain a divisible
pair of numbers. But can he develop fast algorithms to find such pairs? In Section 3 we present
several algorithms for this problem, depending on the model of how the numbers are specified.

2



Finding a Divisible Pair and a Good Wooden Fence

After Yogi had a balanced diet of the foods he could pair together, he and Boo Boo went
back to the campsite to return the rest of the food. To Yogi’s great surprise, they found a group
of angry campers talking to Ranger Smith. When Ranger saw them, he got angry too.

“Yogi, you have to stop stealing picnic baskets!”
“But Ranger,” Yogi pleaded, “I brought back what I didn’t eat.”
“It doesn’t matter, Yogi. This stealing must end. I’m putting up a fence around the whole

forest to keep bearsout.”
Yogi was devastated. He looked at Boo Boo worryingly. What were they to do? Suddenly

Boo Boo had an idea.
“Ranger,” Boo Boo asked, “where are you going to get the wood for your fence?” Ranger

paused for a minute.
“I guess I’ll get the wood by cutting down a few trees from the forest.”
“Ah ha,” said Boo Boo. “But you don’t want to cut down too many trees in our beautiful

Jellystone.”
“Of course not,” answered Ranger. “If I cut down trees along the perimeter, I’ll have a

smaller region to fence off.”
“Ah ha,” said Boo Boo. “But the trees in the middle of the forest are larger and offer more

wood. So wouldn’t it be more beneficial to cut them?”
“I certainly want to cut the minimum number of trees,” said Ranger. He scratched his chin

in thought. “There seems to be a trade-off between cutting fat trees and cutting trees that reduce
the perimeter. . . ”

Ranger is left with a challenging optimization problem, which we solve in Section 2 by a
polynomial-time algorithm.

2. How to Build a Wooden Fence

The problem Ranger Smith faces is the following. Considern trees at given coordi-
nates in the plane. Find a minimum set of trees to cut down such that the remaining
trees can be surrounded with a fence made out of the resulting wood. An important
parameter besidesn is the number of trees that need to be cut in the optimal solution;
call thisk. It is reasonable to assume thatk is in general much smaller thann. For
example,k = Θ(

√
n) if all trees contribute a unit of wood and the trees are roughly

uniformly spaced at roughly unit distances. Therefore, to help Ranger Smith finish his
plans in time, we strive to obtain bounds in terms ofk, rather thann.

We assume that each treei has a given parameterWi specifying the amount of
wood that can be obtained by cutting down this tree. This quantity should be properly
scaled, so that the condition of the problem is that the perimeter of the convex hull
surrounding the remaining trees must be at most the total wood amount of the trees
that have been cut down. The algorithm we has a running time ofO(n2k + nk5);
if k = Θ(

√
n), this translates into anO(n3.5) running time. In the special case
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when all trees contribute the same amount of wood, we can achieve a running time of
O(n2 + n · k4).

One might also consider the case when trees have different weights (for instance,
based on the botanical importance of the tree) and we want to cut down a set of mini-
mum weight. However, this problem is NP-hard by an easy reduction from SUBSET-
SUM [CLRS01]. Assume we want to find a subset of{a1, . . . , an} with minimum
sum greater than 1. Place three trees as the vertices of a triangle of perimeter 1; each
of the three trees has a very large weight. For everyai, place a tree somewhere inside
the triangle, with both the weight and the amount of wood equal toai. Then, a subset
of theai trees must be cut, with the sum of the wood at least1, but minimizing the sum
of the weights (which is equal to the amount of wood). Fortunately, the democratic
nature of Jellystone Park, where every tree is born equal, makes the weighted problem
irrelevant.

Our algorithm first preprocesses the trees into a data structure that supports the
following type of queries. Given three treesi, j, k, the data structure reports the num-
ber and total wood amount of the trees contained in each of the four angles determined
by the two linesi, j andi, k. (For simplicity, we assume that trees are in general po-
sition.) We show how to support this query inO(1) time usingO(n2) preprocessing
time and space. For every treei, we sort all other trees angularly aroundi. We store
the index of every treej 6= i in this order, as well as where the reflection ofj through
i would fit in the order. We also store the sum of the wood amountsWx over all trees
x that come beforej in the order. Using this data we can calculate the answers to
a query in constant time by subtracting two indices and two partial sums. This data
structure can be constructed inO(n2) time by dualizing points to lines and computing
the line arrangement.

In the remainder of this section, we give an algorithm with running timeO(n ·
K5

max), which either finds an optimal solution that involves cutting down at most
Kmax trees, or reports a failure. By calling this algorithm repeatedly until success,
doublingKmax each time, we obtain an algorithm for generalk whose running time
is O(n · k5) from a geometric series. For simplicity, we writek instead ofKmax in
the rest of the section.

For the initial and final portions of our algorithm, we require a tree on the convex
hull of the uncut trees in an optimal solution. The simplest way to find such a tree is
to try each of the lowestk +1 trees in terms ofy coordinate. These trees are precisely
the trees that can be the lowest tree of the convex hull, by cutting all trees with smaller
y coordinate. For the rest of the algorithm,L denotes the tree currently chosen as the
lowest tree of the convex hull.

Our algorithm is based on a dynamic program, guessing the convex hull of the
uncut trees one vertex at a time in counterclockwise order. Each subproblem considers
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guessing a subchain of the convex hull that starts at the lowest treeL and ends with
some edge. By the final subproblem, we consider subchains that return toL, forming
an entire convex polygon. All trees outside this convex polygon must be cut. If trees
contribute an equal amount of wood, there is an optimal solution that cuts no trees
from inside the convex hull: we can always cut trees on the hull instead, and only
reduce the perimeter of the new hull, maintaining the same amount of available wood.

If trees contribute a different amount of wood, an optimal solution may involve
cutting trees from inside the convex hull. In such a case, if a tree contributing wood in
the amountWj is cut, in an optimal solution all trees contributing amountsWi > Wj

are also cut. Indeed, we can always replace cutting a tree giving less wood with cutting
a tree giving more wood; the number of trees that are cut remains the same, the amount
of wood available increases, and the perimeter of the convex hull doesn’t increase
(because the initial tree was inside the hull). Thus, an optimal solution involves cutting
the c0 trees giving the most wood, for some0 ≤ c0 ≤ k, and then all trees outside
some optimal convex hull. To allow for this possibility, we will iterate over allc0, cut
the firstc0 trees in the order of the wood provided, and then run the entire algorithm
as described. This includes regenerating the data structure in the absence of thec0

trees. Tie breaking for trees providing the same amount of wood can be handled using
common perturbation techniques.

We now return to the dynamic program guessing the convex hull. This program
evolves in three dimensions[i, j, c]. The first two dimensionsi andj specify the last
segmenti, j of the guessed subchain. The third dimensionc is the number of trees that
we are forced to cut based on the subchain constructed so far. These trees are precisely
those to the right of at least one segment of the subchain. Each cell from the dynamic
program holds the maximum amount of wood that can be left after the construction of
a subchain satisfying the restriction[i, j, c]. The wood left after a construction is the
total wood obtained from thec cut trees, minus the perimeter of the subchain.

Using a greedy exchange argument, we show that subproblems are characterized
completely by the three coordinates. Assume we have two possible constructions for a
subchain of the hull starting at treeL, ending in the segmenti, j, and leavingc trees to
the right of some segment. Then, given a convex hull that contains one of the subchain
constructions, we can replace it with the other subchain construction. The result will
still be a convex hull: the subchainL, . . . , i, j is still convex, and so is the subchain
j, . . . , L. In addition, the tree followingj must be to the left of the edgei, j, so the
two convex subchains fit together to form a convex polygon. Also, the number of
trees cut down by both solutions is the same: any tree that is cut down is either below
L (which is fixed), to the right of the subchainL, . . . , i, j (there are exactlyc such
segments in both constructions), or to the right only of some segments fromj, . . . , L
(and this subchain has not changed). Given that we can interchange two constructions
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with the same description[i, j, c], we are interested only in the one leaving the most
possible wood after constructing the subchainL, . . . , i, j. Certainly, if we have a
solution involving a suboptimal subchainL, . . . , i, j, we can always exchange it for
the corresponding subchain of an optimal solution, and have more spare wood at the
end.

We initialize the dynamic program by filling in the cells[L, i, c], for everyi, where
c is the number of trees belowL or to the right of the edgeL, i. All other cells[L, i, c′]
are initialized with the value−∞. To solve the overall problem, we consider all
cells of the form[i, L, c], which corresponds to a completed convex hullL, . . . , i, L.
Among these cells, we choose the cell with smallestc such that the wood left after
the subchain’s construction is non-negative. At some intermediate points in the con-
struction, it is valid for the wood left to be negative, but this deficit must eventually be
covered by trees that are cut later.

It is conceivable that partial constructions of the convex hull might actually inter-
sect themselves: local convexity of each vertex does not imply global convexity in the
case of nonzero winding. To avoid this problem, we only consider cells[i, j, c] for
which L is to the left of the segmenti, j. For every possible pair{i, j}, exactly one
of i, j or j, i will be valid according to this condition. This condition also suggests a
good order in which the dynamic program should be filled out. The convex hull can
be broken into two parts, one part starting fromL and going monotonically upwards,
and the other part going monotonically downwards and returning toL. To compute
all interesting ways to build the first part, we consider all valid cells[i, j, c], wherej
is abovei, in increasing order ofj’s y coordinate. Any tree that could appear before
i must have ay coordinate less thani, and hence less thanj, so all data necessary to
compute[i, j, c] is available. After this upward scan, we perform a downward scan
to find all possible downward continuations of previously computed portions going
upward. In this scan, we consider all valid cells[i, j, c], wherei is abovej, sorted in
decreasing order ofj’s y coordinate. This ensures once more that all data to compute
a cell is available at the needed time.

The last detail regarding our algorithm is how exactly the value of cell[i, j, c] is
calculated. To do that, we consider all possible treesp that could immediately come
beforei in the convex hull. The anglep, i, j must turn to the left to ensure convexity.
In addition to the trees cut down by the subchainL, . . . , p, i, we also cut down trees
that are both left of the edgep, i and right of the edgei, j. These are the only new trees
that need to be cut for the longer subchainL, . . . , p, i, j. To determine the number and
weight of these trees, we use the data structure described in the beginning. Thus,
filling out the cell[i, j, c] involves iterating over all possible treesp, and performing
O(1) computations for each.

It remains to analyze the running time of our algorithm. We have anO(k) factor
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from the search forc0 — the number of trees giving the most amount of wood that are
cut initially. AnotherO(k) factor comes from the initial search forL. A first estimate
for the size of the dynamic table isO(n2k) becausei, j ∈ {1, . . . , n} andc ≤ k.
(We need not consider partial solution cutting down more thank trees, though they
may obviously exist.) However, this bound can be reduced toO(n · k2) by arguing
that there are at mostO(k) feasible choices ofi for everyj. Specifically, for every
tree j, we claim that there are at mostO(k) treesi such that the segmenti, j has
at mostk trees on at least one side. Clearly, if there are more thank trees on both
sides, we cannot include this segment on the convex hull, because we must cut all
trees on one of the two sides. Furthermore, we claim that theseO(k) trees can be
precomputed while building our data structure in the beginning, at no additional cost.
Thus, the dynamic program can consider only the choices fori in j’s precomputed list
of feasible neighbors.

To see theO(k) bound, consider some treesj andp. Let p be the reflection ofp
throughj. Consider sorting all trees exceptj angularly aroundj. Every treei that is
more thank positions in the sorted order away from bothp andp cannot be a feasible
neighbor forj, because then the segmenti, j has at leastk trees onp’s side and at least
k trees onp’s side. Thus there are at most4k feasible neighbors forj.

The last detail of the analysis is how long it takes to compute the value in each
cell. This computation involves iterating over all possible predecessorsp of i on the
convex hull. Again, there are at mostO(k) such treesp because the edgei, p must be
on the convex hull. Thus, the total running time isO(n ·k5) for the dynamic program,
plusO(n2k) for construction the data-structure (this needs to be done for everyc0).

FACT 1 An optimal wooden fence can be found in timeO(n2k + n · k5). If all trees
contribute an equal amount of wood, the running time isO(n2 + n · k4).

3. Finding a Divisible Pair

The task Yogi and Boo Boo face is to find a pair of divisible numbers in an(n + 1)-
subset of{1, . . . , 2n}. The existence of such a pair is a well-known fact belonging to
the mathematical folklore. We include below the proof which is usually given, because
it forms the basis of a (suboptimal) algorithm. The quantities arising from our analysis
will often be of the formc1

c2
n + O(1). The additive constants are usually small – most

of them are at most2. We do not bother to specify these constants exactly, since
they generally depend onn mod c2. For the proofs, we generally assume thatn is a
multiple of c2. In all cases, it is straightforward, but somewhat tedious, to show that
the bound for other values ofn differs by only an additive constant.
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A natural formalization of this problem is in an oracle model: the(n+1)-subset is
not known to the algorithm, and is only accessible through membership queries asked
to the oracle. The main results of this section will be a lower bound of4

3n − O(1)
on the number of queries necessary in the worst case, and an almost matching upper
bound of

(
4
3 + 1

24

)
n + O(1). We believe the upper bound can be improved to match

the lower bound, though we were unable to do that.
As computer scientists, we cannot help digressing to another interesting model of

computation: the word RAM [FW93], with memory cells containingΘ(lg n) bits. In
this case, a natural assumption is that the input is directly accessible to the algorithm,
in the form of a bit vectorA[1 . . 2n], holding the membership information. In this
context, the optimal complexity turns out to beΘ(n/ lg n), i.e. linear in the input size.
The algorithm uses onlyAC0 operations, and avoids the multiplication operation,
which is not supported efficiently in Yogi’s neuronal CPU.

3.1.Warming up

In this section, we give a proof of the existence of a divisible pair, and turn this proof
into an asymptotically optimal algorithm for the RAM. The next section will discuss
some consequences of this result in the oracle model.

FACT 2 For any S ⊂ {1, . . . , 2n}, |S| = n + 1, there exista, b ∈ S such thata
dividesb.

Proof: For every odd numberq ∈ {1, 3, 5, . . . , 2n − 1}, let Bq = {q · 2i | 0 ≤
i ≤ log2bn/qc} – that is, a bin with all power-of-two multiples ofq. Since every
number is in the bin generated by its largest odd divisor, we haveBq ∩ Br = ∅ and⋃

Bq = {1, . . . , 2n}. There are exactlyn such bins, so at least one bin must contain
two elementsa, b ∈ S. By construction of the bins,a andb are a divisible pair.

This proof is quite strong: it not only tells us that a divisible pair exists, but that
one exists in which one number is a power-of-two multiple of the other! This has a
few important and simple consequences, like very efficient parallel algorithms or a
data structure with constant update time for the dynamic problem. For our purposes,
it suffices to note that it immediately gives a linear time algorithm. The algorithm
simply tests membership of alli = 1 . . n in increasing order, and for eachi ∈ S, tests
membership of all multiples of the form2ji. The only interesting detail in analyzing
the running time is noting that every number is examined at most once as a power-of-
two multiple during the entire execution. Assume for contradiction thatt is examined
twice. Then two valuesx andy (x < y) exist such thatx, y ∈ S andt = x·2a = y ·2b.
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But theny = x · 2a−b, and wheni = x, j = a− b, the procedure must have stopped
and returned the pair(x, y).

Now we improve the running time of this algorithm toO(n/ lg n) using the word-
level parallelism of the RAM. The difficulty with the previous algorithm is that it
does not exhibit locality in its bit accesses, which is necessary to make efficient use
of the ability to readO(lg n) bits in parallel. Fortunately, a simple reformulation of
the search strategy solves the problem. For eachp in the set, we simply examine2p.
If it is in the set, we are done; otherwise, we artificially add2p to the set, so that its
multiples (which are also multiples ofp) will be considered later. Of course, when we
find a pair(p, 2p), we cannot be sure thatp was originally in the input set. However,
a number of the formp/2i must have been in the original set, and such a number can
be found efficiently.

To improve this algorithm, we assume the set is given as a bit vectorB[1 . . n] in
packed form, with at leastlg n bits per word. It is well known that we can read or write
any block of up tolg n bits usingO(1) operations. This requires accessing at most
two adjacent words of memory (because the bits may be split between two consecu-
tive words), and extracting the relevant information using shifting and masking. Our
strategy will be to execute(lg n)/2 iterations of our main loop in parallel. We begin
by reading the(lg n)/2 bits corresponding to a range of values inB. We then space
out these bits, by inserting a zero between every two bits. This is needed because
consecutive bits become spaced when we examineB[2 · i]. We can support this op-
eration by lookup into a table of size2(lg n)/2 = O(

√
n) words. Having this suitable

representation, we can test whetherB[2 · i] is set in parallel, for alli’s in the range,
using a bitwise and. Similarly, artificially adding2 · i to the set can be simulated with
a bitwise or. Thus,O(lg n) iterations of the main loop can be simulated withO(1) op-
erations, unless a divisible pair is found. When this happens, we examine allO(lg n)
bits individually and determine which one triggered a stop. The final portion of the
execution needs not be optimized, since it only takesO(lg n) time.

A final word about the RAM model: this algorithm is asymptotically optimal,
since any algorithm must read a constant fraction of the input. To see that, consider
the input{x, n + 1, . . . , 2n}, wherex is chosen randomly from{1, . . . , n}. Since
x is part of any divisible pair, an algorithm must probe the cell containingA[x] to
learn the value ofx. Sincex is chosen uniformly at random, the correct cell is ran-
domly distributed amongn/Θ(lg n) cells. So any deterministic algorithm must make
Ω(n/ lg n) probes on average; by duality the the same bound holds for randomized
algorithms.

FACT 3 The complexity of finding a divisible pair on the RAM isΘ(n/ lg n).

9



FUN with Algorithms

3.2.A First Take at the Oracle Model

We now lay the ground for the following sections by considering the oracle model.
Here, we are not satisfied with an asymptotic analysis, which easily reveals aΘ(n)
complexity, but aim for a more precise understanding of the number of queries needed
in the worst case. A more careful analysis of our first algorithm reveals that it makes
3n/2 + O(1) queries in the worst case, if we cache the oracle answers and never
ask the same question twice. This is because odd numbers greater thann are never
considered. Indeed, these numbers have no multiple below2n, so they cannot be part
of a pair where the two numbers differ by a power of two factor. Since the algorithm
always finds such a pair, it has to stop before reaching an odd number greater thann.

In fact, the3n/2 query complexity is not particular to this implementation of the
ideas from the proof of fact 2. The hint given by this proof is deceiving: any algorithm
that always finds a pair of the form(s, 2is) must perform at least3n/2−O(1) queries
in the worst case. To see that, consider again the binsBs from the proof of fact 2. The
algorithm must identify two elements in the input subset that are in the same binBs.
Now consider an adversary with the following strategy: the first element probed from
each bin is declared to bein the set, and any subsequent elements from the same bin
are declared to beout. If the adversary has already declaredn− 1 elements to be out,
it is forced to answer any remaining queries in the affirmative.

To prove the effectiveness of this adversary, we begin by noting that it never gen-
erates a pair(s, 2is) in the set, except when forced to do so because it has already
declaredn−1 numbers to be out of the set. So the algorithm must maken−1 queries
which receive a negative answer to fix the divisible pair. In addition, note that a nega-
tive answer is never generated the first time a bin is touched. To accommodaten − 1
negative answers, all but one of the bins generated byq ∈ {1, 3, . . . , n − 1} must be
touched. So, the algorithm must also maken/2−1 queries receiving positive answers
before the pair is fixed.

3.3.A Good Lower Bound

In this section, we prove a lower bound of4n/3 − O(1) on the number of queries
necessary in the worst case. The adversary from the previous section fails in the gen-
eral case, because it has no control over the divisibility relations except for numbers
differing by a power-of-two factor, and could easily introduce a divisible pair at any
step. The adversary from this section applies a similar bucketing technique, but only
for pairs (x, 2x) with x ∈ {2n/3 + 1, . . . , n}. Since numbers between2n/3 + 1
andn have just one multiple, the adversary can more easily control the effects of its
decisions.
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The strategy of the adversary is simple. The first query to every pair(x, 2x), with
x ∈ {2n/3 + 1, . . . , n}, receives a positive answer. As long as the adversary has a
choice, i.e. it has not already declaredn − 1 numbers to be out of the set, the second
query made to a pair receives a negative answer. Numbers greater thann which are
not part of such a pair are always included in the set, so an algorithm which knows the
adversary need not ask about these. Number below2n/3 arein principlenot included
in the set. However, the very last one probed might be included in the set, if the
adversary has already declaredn− 1 values to be out of the set.

As before, the lower bound comes from analyzing the number of queries needed
to fix the divisible pair. Once the pair is fixed, an optimal algorithm need not actually
query the two numbers in the pair. First note that our adversary never generates a
divisible pair unless it has already declaredn−1 numbers to be out of the set. Indeed,
before this inevitable moment, no number smaller than2n/3 is included in the set (so
numbers aboven which are always included have no divisors in the set), and only one
number from each special pair is declared to be in.

Therefore, a divisible pair is not fixed, unlessn − 1 queries have already re-
ceived a negative answer. However, at most2n/3 of these can come from positions
1, . . . , 2n/3. Therefore, at leastn/3 − 1 must come from one of the special pairs.
Now remember that the first query touching a special pair always receives a positive
answer. So in addition to then − 1 negative answers, the adversary must also have
givenn/3− 1 positive answers.

FACT 4 Finding a divisible pair requires at least43n−O(1) queries in the worst case.

3.4.A Good Upper Bound

As shown in section 3.2, we can only hope to beat the3n/2 barrier by abandoning
the strategy of searching only for power-of-two multiples. However, it might seem
that a strategy that probes all multiples of an element can do even worse than3n/2,
since it foregoes even the basic guarantee of not touching odd numbers greater thann.
Surprisingly, a naive algorithm which probes alli’s in increasing order, and for everyi
in the set probes all its multiples, has relatively good performance. We can prove that
this algorithm does at most

(
4
3 + 1

12

)
n + O(1) queries, and we can exhibit a family

of inputs on which this bound is tight. All the ideas necessary to prove this will also
appear in the proofs of this section.

In this section, we analyze a simple improvement to this strategy. The algorithm
considers all numbersi in increasing order. Usually,i is probed, and if it is in the
set, its multiples are also probed. However, ifi > 3n/2 and its single multiple2i has
previously been probed and received a negative answer, there is no point in queryingi.

11
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We will show that the performance of this improved algorithm is
(

4
3 + 1

24

)
n + O(1),

which almost matches our lower bound.
For the purpose of the analysis, we break the execution of this algorithm into two

stages. The first stage lasts as long asi ≤ 2n/3. We begin with the case when the
algorithm finishes during the first stage, i.e. withi ≤ 2n/3. In this case, we show the
algorithm does at most4n/3 + O(1) queries. The algorithm can ask at mostn − 1
queries which receive a negative answer, so we must prove that at mostn/3 + O(1)
queries can receive a positive answer. At most one query for a number greater than
2n/3 can receive a positive answer, because such a number is only probed when one
of its divisors is in the set, so we stop after the first positive answer. On the other hand,
at mostn/3 + 1 queries from the range{1, . . . , 2n/3} can receive a positive answer.
Indeed, by fact 2 a(n/3 + 1)-subset of{1, . . . , 2n/3} contains a divisible pair, so if
we have receivedn/3 + 1 positive answers, we have also found a divisible pair.

Now assume that the algorithm finishes only in the second stage. In this case, all
numbers between1 and2n/3 are probed. LetT be the set of such numbers which
received a positive answer, and letN be the set of probed numbers which received
a negative answer during the first stage. Given this, exactlyn − 1 − |N | numbers
are outside the set and not yet discovered. For everyi > 2n/3, we only probei
if 2i has not been probed already. Thus, eitheri and2i are both in the set and the
algorithm stops, or we discover one new number that is outside the set (and possibly
also one that is in the set). Thus, the number of queries done in the second stage is
at most2 + 2(n − 1 − |N |) = 2n − 2|N |. The total number of queries must then
be at most|T | + |N | + 2n − 2|N | = 2n − (|N | − |T |). We will show below that
|N | ≥

(
2
3 −

1
24

)
n + |T |, which immediately implies our desired bound.

To prove our bound on|N |, first note thatN contains exactly2n/3−|T | numbers
from {1, . . . , 2n/3}. Let M = N ∩ {2n/3 + 1, . . . , 2n}. Our bound is equivalent
to |M | ≥ 2|T | − n

24 . First note thatM contains all multiples greater than2n/3 of
numbers fromT , and in particular all power-of-two multiples. There are2 power-
of-two multiples for every number inT ∩ {1, . . . , n/2} and one for the rest ofT .
However, for every number inT betweenn/2 + 1 and2n/3, M must also contain
its triple. Thus, we have identified two multiples belonging toM for every number
from T . No two numbers fromT can have a power-of-two multiple in common,
since they would be divisible, and the algorithm would stop during the first stage.
Thus, the only double counting can come from triples, namely when3x = 2iy with
somey ∈ T, x ∈ T ∩ {n/2 + 1, . . . , 2n/3}. Clearly,3x ∈ {3n/2 + 3, . . . , 2n}, so
2i−1y ∈ {3n/4 + 1, . . . , n}. In addition,2iy must be a multiple of three, so2i−1y
must also be a multiple of three. Finally,2i−1y must be even, becausey ≤ 2n/3, so
i ≥ 2. Thus,2i−1y must be a multiple of6 in the range{3n/4+1, . . . , n}. Since there
are onlyn/24 such possibilities, and each one defines at most one double-counted

12



Finding a Divisible Pair and a Good Wooden Fence

multiple, we obtain|M | ≥ 2|T | − n/24, which completes our proof.

FACT 5 In the worst case,
(

4
3 + 1

24

)
n+O(1) queries are sufficient to find a divisible

pair.

4. Conclusions

The first problem we considered is an interesting and unexpected variation of the clas-
sic convex hull problem. What is maybe surprising at first glance is that a polynomial-
time solution exists. A similar approach proves effective for several natural problems,
such as fitting a maximum number of points in a polygon of given area or perimeter.
We believe such problems have potential applications to statistical geometry.

The second problem is an unusual algorithmic challenge associated with a number-
theoretic problem. This contrasts with most work from algorithmic number the-
ory by being a game and an online problem. This allows us to use algorithmic
and complexity-theoretic approaches, and obtain both upper and lower bounds. This
should be compared with the current state of facts in algorithmic number theory, where
known techniques are too weak to give any interesting lower bound. However, our
work is also quite far from vanilla algorithmic and complexity theory. Normally, work
in these areas deals with complicated problems over simple structures (popular exam-
ples are matrices and graphs). Our problem is interesting because it applies similar
ideas to a rather intricate structure, which cannot be characterized as easily, nor un-
derstood as fully: the natural numbers, including the divisibility relations that can
arise.

In conjunction, the problems we considered have considerable practical impact to
the lives of Yogi Bear and Ranger Smith. As such, we expect that our results will also
have an impact on the lives of millions of children of all ages, who are fans of these
characters.

5. Postscriptum: A Third Problem

After the last two rather different problems, the reader should not be surprised that we
end our paper with a third problem of an entirely different nature. Nim is probably the
best known example of a combinatorial game, whose strategy is simple to understand,
yet interesting and nontrivial. The game involvesn piles of objects, having sizes
a1, . . . , an. A move consists of removing an arbitrary number of objects from a single
pile. The player who removes the last remaining objects wins. It is known that the
current player has a winning strategy if and only if the exclusive or ofa1 throughan

is nonzero; we write this as
⊕

ai 6= 0. If that is true, the player should make a move
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which makes
⊕

ai = 0. At least one such move exists. Ifm is the index of the most
significant set bit in

⊕
ai, then at least oneak must have them-th bit set. Then, by

leavingak ⊕ (
⊕

ai) objects in pilek, we achieve the desired effect. Also note that
this is a valid move, since the most significant change is clearing them-th bit, soak

decreases.
Our question is how fast a winning strategy can be implemented. This goes beyond

the traditional polynomial vs. hard distinction, and asks for the optimal time in which
a player can respond to any move made by the opponent throughout the game, while
still making sure he is winning. This very appealing, yet unconventional question has
an obvious data-structural flavor. Since the last time the player pondered on a move,
the configuration was only changed by one move made by the opponent. Thus, by
maintaining a suitable data structure representing the configuration, it is reasonable to
hope that a good move can be found efficiently (say, inO(lg n) time). Also note that
if multiple winning moves exist, as is usually the case, the player may choose any of
them in order to minimize his present and future response times.

For Nim, a classic idea proves effective. We will maintain a balanced binary tree
with n leaves, where leafi holds the number of objects in pilei. Each internal node
holds the xor of its two children. When the opponent makes a move, we simply change
the value in the corresponding leaf, and recalculate the values on the path to the root.
If the xor of all ai’s (stored at the root) is nonzero, we have a winning strategy. To
find a suitable move, we first determine the indexm of the most significant set bit in⊕

ai; this can be done in constant time [FW93]. Exactly one child of the root must
have them-th bit set. The search continues down the tree until we find a leaf with the
m-th bit set, which is the pile we want to change.

Thus, a winning strategy for Nim can be implemented with anO(lg n) response
time for generating every move. While obtaining sublogarithmic bounds seems a real-
istic possibility, we do not know how to achieve that, nor can we prove any nontrivial
lower bounds in a general model of computation, such as the cell-probe model. We
consider this a very interesting problem for future research.
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