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ABSTRACT
We study permutation betting markets, introduced by Chen,
Fortnow, Nikolova, and Pennock [3]. For these markets, we
consider subset bettings in which each trader can bet on a
subset of candidates ending up in a subset of positions. We
consider the revenue maximization problem for the auction-
eer in two main frameworks: the risk-free revenue maximiza-
tion (studied in [3]), and the probabilistic revenue maximiza-
tion. We also explore the use of some certain knowledge or
extra information about the possible outcomes of the mar-
ket. We first show that finding the optimal revenue in the
risk-free model for the subset betting problem is inapprox-
imable. This resolves an open question posed by Chen et
al. [3]. In order to identify solvable variants of the prob-
lem, we propose the singleton betting language which allows
traders to bet an arbitrary value on one candidate for one
position. For singleton bettings, we first provide a linear-
time implementable necessary and sufficient condition for
existence of a solution with positive revenue for any possible
outcome. Furthermore, we develop an LP-based polynomial-
time algorithm to find the optimum solution of this problem.
In addition, we show how to extend this LP-based method to
handle some extra information about the possible outcomes.
Finally, we consider the revenue maximization problem in a
probabilistic setting. For this variant, we observe that the
problem of maximizing the expected revenue is polynomial-
time solvable, but we show that maximizing the probability
of achieving a pre-specified revenue is #P -Complete.
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1. INTRODUCTION
Aggregating users’ prediction of the outcome of a market

has been proved very useful in predicting the future. An
effective way of extracting users’ prediction of the market
is observing users’ investment on securities. Investment on
financial securities such as investment in stock markets is one
of the examples of such phenomena. These investments are
analogous to betting in a financial security. Recently, betting
markets have been investigated as a tool to effectively collect
the wisdom of the crowd in the market. It has been observed
that predictions based on such betting markets are more
accurate than other forecasts based on other alternatives
such as voting [19, 20, 1, 6, 17]. The key reason behind
such increase in accuracy is that betting markets incentivize
traders to investigate various aspects of the future events,
and make precise decisions.

A central problem in betting markets is the problem of
matching traders’ bets without incurring risk to the auction-
eer. The goal in this problem is to find a set of bets such
that for any outcome, there is a surplus in the investment of
the traders. This problem can be formalized as the revenue
maximization problem for the auctioneer in the risk-free set-
ting. Moreover, matching traders’ orders as described above
helps in understanding their use in prediction markets. A set
of bets that incurs a risk-free positive revenue for the auc-
tioneer indicates cyclic structures or contradictory bets in
these markets. On the other hand, non-existence of such set
of bets that guarantee a positive revenue for the auctioneer



may indicate that the users have similar opinions about the
outcome of the market, thus it may result in more accurate
prediction of the outcome. This analogy shows a relation be-
tween the revenue maximization problem for the auctioneer
and the quality of the market prediction based on a set of
bets. Therefore, the revenue maximization problem in these
settings could have applications in evaluating the accuracy
of the such predictions.

In this paper, we study the revenue maximization prob-
lem in special betting markets known as permutation mar-
kets, first studied by Chen et. al [3]. In these markets, the
outcome is a permutation of a set of candidates V . Traders
invest or bet on various securities. The auctioneer collects
these bets and either accepts or rejects them. The goal of
the auctioneer is to find a subset of bets that incurs a pos-
itive surplus, or to find a subset of bets that maximizes his
positive surplus, a.k.a. the revenue.

1.1 Our Contribution
We study the following two main frameworks in the con-

text of permutation betting markets:

1. The risk-free setting: This framework is defined
based on the framework of Chen et.al [3], and the idea
of robust optimization under uncertainty [5, 15, 8].

2. The probabilistic setting: This framework is defined
based on the idea of stochastic multi-stage optimiza-
tion [13, 10, 23].

In the risk-free setting, the goal is to find a subset of
traders’ bets that guarantees a maximum revenue for the
auctioneer in any outcome. This follows the exact setting
studied by Chen et. al [3]. This framework is similar to the
robust optimization in which the goal is to find a strategy
that tends to maximize the objective function in the worst
scenario [5, 15, 1, 8]. We study the subset betting language
in which a trader with a bet i ∈ I pays $bi and bets on
one of the two following types of scenarios: (1) one of the
candidates ends up in a subset of positions T , or (2) one of
the positions is occupied by a subset of candidates S. If the
trader’s bet is accepted, and the prediction is true, he gets
$1, and nothing if the prediction is false. Assuming that
the surplus money of the traders go to the auctioneer, the
revenue maximization problem for the auctioneer is to find
a subset of bets that maximizes the revenue of the auction-
eer in the worst possible outcome. This problem for subset
betting has been posed as a question by Chen et. al [3]. We
answer this question by proving that the revenue maximiza-
tion problem is inapproximable within any factor. Next,
we identify a special case of the problem, called singleton
betting, that can be solved in polynomial time. In the sin-
gleton betting, each trader can bet $bi on the security that
a candidate ends up in a position. We first give a necessary
and sufficient condition for the existence of a solution with
a positive profit in any possible outcome. Furthermore, we
present a polynomial-time algorithm for finding the optimal
solution of this problem. We first characterize an LP whose
optimal integer solution is equal to our optimal solution in
the betting problem. Then, we prove that we can change
any optimal fractional solution of our LP to an integer so-
lution with the same objective function in polynomial time.
Finally, we consider the revenue maximization problem in
settings where the auctioneer has some extra information

about the set of possible outcomes of the market. We show
how to use this extra information to find the optimal solution
to maximize revenue. It is important to study this exten-
sion, since in realistic settings, the auctioneer may have some
prior knowledge about the possible outcomes, and he/she
should be able to use this information to find a better set of
bets to accept. This observation is crucial in some realistic
scenarios as it can increase the revenue of the auctioneer by
a large amount.

In the probabilistic setting, we assume that the auctioneer
has a probability distribution over the possible outcomes. In
this case, instead of finding a subset of bets that guarantees
some revenue, the auctioneer can try to guarantee a revenue
of x with high probability. This means that we are will-
ing to take some risk and choose a set of bets that brings
us revenue with high probability. This setting follows the
idea of stochastic optimization [13, 10, 23] in which we have
a probability distribution over the possible scenarios, and
need to find strategies that optimize in expectation, or with
high probability. There are two types of objective functions
in these settings. In the first type, the goal is to find a subset
of bets that maximizes the expected revenue, given a proba-
bility distribution over the possible outcomes. In the second
case, the goal is to maximize the probability of achieving at
a revenue of at least x (for a given parameter x). We first
observe that the problem of maximizing the expected rev-
enue in this model can be solved easily in polynomial time.
However, we will show that maximizing the probability of
achieving a pre-specified revenue x is #P -Complete.

1.2 Related Work
Permutation markets have been introduced by Chen, Fort-

now, Nikolova, and Pennock [3]. They study two betting
languages for this problem: the pair betting and the subset
betting language. In a pair betting language, a trader with
bet i ∈ I pays $bi on pairs (a, b) of candidates. If candidate
a ends up before candidate b in the outcome, the trader
gets 1, and otherwise he gets nothing. The authors consider
two types of problems: divisible, and indivisible. In indi-
visible problems, the auctioneer can accept or reject each
bet. In divisible problems, the auctioneer can accept the
bet to an extent yi where yi is a real number between 0 to
1. In the divisible setting, the authors show that the prob-
lem of maximizing revenue is polynomial-time solvable for
subset betting, and is NP -complete for pair betting. They
also consider the indivisible betting problem, and pose the
approximability of the subset betting problem as an open
question. After we wrote the first draft of this writeup,
it was brought to our attention that Conitzer independently
found an inapproximability result for this problem [4]. How-
ever, his proof is different from ours, and will appear in the
journal version of the the paper by Chen et. al [3].

Prior to permutation markets, boolean-style markets have
been studied by Fortnow et. al [6]. In these markets, a
possible outcome of the market is one of the 2n possible 0-1
assignments to a set of n variables. Each trader is allowed
to bet on an arbitrary subset of these variables. Traders
describe their bets in boolean formulas. The authors show
that the matching problem in this setting is co-NP-Complete
for the divisible variant and

∑P

2 -Complete for the indivisible
variant.

Another related work to betting markets is the market
scoring rule mechanism defined in [11]. In this setting, a



joint probability distribution across all outcomes is given,
and traders bet on a combinatorial number of outcomes.
One main difference between this setting and the frame-
work considered in this paper is that the traders arrive se-
quentially, and the market maker pays to the last trader. In
this setting, he may incur some loss. This is similar to our
probabilistic setting in which the auctioneer may also incur
loss with some probability. However, in the risk-free setting,
when the trader accepts some bets, he/she does not bear
any risk.

The risk-free setting considered in this paper is related to
robust combinatorial optimization [15, 5, 8] in which given
a set of possible scenarios that can happen in the future, the
goal is to find a strategy that optimizes the objective func-
tion in the worst scenario. A challenging and interesting
aspect of permutation betting markets is that the number
of possible outcomes is n! which is exponential in the size of
the input. This is similar to the robust optimization frame-
work with exponential number of scenarios. It has been
proved that such robust optimization problems with expo-
nential number of scenarios are harder to approximate [8].
The probabilistic setting considered in this paper is simi-
lar to stochastic optimization [13, 10, 23] in which given a
probability distribution over the possible scenarios that can
happen in future, the goal is to find a strategy that optimizes
the expected objective function. However, the literatures on
both robust and stochastic optimization consider combinato-
rial optimization problems like network design and covering
problems, and not the permutation problems considered in
this paper.

The problem of allocating items to bidders in combinato-
rial auctions to maximize the auctioneer’s revenue is consid-
ered in [2, 16, 14, 21, 7]. However, in contrast to our settings,
the risk and uncertainty concepts are not considered in most
of these works.

1.3 Organization
This paper is organized as follows. First, in Section 2, we

formally define permutation markets and the subset betting
problem. In Section 3, we define the subset betting prob-
lem, and prove its inapproximability. In Section 4, we first
formally define the singleton betting problem, and give an
algorithm to verify if there exists a subset of bets with posi-
tive revenue. Then, we provide a linear programming-based
polynomial-time algorithm to maximize the revenue for the
singleton betting problem. At the end of Section 4, we show
how to solve the revenue maximization problem in the pres-
ence of some extra information about the possible outcomes
of market. Finally, in Section 5, we define the probabilistic
setting and present a positive remark and a negative result
for this setting.

2. PRELIMINARIES
In this section, we formally define permutation betting

markets and the subset betting problem.
Permutation betting markets. Permutation betting mar-
kets are markets in which the set of possible outcomes of the
market is the set of all possible permutations of n candidates.
For example, the candidates can be horses in a race, and the
outcome is the ranking of horses in an increasing order. In
such markets, traders can bet on various types of securities
for a future event. The result of the future event determines
the outcome of the market. For example, the event could be

a horse competition. In permutation markets, each security
is a property of the ranking outcome. The security is not
known before the event, and its truth will be revealed after
the future event. For example, a security is “horse A ends
up in position 3”. The auctioneer receives a set of bets on
various types of securities, and can accept or reject each bet.
Each bet i consists of a bet value b and a security φ. b is
the amount of money the trader is willing to pay if his/her
bet is accepted. If the bet is accepted by the auctioneer, the
trader pays $b before the event, and after the event, if the
security φ happens, e.g., if horse A ends up in position 3,
then, the trader gets $1. The revenue of the auctioneer is
defined as follows. If the auctioneer accepts a bet of value b
on a security φ, if φ happens, the auctioneer’s revenue from
this bet is b− 1, and if φ does not happen, the revenue from
this bet is b. The (total) revenue of the auctioneer is the sum
of his/her revenue from all accepted bets. In the risk-free
setting, the goal of the auctioneer is to find a subset of bets
that guarantees a positive revenue for him/her in any pos-
sible outcome. For example, if one trader bets on the event
“horse A ends up in position 2” for $0.7 (i.e., the trader pays
$0.7 ahead of time and gets $1 if the event happens), and
another trader bets on the event “horse B ends up in posi-
tion 2”with $0.7, then the set of all two bets is a risk-free set
of bets for the auctioneer, since by accepting the two bets,
in any possible outcome, the auctioneer has to pay $1 to at
most one trader, and thus the revenue of the auctioneer is
2× 0.7− 1 = 0.4. Our goal is to find a subset of bets for the
auctioneer to accept in order to maximize the revenue.
Subset Betting. A subset betting permutation market
allows two types of bets. Traders can either bet on a subset
of positions a candidate may end up with, or they can bet on
a subset of candidates that will occupy a particular position.
In an instance of the subset betting problem, we are given
a set of bets, I . A bet i ∈ I of the first type is a triple
(bi, xi, Yi) where bi is the amount of money that the trader
is willing to pay, xi is the candidate he is bidding on, and
Yi is a subset of positions. The trader gets $0 if candidate
xi does not end up in a position in set Yi, and gets $1 when
candidate xi stands at one of the positions in set Yi. A bet
j ∈ I of the second type is a triple (bj , Xj , yj) where bj is
the amount of money that the trader is willing to pay, Xj is
the set of candidates he is bidding on, and yj is a position.
The trader gets $0 if none of the candidates in Xj ends up
in position yj , and gets $1 if one of the candidates in set Xj

stands at position yj .

3. HARDNESS OF SUBSET BETTING
In this section, we show that it is NP -hard to approximate

the optimal revenue for subset bettings within any factor.
We say that an algorithm for the revenue maximization

problem is a c-approximation, if for any input market with
optimal revenue x, this algorithm runs in polynomial time
and returns a solution with revenue not less than cx. We
prove that the problem of maximizing revenue in subset bet-
tings is not approximable within any multiplicative factor c
even in the special case that all bets are of second type, and
yj is also equal to 1 for all bets. We do so by proving that
in some instances of the problem, we can not even decide
whether or not the optimal answer has positive profit for
the auctioneer in every possible outcome. This fact implies
that this problem can not be approximated. To see this, as-
sume that the problem admits a c-approximation algorithm.



Therefore, using this algorithm, we can verify whether x is
zero or a positive number. It remains to prove that verifying
whether or not the revenue is positive is NP -hard.

Definition 1. In the big independent set problem, we are
given a graph G, with n vertices, with no isolated vertex (a
vertex of degree zero), and a number k > n/2. The goal is to
output ‘Yes’ when the graph has an independent set of size
k, and ‘No’ otherwise.

Lemma 2. The big independent set problem is NP-Complete.

Proof. We prove the lemma using the NP-Completeness
of the independent set problem. In the independent set
problem, given a graph G and an arbitrary input k, the goal
is to find an independent set of size k in G. Without loss of
generality, we assume that G has no isolated vertex. Now,
we give a reduction from the independent set problem to the
big independent set problem. Let the number of vertices and
edges in G be n and e, respectively. Let x be the size of the
biggest independent set in G. We add n patterns of P3 (a
path with 3 vertices) to G. This new graph has n+3n = 4n
vertices and e + 2n edges. Obviously, the size of the biggest
independent set in this new graph is 2n +x which is greater
than 4n/2. So the problem of finding the size of the biggest
independent set in this new graph reduces to the big inde-
pendent set problem. Thus, if there is a polynomial-time
algorithm which solves the big independent set problem, we
can find 2n+x using this algorithm, and consequently x can
be found. As a result, the big independent set problem is
NP -Complete.

Now, we can prove the main theorem of this section.

Theorem 3. For any c > 0, there is no c-approximation
algorithm for subset betting problem with indivisible bets.

Proof. Let (G, k) be an instance of the big independent
set problem. We construct an instance of the subset betting
problem as follows. For each edge between vertices u and
v of G, we consider a candidate cu,v in our instance. Note
that cu,v = cv,u. Let ε be a positive number which satisfies
inequalities (k− 1)ε < 1 < kε and nε < 2. According to the
fact that k > n/2, we know that such an ε exists. Now, for
each vertex v in G, we insert a trader in our instance of the
subset betting problem. This trader’s bet is a triple of form
(ε, Xv, 1) where Xv = {cv,u|(v, u) ∈ E(G)}.

Now, we show that in order to have an output with a pos-
itive profit for any possible outcome, the auctioneer should
not accept bets of two traders u and v which are adjacent in
graph G. If the auctioneer accepts the bet of both traders u
and v, if a candidate cu,v stands at the first position (which
is a possible outcome), he/she should pay $1 to each of these
two traders. Thus, in this case, he/she should pay $2, but
all the money that is given to the auctioneer is at most n×ε
which is less than 2. Note that there are n traders, and each
of them pays the auctioneer ε. This implies that if the auc-
tioneer accepts the bets of two incident traders, there is a
possible outcome in which his/her revenue is negative. This
fact shows that the auctioneer should not accept bets of two
adjacent traders u and v. Therefore, the traders whose bets
are accepted should form an independent set in G. There
are possible outcomes in which we should pay one dollar.
So, in order to have a positive revenue, we should accept at
least 1/ε number of bets. In other words, we should accept

at least k = 1
ε

bets which form an independent set of size at
least k in G. Therefore, this instance of the subset betting
problem has a solution in which the auctioneer’s revenue is
always positive, the graph has an independent set of size k,
and vice versa. Using the previous lemma, we know that
this problem is NP -Complete. This fact proves that ver-
ifying if the revenue is positive or not cannot be done in
polynomial time unless P=NP . Therefore, for any c > 0,
there is no c-approximation algorithm for the subset betting
problem.

4. THE SINGLETON BETTING PROBLEM
In this section, we first formally define the singleton bet-

ting problem, and then give a linear-time algorithm for ver-
ifying if the auctioneer’s revenue is positive. Next, we show
that the problem of maximizing revenue for singleton bet-
ting can be solved via a linear programming formulation.
Finally, we show that this polynomial-time algorithm can
be used to solve the same revenue maximization problem in
the presence of some extra information about the outcome
of the market.

4.1 Definitions and Notations
The singleton betting problem. The singleton betting
market problem is a special case of the subset betting prob-
lem in which players can bet on a singleton set of candidates
for a single position. More formally, a singleton betting mar-
ket allows traders to bet on a (single) position that a (single)
candidate may end up with. Consider a set of candidates in
a permutation market in which all n! permutations are pos-
sible outcomes, where n is the number of candidates. In an
instance of the singleton betting problem, we are given a set
I of bets that are submitted to the auctioneer by a set of
traders. Each bet i ∈ I is a triple (bi, xi, yi), where xi is a
candidate, yi is a position, and bi is the amount which the
trader i is willing to pay for a unit share. Similar to the
subset betting problem, if bet i is accepted, trader i pays bi

before the outcome is revealed, and if candidate xi stands at
position yi in the outcome, trader i wins $1 and wins $0 oth-
erwise. Given a set I of bets, the auctioneer can accept or
reject each of the bets. The goal of the auctioneer is to find
a subset of bets that maximizes its revenue. To achieve this
goal, we consider the following two problems: the existence
problem, and the revenue maximization problem. In the ex-
istence problem, the auctioneer’s goal is to find a subset of
bets, called a risk-free subset, such that by accepting this
subset, the auctioneer has a positive profit in any possible
outcome. In the revenue maximization problem, the auc-
tioneer’s goal is to find a subset of bets such that accepting
it, the auctioneer maximizes his/her minimum profit in ev-
ery possible outcome. It is clear that the existence problem
is a special case of the revenue maximization problem.There
is a generalization in which any trader is allowed to order
more than one share of security in her bet. In this case, the
auctioneer is allowed to accept any subset of them. We can
easily generalize our results to solve this problem.

In the following, we give a simple combinatorial algorithm
for the existence problem, and an LP-based algorithm for the
revenue maximization problem. First, we give some notation
that will be used throughout this section.
Corresponding bipartite graph GI . Given an instance
of the singleton betting problem with a set of bets I , we
construct a bipartite graph GI . For every candidate, we
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Figure 1: definition of G∗

place a vertex in the upper part of GI and for every position,
we place a vertex in the lower part of GI . Let UG denote
the set of vertices in the upper part and LG denote the set
of vertices in the lower part. We denote the ith vertex of
the upper part by ui and the jth vertex of the lower part by
lj . Finally, for every triple (bi, xi, yi) ∈ I , we put an edge
between uxi

∈ UG and lyi
∈ LG with weight bi. Note that

it is possible to have multiple edges between two nodes in
GI .

Given a simple edge-weighted bipartite graph G(UG, LG, E),
let wG

i,j be the weight of the edge between vertices ui ∈ U
and lj ∈ L.

Given a multigraph G(V, E), let G∗(V ∗, E∗) with edge
weights w∗ be a simple edge-weighted graph with the same
set of vertices, i.e, V ∗ = V such that w∗

ij , the weight of
the edge between vertices i, j ∈ V ∗ in G∗, is equal to the
number of edges between vertices i and j in G (as shown in
Figure 1).

Note that wG∗

i,j is equal to the number of edges between
vertices i and j in G. Each bet has a corresponding edge in
GI . Therefore, when the auctioneer accepts a bet, we can
also say that the auctioneer accepts the corresponding edge.

For example, consider the singleton betting market de-
picted in Figure 1. There are nine bets corresponding to
edges of the bipartite graph. As a result, the set of bets, I
contains triples:

(0.6, 1, 1), (0.1, 1, 1), (0.3, 1, 1), (0.02, 1, 2), . . . , (0.1, 3, 3), (0.7, 3, 3)

In this example, if the auctioneer accepts all bets, he/she
gets $3.32 before the outcome. If candidates 1, 2 and 3 stand
in positions 1, 2 and 3 respectively, the auctioneers should
pay 3 + 1 + 2 = $6 to traders.
Accepted graph. If the auctioneer accepts a subset of
bets, there is a subgraph in G which is formed by the edges
corresponding to the accepted bets. We call this graph the
accepted graph. We say an auctioneer will win with respect
to an accepted graph H , if accepting the bets corresponding
to the edges of H gives a positive revenue to the auctioneer
in every possible outcome.

Graph theoretic preliminaries. In every graph G, let
the value of the maximum weighted matching be MG. Vec-
tor α = (α1, α2, . . . , α|V (G)|) is called a weighted vertex cover

of graph G if for every edge e = (i, j) we have wG
e ≤ αi +αj .

The minimum weighted vertex cover is a weighted vertex
cover which minimizes the sum

∑
i∈V (G) αi.

4.2 The existence problem
In this section, we give a necessary and sufficient condition

for the existence problem which can be checked in linear
time.

Theorem 4. Given a set of bets I for the singleton bet-
ting problem, there exists a set of risk-free bets for the exis-
tence problem if and only if there exists a vertex i ∈ V (GI)
and a set of edges A such that (i) edges in A are adjacent to
vertex i, and each pair of edges in A has only one endpoint
in common which is i; and (ii) the total weight of edges in

A exceeds one, or equivalently
∑

e∈A
wGI

e > 1.

Proof. Proof of sufficiency: Suppose that there is a ver-
tex i with the desired properties. Without loss of generality,
suppose i is in the upper part of GI . Assume that there
exists a set A of edges which are adjacent to i and the sum
of their weights is greater than 1. If the auctioneer accepts
the bets corresponding to edges in A and rejects the other
ones, the amount of money which is earned by him/her is
greater than $1. On the other hand, the auctioneer must
pay at most $1 in the worst case, because all the accepted
bets have the candidate i in common and their positions
(the third element in the triples of bets) are distinct, so in
each outcome the candidate i stands at only one position,
and we lose at most $1.

Proof of necessity : Suppose there is no vertex i with the
desired property of the theorem and there is a subgraph H
of GI such that the auctioneer will win if he accepts the bets
corresponding to edges of H . First, we find the subgraph Ĥ
of GI such that the auctioneer will win if he accepts the

corresponding bets of Ĥ and we have wĤ∗

i,j ≤ 1, for all i, j.
This means that there exists at most one edge between ev-

ery pair of vertices ui ∈ U Ĥ and lj ∈ LĤ in Ĥ. Finally,

we prove that if a subgraph like Ĥ exists, we will reach a
contradiction.

In order to prove the existence of Ĥ , we need the following
Lemma.

Lemma 5. Let G be a weighted simple bipartite graph with
integer weights. If the value of the maximum weighted match-
ing in G is MG ≥ 1, then there exists a vertex i with the
following property:

• If we decrease the weights of all edges adjacent to i by
1 unit, the value of the maximum weighted matching
in the remaining graph will be MG − 1.

Proof. The dual of the maximum weighted matching
problem in a bipartite graph G is the following problem:
assign values αi and βj to the vertices of G (αi to vertex
ui ∈ U and βj to vertex lj ∈ L) such that for every edge
e = (ui, lj), we have that αi + βj ≥ wi,j , and we also want
to minimize the objective function

∑
ui∈U

αi +
∑

lj∈L
βj .

Based on the weak duality theorem, we know that the min-
imum feasible value of

∑
ui∈U

αi +
∑

lj∈L
βj is greater than

or equal to MG in G. Consider the optimal dual solution
αi and βj for ui ∈ U and li ∈ L. Note that the weights of
the edges in G are integer, therefore, there exists an optimal
solution in which all values of αi and βj are integers. This
is true, since the dual of the weighted matching is totally
unimodular, and its integrality gap is 1 [22]. We also know
that MG ≥ 1, so at least one αi or one βj is greater than
0. Without loss of generality, suppose αk > 0, and because
αk is an integer number, we conclude that αk ≥ 1. Now,
we can decrease the weights of the edges adjacent to uk by
1 unit and let G′ be the remaining graph. It is clear that
(β′

j = βj for all lj ∈ L, α′
i = αi for all ui ∈ U, ui 6= uk

and α′
k = αk − 1) is a feasible solution for the dual problem



in graph G′ with value
∑

ui∈UG α′
i +

∑
lj∈LG β′

j = MG − 1.

Therefore, the value of every weighted matching in G′ is not
greater than MG − 1. On the other hand, consider the max-
imum weighted matching in G with value MG. It is clear
that the value of this matching in G′ is MG−1. So the value
of the maximum weighted matching in G′ is MG − 1.

Now we return to the proof of Theorem 4. Consider a
graph H and assume that the auctioneer accepts the bets
corresponding to the edges of H . (Note that we assume that
the auctioneer will win by accepting these bets). Let the
value of the maximum weighted matching in H∗ be MH∗ .
It is clear that for some permutations, the auctioneer must
pay MH∗ to the traders. On the other hand, the auctioneer
gets

∑
e∈H

wH
e amount of money from traders at first. Since

the auctioneer is seeking a risk-free subset, we should have:

MH∗ <
∑

e∈H

wH
e (1)

If H∗ has an edge with weight greater than 1, there are at
least two edges in H between the endpoints of that edge with
weight greater than one. We repeat the following procedure
iteratively, until there is no edge with weight greater than 1
in H∗.

- We know that there exists a vertex i in H∗ with the
desired property of Lemma 5. For every vertex j, re-
move one of the edges between vertices i and j in
H . Let Ḣ be the remaining graph. According to
Lemma 5, if we decrease the weights of edges adja-
cent to i in H∗ by 1 unit, the value of the maximum
weighted matching in H∗ will decrease by exactly 1
unit. Therefore, we have MḢ∗ = MH∗ − 1. We as-
sume that there is no vertex with the desired property
of Theorem 4. Therefore, the sum of the weights of
the removed edges from H is not greater than 1, and

we have
∑

e∈Ḣ
wḢ

e ≥
∑

e∈H
wH

e −1. Using Equation 1
we conclude:

MḢ∗ = MH∗ − 1 <
∑

e∈H

wH
e − 1 ≤

∑

e∈Ḣ

wḢ
e (2)

This proves that if the auctioneer accepts the bets cor-
responding to the edges of Ḣ , he wins. Therefore, we
can replace H by Ḣ and repeat this procedure itera-
tively until we reach a graph H∗ with no edge weight
greater than one.

This proves that there exists a graph H such that the
auctioneer wins with respect to H , and there is at most one
edge between any pair of vertices in H . Now, we construct
a network flow F using the graph H as follows.

1. Add two vertices s and t to H . Let s be the source of
our network flow and t be its sink.

2. Put an edge between s and each vertex ui in the upper
part of H with capacity of 1.

3. Put an edge between each vertex lj in the lower part
of H and t with capacity of 1.

4. Let the capacity of each edge from vertex ui in the
upper part to vertex lj in the lower part be equal to
wH

ui,lj
.
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Figure 2: Constructing the network flow F using

graph H

We know that there is no vertex with the desired property
of Theorem 4. Therefore, for every vertex i, the sum of the
weights of the edges adjacent to i in H is not greater than
1. So, we have a flow with value

∑
e∈H

wH
e in the network

flow F . Construct a new network flow F ′ by rounding up
the capacities of edges in F . It is clear that the value of
the maximum flow in F ′ is not less than the value of the
maximum flow in F , because we do not decrease the capac-
ities. On the other hand, we can see that the value of the
maximum flow in F ′ is equal to the value of the maximum
weighted matching in H∗(MH∗). Knowing these facts, we
can conclude:

MH∗ = max flow in F ′ ≥ max flow in F ≥
∑

e∈H

wH
e (3)

which is a contradiction (see Equation 1.)

Verifying the necessary and sufficient condition of Theo-
rem 4 for all vertices in graph GI can be done in running
time O(|I |+ m + n) where n and m are the number of can-
didates and positions respectively. As a result, Theorem 4
gives a linear-time algorithm for the existence problem.

Now we are ready to solve the generalization in which
traders can order more than one share of security. In the ex-
istence problem, we only need to compute the sum of weights
of edges incident to a specific vertex u. Note that If we sub-
mit C copies of a bet, these are C parallel edges in GI with
2 common vertices. Therefore we should consider only one
of them in our calculations. Therefore this generalization is
not computationally harder.

4.3 The revenue maximization problem
In this section, we propose a polynomial-time algorithm

for finding a subset of bets with the maximum guaranteed
revenue to the auctioneer. The algorithm is based on a lin-
ear programming (LP) formulation. We first characterize an
LP whose optimal integer solution is equal to our optimal
solution in the singleton betting problem. We relax the lin-
ear program to a fractional linear program, and then prove
that we can change any optimal fractional solution of our
LP to an integer solution with the same objective function
in polynomial-time. Note that in the revenue maximization
problem, we have a weighted bipartite graph G with multi-
ple edges each of which corresponds to one bet, and we want
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Figure 3: A solution with revenue 0.2

to find a subgraph H of G that maximizes:
∑

e∈H

wH
e − MH∗ (4)

In other words, if the auctioneer accepts the bets of the
edges of graph H , he earns

∑
e∈H

wH
e amount of money from

traders, and he should pay MH∗ in the worst case outcome.
For example, consider the singleton betting market shown in
Figure 1. If the auctioneer accepts bets (0.7, 2, 2), (0.4, 2, 3),
(0.4, 3, 2) and (0.7, 3, 3), the accepted graph is H that is
shown in Figure 3. Note that

∑
e∈H

wH
e is equal to 2.2, and

the maximum weighted matching in graph H∗, MH∗ is 2.
So the revenue is 2.2 − 2 = 0.2 in this case.

Now we characterize the structure of the maximum rev-
enue solution. Let the subgraph H ⊆ G be the maximum
revenue solution. Consider the minimum weighted vertex
cover of H∗1. Assume that the value αi is assigned to the
vertex ui ∈ UH∗

, and βj is assigned to the vertex lj ∈ LH∗

in this weighted vertex cover.

Lemma 6. In the optimal accepted graph H, wH∗

i,j is equal

to min(wG∗

i,j , αi + βj) for every pair of vertices i and j.

Proof. We know that H is a subgraph of G, thus wH∗

i,j

is not greater than wG∗

i,j . On the other hand, the values
α1, α2, . . . , α|V (H)| and β1, β2, . . . , β|V (H)| form a weighted

vertex cover of graph H∗, so we have that wH∗

i,j ≤ αi + βj .

For the sake of contradiction, assume wH∗

i,j is not equal

to min(wG∗

i,j , αi + βj) for some i and j, thus wH∗

i,j < wG∗

i,j

and wH∗

i,j < αi + βj . The value wH∗

i,j is integer, for any pair
of vertices i and j. Therefore, by definition, αi and βj are

also integers, for every i and j. Thus, wH∗

i,j + 1 ≤ αi + βj .
We can add one of the edges between i and j in G − H to
H . Note that such an edge exists because we assume that
wH∗

i,j < wG∗

i,j . It implies that the value of wH∗

i,j increases by
one. But, it is clear that the minimum weighted vertex cover
of H∗ is still a weighted vertex cover. Using the fact that
the value of the maximum weighted matching is equal to the
value of the minimum weighted vertex cover, we conclude
that the value of

∑
e∈H

wH
e − MH∗ will increase by adding

one of edges between vertices i and j to the optimal accepted
graph H . This contradicts the optimality of H .

Lemma 6 implies that using values of αi and βj , we can

determine the value wH∗

i,j by setting it to min(wG∗

i,j , αi +βj).
Now, we can write an integer linear program whose optimal
solution determines our optimal solution for the singleton
betting problem. In this ILP, we want to find the values of
αi and βj . We also want to choose edges which should be
added to the optimal subgraph H . For ease of notation, let

1See the definition of G∗ in the preliminaries.

wG
i,j,t be the weight of the tth edge between vertices i and j in

G. Without loss of generality assume that the edges between
vertices i and j are sorted in decreasing order with respect
to their weight such that we have wG∗

i,j,t ≥ wG∗

i,j,t+1. The
following program is the ILP which helps us in computing
the minimum weighted vertex cover:

max (
∑

wG
i,j,tyi,j,t −

∑
xi −

∑
x′

j) (5)

wG∗

i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U, j ∈ L

Yi,j ≤ xi + x′
j ∀i ∈ U, j ∈ L

xi, x
′
j ≥ 0 ∀i ∈ U, j ∈ L

yi,j,t ∈ {0, 1} ∀i ∈ U, j ∈ L, 1 ≤ t ≤ kij

The ILP variables xi, x′
j , yi,j,t and Yi,j are defined as follows:

• xi is the value of αi in the minimum weighted vertex
cover of H∗.

• x′
j is the value of βj in the minimum weighted vertex

cover of H∗.

• Yi,j is the value of wH∗

i,j which is equal to number of
edges between vertices i and j in H .

• yi,j,t is a number which is equal to 0 or 1, and indicates
whether the tth edge between i and j in G belongs to
H .

By strong duality, the value of the maximum weighted match-
ing is equal to the value of the minimum weighted vertex
cover. Since the ILP variables x and x′ correspond to the
vectors of the minimum weighted vertex cover (α and β),
the value

∑
xi +

∑
x′

j in the objective function of the ILP
is equal to MH∗ . As a result, the optimal solution of the
integer linear program 5 characterizes the maximum rev-
enue of the singleton betting problem. In order to solve the
integer linear program 5, we relax the integer constraints
yi,j,t ∈ {0, 1} to linear fractional constraints 0 ≤ yi,j,t ≤ 1.
As a result, we get the following linear programming relax-
ation:

max (
∑

wG
i,j,tyi,j,t −

∑
xi −

∑
x′

j) (6)

wG∗

i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U, j ∈ L

Yi,j ≤ xi + x′
j ∀i ∈ U, j ∈ L

xi, x
′
j ≥ 0 ∀i ∈ U, j ∈ L

0 ≤ yi,j,t ≤ 1 ∀i ∈ U, j ∈ L, 1 ≤ t ≤ kij

We can solve the linear program 6. Now, the question is
how to round the solution of 6 and construct an integer
solution for program 5. The following Lemma 7 shows that
the integrality gap of this linear program is 1 and any so-
lution of this LP can be rounded to an integer solution in
polynomial time without changing the value of the objective
function. Here, we prove this fact by showing that LP 6 is
totally unimodular.

Lemma 7. The integrality gap of LP 6 is 1 and an optimal
integer solution of ILP 5 can be found in polynomial-time by
solving the LP relaxation 6.



Proof. Here, we prove this lemma by showing that the
LP is totally unimodular.

There are four types of variables in LP 6, i.e. yi,j,t, Yi,j , xi, x
′
j .

Let v be a vector that contains all types of variables. We can
write the constraints of LP 6 as a matrix inequality Av ≤ b
where A and b are defined as follows: A is a matrix whose
number of rows and columns are equal to the number of con-
straints and variables in the LP respectively, and entries of
A correspond to coefficients in the linear constraints of this
LP. The vector b contains the right hand side values of the
constraints. There are some equality constraints in LP 6.
We can use some slack variables, and replace these equali-
ties with some inequalities, so the constariants can be writ-
ten in the inequality form Av ≤ b. By the way, these slack
variables do not disturb the totally unimodularity property
of this inequality system. It is well known that in order to
prove that the integrality gap of LP 6 is 1, it suffices to show
that A is totally unimodular [18, 24]. This fact also implies
a polynomial-time algorithm for rounding any fractional so-
lution of LP 6 to an optimal integer solution to ILP 5. For
contradiction, assume A is not totally unimodular. In that
case, A should have a square submatrix with determinant
not equal to 0, 1 or −1. Suppose K is the smallest square
submatrix of A with this property.

It is not hard to see that each row or column of K has
at least two non-zero entries. Since, if there is a row (or
column) with only one non-zero entry a (a is either 1 or
−1), we can say that the absolute value of determinant of K
is equal to the absolute value of determinant of K′ where K′

is the matrix that is obtained from K by removing the row
and column of entry a. So the determinant of K′ is also not
equal to 0, 1 or −1. This contradicts with the assumption
that K is the smallest square submatrix with determinant
not equal to 0, 1 or −1. According to the fact that each
row of K has at least two non-zero entries, we conclude that
rows corresponding to constraints like yi,j,t ≤ 1 or yi,j,t ≥ 0
are not selected as rows of K. Therefore, without loss of
generality, we can delete these rows from A, and assume
that K is a submatrix of the remaining matrix. Since each
column of K also has at least two non-zero entries, we can
say that the columns corresponding to variables yi,j,t are not
selected as columns of K, because each of these columns in
the remaining matrix contains exactly one non-zero entry.
Similarly we can remove these columns, and assume that K
is a submatrix of the remaining matrix. Now consider a row
corresponding to a constraint of the form

∑
yi,j,t = Yi,j .

Since the columns of variables of the form yi,j,t are removed
later, the row corresponding to this constraint has only one
non-zero entry. Again we can remove these rows from our
matrix. In the remaining matrix, the columns of variables of
form Yi,j has only one non-zero entry, therefore we remove
these columns too. The remaining matrix has only rows of
constraints of form Yi,j ≤ xi + x′

j and columns of variables
of form xi or x′

j . Note that each row of this matrix has
exactly two non-zero variable with the same sign. Partition
the columns into two sets B = {x1, x2, . . . , xn} and C =
{x′

1, x
′
2, . . . , x

′
n}. One of those two non-zero entries belongs

to a column in set B, and the other one belongs to a column
in set C. According to [12], the determinant of any square
submatrix of this matrix, including K is equal to 0, 1 or
−1 which is again a contradiction. Therefore we conclude
A is totally unimodular, and thus, the integrality gap of the
corresponding integer linear program is equal to 1.

Using ILP 5 and the result of Lemma 7, it follows that
the revenue maximization problem for singleton betting is
polynomial-time solvable. We conclude this section by the
following theorem.

Theorem 8. The revenue maximization problem for the
auctioneer in singleton betting can be solved in polynomial
time.

Note that linear program 6 is a small polynomial-size lin-
ear program that can be solved very efficiently in practice as
well. This is different from the exponential-size linear pro-
gramming formulation of Chen et.al [3] for divisible variant
of the subset betting.

Now consider the case that traders can order more than
one share of security. The only change we should make is
that the constraints of the form yi,j,t ∈ {0, 1} should be
replaces with yi,j,t ∈ {0, 1, . . . , C} in ILP5 where C is the
number of copies of a bet that the corresponding trader or-
ders. It is clear that the integrality gap of LP6 remains 1 in
this case.

4.4 The revenue maximization problem with
extra information

In this section, we study the revenue maximization prob-
lem for singleton betting when we are given a set of pieces of
extra information about the outcome of the betting market.
Each piece of the extra information is a forbidden pair (x, y)
which means that candidate x never ends up in position y.
The auctioneer may gain this type of information from var-
ious sources, or can predict such forbidden pairs with such
a high confidence that he/she does not bear any risk by
assuming these forbidden pairs. Let F be the set of these
pairs. Given a set of forbidden pairs, a possible outcome
we can illustrated by a perfect matching among candidates
and positions in which no forbidden pair appears. In that
case, the auctioneer can use this information in his/her fa-
vor and in order to solve the revenue maximization problem,
he should take into account such extra information. In this
section, we show that the LP-based revenue maximization
algorithm from the previous section can be extended to solve
the revenue maximization problem with extra information.

Before stating the algorithm, we discuss an example. Con-
sider the singleton betting market in Figure 1. Suppose we
know that candidates 1 and 2 do not stand at position 1 in
any possible outcome (see Figure 4). In other words, the
edges (1, 1) and (2, 1) are forbidden pairs. Using this ex-
tra information, we can say that the candidate 3 necessarily
stands at position 1. Therefor, the auctioneer gains the max-
imum revenue by accepting all bets except bet (0.02, 1, 2).
The auctioneer gets $3.3 before the outcome, and will pay
at most $1 to the traders after the outcome.

First, we show how to calculate the minimum revenue over
all possible outcomes with respect to a given accepted graph
H . Then we propose a linear programming method to find,
an accepted graph which maximizes this minimum revenue
over the possible outcomes. Note that a possible outcome
can be shown by a perfect matching M among candidates
and positions that does not use the forbidden pairs. The
sum of weights of edges that are in both M and H∗ (See
definition of G∗ in Subsection 4.1) is the value that we should
pay to the traders in this outcome. Therefore, in order to
find the minimum revenue over all possible outcomes, we
should find the maximum weighted perfect matching in H∗
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Figure 4: Best solution with extra information

without using forbidden edges. We can solve this by finding
the integer solution of the following LP:

max (
∑

wH∗

i,j xi,j) (7)

n∑

j=1

xi,j = 1 ∀i ∈ U

n∑

i=1

xi,j = 1 ∀j ∈ L

xi,j = 0 ∀(i, j) ∈ F

xi,j ≥ 0 ∀i ∈ U, j ∈ L

We consider the dual of the above program:

min (
∑

αi +
∑

βj) (8)

αi + βj ≥ wH∗

i,j ∀(i, j) 6∈ F

αi + βj + δi,j ≥ wH∗

i,j ∀(i, j) ∈ F

In the above LP, αi is the variable corresponding to the
constraint of candidate i ∈ U , βj is the variable correspond-
ing to the constraint of position j ∈ L, and δi,j is the vari-
able corresponding to the constraint of the forbidden edge
(i, j). Note that all variables including δi,j can get arbitrar-
ily large positive or negative values. Variables δi,j does not
contribute in the cost function, so by setting δi,j = +∞, we

can eliminate the constraints of the form αi+βj+δi,j ≥ wH∗

i,j .
Therefore, we can rewrite the dual program as follows:

min (
∑

αi +
∑

βj) (9)

αi + βj ≥ wH∗

i,j ∀(i, j) 6∈ F

This program finds the values αi and βj such that for each

non-forbidden edge (i, j), we have αi+βj ≥ wH∗

i,j . Since LP 7
is the similar to the LP of the maximum weighted matching
problem, the integrality gap of LP 7 is 1 [24]. Therefore the
best fractional solution of the dual program 9 is equal to the
maximum integer solution of LP 7.

Now we propose an algorithm to find an accepted graph
maximizing this minimum revenue over the possible out-
comes. With the same argument as Lemma 6, we can use
values of αi and βj of dual program 9 to determine the value

wH∗

i,j by setting it to min(wG∗

i,j , αi + βj). Now, we can write
an integer linear program whose optimal solution determines
our optimal solution for the singleton betting problem with
extra information. The ILP is very similar to ILP 5. Again
we want to find the values of αi and βj and we also want
to choose edges which should be added to the optimal sub-
graph H . The following program is the ILP for computing

the minimum weighted vertex cover in this setting:

max (
∑

wG
i,j,tyi,j,t −

∑
xi −

∑
x′

j) (10)

wG∗

i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U, j ∈ L

Yi,j ≤ xi + x′
j ∀(i, j) 6∈ F

yi,j,t ∈ {0, 1} ∀i ∈ U, j ∈ L, 1 ≤ t ≤ kij

Theorem 9. The revenue maximization problem for the
auctioneer in singleton betting with extra information can be
solved in polynomial time.

Proof. Similar to the proof of Lemma 7, we can show
that the constraint matrix of ILP 10 is totally unimodular.
Therefore if we relax the integer constraints yi,j,t ∈ {0, 1}
to linear fractional constraints 0 ≤ yi,j,t ≤ 1, we can solve
this linear programming relaxation and round it to optimal
integer solution of ILP 10. The optimal solution of ILP 10,
corresponds to the maximum revenue of singleton betting
problem with extra information.

5. THE PROBABILISTIC SETTING
In this section, we study the betting problem in the prob-

abilistic setting. We first define the problem formally. As-
sume that the auctioneer has a probability distribution q
over the possible outcome permutations, i.e.,∑

σ is a permutation q(σ) = 1. Given a probability distri-

bution q, a desired revenue x, and a desired probability
0 ≤ p ≤ 1, we consider the following two problems:

Definition 10. In the max-expected subset betting prob-
lem, given a probability distribution q and a set I of sub-
set bets, our goal is to find a subset S of bets I such that
accepting bets in S maximizes the expected revenue of the
auctioneer.

Definition 11. In the max-probability singleton betting
problem, given a probability distribution q over the possible
outcomes, a desired revenue x , a desired probability 0 ≤ p ≤
1, and a set I of simple bets, our goal is to accept a subset
S of bets in I in order to have revenue x with probability at
least p, and refuse to return a subset if there does not exist
such a subset.

Here, we observe that max-expected subset betting prob-
lem can be solved easily, but the max-probability singleton
betting problem is #P -complete.

In order to solve the max-expected subset betting prob-
lem, for any subset S ⊆ I , let E(S) be the expected revenue
when the auctioneer accepts the bets in set S. For every
bet i ∈ I , let E(i) be the revenue when we accept only
bet i. Based on the linearity of the expectation, E(S) =
E(∪i∈Si) =

∑
i∈S

E(i). Thus, in order to maximize E(S),
we should add a bet i ∈ I into S iff E(i) > 0. There-
fore, it suffices to compute E(i) for each bet i. Let pi be
the probability that the security of bet i happens. Given
the probability distribution q, we can estimate pi by sam-
pling the probability distribution q. Thus, we can estimate
E(i) = bi − pi. Note that in the probabilistic model, the
input can have exponential size, but we can assume that the
probabilities are given in a oracle model. Next, we prove the
hardness of the max-probability singleton betting problem.



Theorem 12. The max-probability singleton betting prob-
lem is #P -Complete.

Proof. We reduce the problem of counting the num-
ber of perfect matchings in a bipartite graph to the max-
probability singleton betting problem. In fact, we consider
a simpler version of this problem which is equivalent to the
original one. Suppose we are given a bipartite graph G and
a number k and we are asked whether there are at least
k perfect matchings in G. We construct an instance of
the max-probability singleton betting problem as follows.
Suppose each edge in G is between sets X and Y where
|X| = |Y | = n. For each vertex in xi ∈ X, consider a candi-
date ai in our instance. For each edge (xi, yj) in G, we put
a bet in our instance of the form (2, ai, j) which means that
this trader is willing to pay $2 for this bet, and the trader
wins $1 if the candidate ai stands in position j. In this in-
stance, we set x = 2E−n+1 where E is the number of edges
in G. We also define p to be 1 − k−1

n!
. It is obvious that in

the optimum solution we should accept all the bets. By def-
inition, we are asked if the revenue is at least 2E−n+1 with
probability 1 − k−1

n!
. Equivalently, we are asked if there are

at most k matchings of size n in G. Thus max-probability
singleton betting problem can solve the problem of calculat-
ing the number of perfect matchings in a bipartite graph in
polynomial time which is a #P -Complete problem.

6. CONCLUSION
In this paper, we studied the subset and singleton bet-

ting problems for permutation markets in the risk-free and
probabilistic settings. We also considered the singleton bet-
ting problem with extra information in which the auctioneer
has some certain knowledge of the possible outcome of the
market. We showed that maximizing revenue for the sub-
set betting problem is not approximable, but the singleton
betting problem is solvable by solving a linear programming
relaxation and rounding its solution, even in the presence of
certain knowledge about the outcome of the market. An in-
teresting question is to study revenue maximization problem
with extra knowledge about the set of outcomes for different
betting languages like pair betting and subset betting. It is
also interesting to consider other types of extra information
about the possible outcomes. This extra information may
include some probability distribution on certain properties
of the outcome.
Acknowledgments. The third author thank Evdokia Nikolova
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