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Abstract— Wireless LAN administrators often have to
deal with the problem of sporadic client congestion in
popular locations within the network. Existing approaches
that relieve congestion by balancing the traffic load are
encumbered by the modifications that are required to both
access points and clients. We proposeCell Breathing, a well
known concept in cellular telephony, as a load balancing
mechanism to handle client congestion in a wireless LAN.
We develop power management algorithms for controlling
the coverage of access points to handle dynamic changes
in client workloads. We further incorporate hand-off costs
and manufacturer specified power level constraints into our
algorithms. Our approach does not require modification to
clients or to the standard. It only changes the transmis-
sion power of beacon packets, and doesnot change the
transmission power of data packets to avoid the effects
of auto-rating. We analyze the worst-case bounds of the
algorithms, and show they are either optimal or close to
optimal. In addition, we evaluate our algorithms empirically
using synthetic and real wireless LAN traces. Our results
show that cell breathing significantly out-performs the
commonly used fixed power scheme, and performs at par
with sophisticated load balancing schemes that require
changes to both the client and access points.

Index Terms— Wireless LAN, power control, cell breath-
ing, algorithms.

I. I NTRODUCTION

The proliferation of lightweight hand-held devices
with built in high-speed WiFi network cards and the sig-
nificant benefit of any-where any-time Internet access has
spurred the deployment of wireless “hot-spot” networks
[2], [3]. It is easy to find wireless local area networks
(WLANs) in classrooms, offices, airports, hotels, and
malls. A key challenge for organizations that deploy
WLANs is capacity management, making the best use
of the available resources to derive the best return on
investment while satisfying client service demands.

Previous studies of public-area wireless networks have
shown that client service demands are highly dynamic
in terms of both time of day and location, and that
client load is often distributed unevenly among wireless
access points (APs) [6], [7], [36], [39]. Clients tend to
localize themselves in particular areas of the network for
various reasons, such as availability of favorable network
connectivity, proximity to power outlets, classrooms,

meeting rooms, or geographic constraints of other ser-
vices (e.g., airport gate area with arriving and departing
flights). A consequence of such behavior is sporadic
client congestion at popular locations within the network.
At any one time, a large percentage of mobile clients
communicate with a small subset of the APs. These client
concentrations create an unbalanced load in the network
and complicate capacity planning, making it difficult
to accommodate heavy, concentrated load in different
parts of the network without significant, and costly, over-
engineering.

The mapping between clients and the APs that service
them is a critical determinant of system performance
and resource usage. An AP can get seriously overloaded
even when several nearby APs are lightly loaded. This
is because a majority of the WiFi cards associate with
the APs with the loudest beacons (i.e. the strength of the
received beacon signal is highest among all neighboring
APs). We call this as the basic association scheme.

One way to address this issue is to modify the client
association algorithm to incorporate the APs’ load in
addition to the received signal strength indicator (RSSI)
of the APs’ beacon. A client associates with the AP
that is lightly loaded and whose beacons have a highest
RSSI value. This technique and its different variants have
been proposed by researchers (e.g., [30], [17], [22], [5],
[8]), and adopted by vendors of wireless LAN prod-
ucts [28], [11], [1]. The problem is that this technique
requires support from both APs and clients. APs have
to communicate their current load to the client, and the
client AP selection algorithm has to incorporate APs
load information. In practice, clients in public areas are
generally heterogeneous, i.e. they use wireless cards from
different vendors or wireless cards that are running older
”legacy” software. Consequently, such schemes provide
limited benefit.

To achieve efficient resource usage without requiring
changes to client software, we propose the use ofcell
breathingtechnique. Cell breathing is a well known con-
cept in cellular telephony (2G, 3G, CDMA, CDMA200
and WCDMA systems) [14], [31]. It is defined as the
constant change in the geographical area covered by the
cell tower. When the cell becomes heavily loaded, it
shrinks, and the lightly loaded neighboring cells expand.



In this way, client traffic from the overloaded cell is
redirected to neighboring cells, and consequently, the
overall system is load balanced.

In WLANs, cell breathing can be implemented by
controlling the transmission power of an AP’s beacon
packets. Note that we donot change the transmission
power of data packets to avoid degrading clients’ per-
formance. More specifically, when SNR of data packets
reduces, the AP may see higher data packet losses, or
even adapt to a lower sending rate, both of which degrade
the client’s performance. In comparison, changing the
transmission power of beacon packets only affect how
clients associate with APs, and does not affect the loss
rate or sending rate of data packets, which matches our
goal well.

Our proposed power control does not require any
change to client software or to the standard. Clients
continue to associate with an AP with the strongest
beacon. APs manage their load by adjusting the beacon
packets’ transmission power. In this way, the AP’s cov-
erage area is shrunk or expanded transparently, adapting
to client demands and balancing the traffic load across
the network. Because this approach does not require
modifications to clients, its deployment cost and time
is small. Moreover cell breathing is effective for both
legacy clients that employ the basic association scheme
and the new clients that employ load-aware association
scheme. So in practice its benefits can be fully realized
immediately.

Finding the appropriate power assignment at APs to
automatically achieve load balancing is a challenging
problem. To our knowledge, the cell breathing algorithms
proposed for cellular networks are based on local heuris-
tics, and do not provide performance guarantees [14],
[31].

In this paper, we develop power control algorithms
for the following two cases: (i) APs are able to adjust
their power to any level (continuous-power assignment),
and (ii) APs are able to adjust their power to only some
discrete power levels (i.e., discrete-power assignment).

To develop an algorithm for continuous-power assign-
ment, we use a duality-based approach. The duality in
linear and convex programs has proved effective for
algorithm designs [41]. It has been also used in analysis
and design of congestion control mechanisms in the
Internet [24], [26], [27]. Our duality-based approach
uses linear programming to formulate the problems, and
use linear programming duality and the complementary
slackness conditions to derive algorithms and prove their
correctness.

More specifically, in many situations, one can see
dual variables as shadow prices. In our context, the
shadow prices correspond to the AP power. In other
words, similar to a market mechanism in which the price

determines the demand for a commodity, here we can
change the demands assigned to an AP by adjusting
its power. The challenge is to adjust the powers of all
neighboring APs at the same time in such a way that
their loads remain balanced.

Interestingly, when client demands are homogeneous
(i.e., all clients have the same demand), we can always
compute such a power assignment - we can set the
powers of all APs in such a way that after all the clients
choose their AP based on RSSI, either all the clients can
be served by the APs or all the APs are fully utilized. For
heterogeneous demands (i.e., clients can have different
demands), we apply the same approach, and prove that
it can completely satisfy at leastN − K clients, where
N is the number of clients, andK is the number of APs
(Note thatK is often much smaller thanN in practical
scenarios).

We further develop a primal-dual combinatorial algo-
rithm based on the matching theory, which is applicable
to a more general setting. In this case, we only assume
that received power is proportional to the transmission
power, but do not assume any relationship between the
received power and the distance. (In fact, our algorithm
does not even require the knowledge of the distance
between APs and clients.) The algorithm is described in
the Appendix. It is based on the insight that our problem
has similarity to market equilibrium problem[13], [21],
[18]. Based on the same insight, we can apply the ideas
of the auction-based distributed algorithms for computing
market equilibria [18], and develop a distributed algo-
rithm for our problem.

For discrete-power assignment, we develop a greedy
algorithm. The high level idea of our algorithm is as
follows. We start by setting the powers of all APs to
the highest value, and then we choose the best power
configuration resulting from iteratively decreasing the
power of overloaded APs. This approach is intuitive and
easy to implement. Moreover,it only requires knowledge
of APs’ load, which is easy to obtain. We show that if
there exists a power assignment such that each AP has
capacity to accommodate the demands assigned to it, our
algorithm can find the solution in a polynomial time.

In addition, we consider two extensions to the above
algorithms: (1) dynamic adjustment of APs’ power in
response to changes in clients’ load while limiting the
number of hand-offs, and (2) minimizing APs’ transmis-
sion power to reduce interference.

To sum up, the key contributions of our research are
as follow:

• We describe four algorithms for continuous-power
assignment. The first three algorithms assume that
APs can estimate the received power at the clients.
Among the three algorithms, we prove the first
two are optimal (i.e., maximizes the total satisfied



client demand) for homogeneous demands, and the
third is close to optimal for heterogeneous demands.
Our fourth algorithm, described in the Appendix,
is designed for a more general case, where the
only assumption about received power is that it is
proportional to the transmission power.

• We describe a greedy algorithm for discrete power
assignment, and prove its optimality under a certain
condition. The algorithm only requires APs’ load as
input.

• We extend the algorithms to handle dynamically
changing client demands while limiting the number
of hand-offs. We also consider minimizing APs’
power to reduce interference.

• We evaluate the algorithms using both synthetic and
real WLAN traces.

Our results show the algorithms are effective for
improving throughput. Under high load, the improvement
is up to 50% for uniform client distributions, and up
to an order of magnitude for nonuniform distribution of
clients’ locations.

The remaining paper is organized as follow. In Sec-
tion II, we review related work. We formulate the power
control problem in wireless LAN in Section III. In
Section IV, we present algorithms for continuous power
assignments, and analyze their worst-case bounds for
both homogeneous and heterogeneous client demands.
We describe a discrete power assignment algorithm
in Section V. In Section VI, we develop a dynamic
power control algorithm that adapts to changes in client
demands while limiting the number of hand-offs. In
Section VII, we consider minimizing APs’ power. We
describe our evaluation methodology in Section VIII, and
present performance results in Section IX. Finally we
conclude in Section X.

II. RELATED WORK

Several researchers have studied the usage charac-
teristics of wireless LANs in different environments,
including a university campus [39], [25], a large corpo-
ration [44], and a conference [6]. All these studies report
that the client load is unevenly distributed across AP. The
imbalance in client load distribution results in inefficient
resource utilization and poor performance.

As suggested in several previous work (e.g., [30],
[22], [17], [5], [8]), one approach to addressing the
load imbalance issue is to incorporate APs’ load into
the association scheme. For example, Papanikos and
Logothetis [30] determine client and AP association
based on RSSI and the number of clients associated
with each AP. The authors in [22], [17] propose that
APs maintain a measurement of their load, and broadcast
beacons containing this load to clients in the cell. New
clients receive beacons from multiple APs, and use this

information to associate with the least loaded AP [22],
[17]. Balachandranet al. suggest clients associate with
the AP that can accommodate its minimum bandwidth
requirement. When multiple such APs are available, the
AP with highest RSSI is chosen. Bejeranoet al. develop
network-wide max-min fair bandwidth allocation algo-
rithms. In their scheme, each client deploys an appropri-
ate client software to monitor the wireless channel quality
it experiences from all its nearby APs. The client then
reports the information to a network control center, which
determines client and AP association. Their algorithms
are the first that provide worst-case guarantees on the
quality of the bandwidth allocation.

All the above work assume that clients deploy the
appropriate module for AP selection. This requirement is
hard to realize in practice, since wireless cards at clients
are heterogeneous, and may not support such coopera-
tion. Moreover, the required modules for AP selection
may differ from one network to another network (e.g.,
some networks may require clients to report the informa-
tion to a centralized server for determining association,
while other networks require clients to make selection
by themselves). The different requirements posed by
different wireless networks make the deployment even
harder.

As stated in the previous section, we propose an AP-
centric approach. When an AP becomes heavily loaded,
it shrinks its coverage by reducing the transmission
power of its beacon packets. This forces redirection of
some traffic to a neighboring cell that is lightly load,
thereby achieving load balancing. Different from the
previous cell-breathing work in cellular network, which
use heuristics and does not give worst-case performance
guarantees, we prove our power control algorithms are
optimal for homogeneous demands and close to optimal
for heterogeneous demands. In addition, our algorithm
can adapt to changing client demands while limiting the
number of clients required to switch to different APs.

The concept of cell breathing originates from cel-
lular networks. To our knowledge, the cell breathing
algorithms proposed for cellular networks are based on
local heuristics, and do not provide performance guaran-
tees [14], [31]. More recently, Sanget al. [33] propose
a cross-layer framework that coordinates packet-level
scheduling, call-level cell-site selection and handoff, and
system-level load balancing. One of the components in
their framework is cell breathing. Different from our
work, which uses power control at the physical layer,
their cell breathing is performed at MAC layer by having
a congested cell allocate less time slots to the mobiles
at the cell boundary. Such TDMA-based scheme is not
applicable to IEEE 802.11 DCF (distributed coordinated
function), which is the focus of our work. Moreover
under their cell breathing scheme, the mobiles are still



required to perform load-aware cell-site selection and
handoff. In comparison, our cell breathing scheme com-
pletely removes the need of client-side modifications
(i.e., clients can simply associate with the access point
based only on signal strength).

There are significant research work on power control
for ad hoc networks (e.g., [32], [23], [42], [37]). Ad hoc
networks are significantly different from infrastructure
wireless networks, and these schemes do not apply to
our scenarios.

There is a close relationship between our power
assignment problems and the market equilibria [13],
[21], [18]. We use the insight to develop some of the
algorithms.

III. PROBLEM FORMULATION

We propose an AP-centric approach to transparently
balance load across different APs. The main challenge in
this approach is to find appropriate transmission power
for each AP such that the total client demand that APs
can serve is maximized when clients use the basic asso-
ciation scheme (i.e., associate with the AP with highest
RSSI). In order to formally specify the power control
problem, we first introduce the following notations.

• K: The number of APs
• N : The number of clients
• Ci: The capacity of APi
• d(i, j): The distance between APi and clientj
• α: signal attenuation factor
• Pi: AP i’s power
• Di: client i’s demand
• Pr(i, j): received power from APi at client j
• Li: The total load served at APi

Based on the notations listed above, we now formulate
the power control problem as follow. GivenK, N , Ci,
Di, and d(i, j), our goal is to find the transmission
power for each APi, denoted asPi, to maximize system
throughput (i.e., maximizing

∑
i Li) given that clientj

is assigned to APi when Pr(i, j) > Pr(i
′, j) for all

i′ ∈ {1, 2, ...,K}, and Li = min(Ci,
∑

Dj) for all
clients j that are mapped to APi. The last equation
reflects the fact that the maximum client demand the AP
i can service,Li, is bounded by its capacity and the total
client demands that are assigned to it. Note that when
there are multiple APs with similar RSSI, the client is
randomly assigned to one of them.

IV. M AXIMIZING THROUGHPUT FORCONTINUOUS

POWER

In this section, we present power control algorithms
for the cases when APs can adjust their power to any
value (i.e., continuous power). The algorithms in this
section require APs to estimate the received power at

different clients. In Appendix, we extend the algorithm to
a more general case that does not require the knowledge
of the distance between APs and clients. It only assumes
the received power at any location is proportional to the
transmission power, which holds in general even under
obstruction. Moreover, the discrete-power assignment
algorithm presented in Section V requires even less
information – only APs’ load information is needed.

We estimate the received power at the clients as
follow. The received power,Pr(i, j), is a function of
transmission power,P (i), and the distance between the
client and AP, d(i, j). The function depends on the
wireless propagation model in use. We use the following
function:

Pr(i, j) = a ∗ Pi/d(i, j)α (1)

wherea is a constant. It is easy to see that this power
function can incorporate both free-space and two-ray
ground reflection models.

In addition, we can also incorporate other wireless
propagation models as follow. When the wireless prop-
agation does not follow Equation 1 (e.g., under obstruc-
tion), we can approximate the actual wireless propagation
by introducing virtual distance, where the virtual distance
follows Equation 1. More specifically, APs collect the
measurement of transmission power and received power,
and then approximate the actual wireless propagation
by finding d′(i, j) (virtual distance),α′ (virtual atten-
uation factor), anda′ that fit the modelPr(i, j) =
a′ ∗ Pi/d′(i, j)α′

, where Pr(i, j) and Pi are from the
measurement. Then we apply our power assignment
to the virtual distances and virtual attenuation factor.
Conceptually, this is similar to Internet distance em-
bedding (e.g., GNP [29]), which embeds a complicated
Internet space onto a simple geometric space. In our case,
we embed a complicated space, which describes actual
wireless propagation, onto a simpler space that follows
Equation 1.

A. Maximizing Throughput for Homogeneous Demands

First we design power control algorithms for homo-
geneous client demands. Without loss of generality, we
consider each client has one unit of demand. (Since client
demands are homogeneous, we can always scale client
demands and AP capacity to make the client demand
to be one unit.) We first find a mapping of clients to
APs such that either all clients’ demands are satisfied or
the total capacity of all APs are exhausted. It is easy to
see that such a mapping maximizes our objective – the
total satisfied demand, since the total satisfied demand
cannot exceed the total client demand or APs’ capacity.
Then we prove that there exists a set of powers that
enforces this assignment, when each client selects its
AP based on RSSI. Next we derive two algorithms to



find the set of powers that enforces this assignment.
The first algorithm is based on solving a linear program.
The second algorithm is combinatorial, and has a better
running time.

1) Finding the Mapping.:We develop a polynomial-
time algorithm to find a mapping of clients to APs
such that either clients’ demands are satisfied or the
total capacity of all APs are exhausted. We call this
mapping a perfect assignment. We prove that there exists
a set of powers for APs that enforces this assignment
under homogeneous client demands. Our proof uses lin-
ear programming duality and complementary slackness
conditions.

The algorithm to find the assignment is as follows:

FindAssignment Algorithm

1) Given an instance of the power control problem
as specified in Section III, we can construct the
following weighted bipartite graphG(A,C,E),
where A is the set of APs, andC is the set of
clients. There is an edge between each APi and
each clientj. The weight of the edge from APi
to client j is equal towij = α ln(d(i, j)).

2) Find the minimum weight bipartite matching in G,
where the capacity of every client is1, and the
capacity of an APi, is Ci. In other words, among
all the maximal assignments of clients to access
points in which a client can be assigned to at most
one AP and an APi can be matched to at most
Ci clients, find the matching with the minimum
weight that covers either all the clients or all the
APs.

Note that the minimum weighted perfect matching
problem (even in general graphs) can be solved in
polynomial time [15], [16]. For bipartite graphs, simple
primal-dual algorithms are known for this problem (see
e.g. [43]). In addition, the integrality gap of the natural
linear programming formulation is one, which means that
we can find the optimal solution by solving a linear
program (see e.g. [35]). Below we prove that there exists
a set of powers that enforce the assignment obtained by
the above algorithm.

Theorem 1:There exists a set of powers that enforces
the assignment obtained byFindAssignment algorithm.

Proof: First assume that the perfect matching covers
all clients. We will consider the other case where the
perfect matching covers all APs later. We can formalize
the minimum weighted perfect matching problem as
follows:

minimize
∑

i∈C,j∈A

wijxij (2)

subject to ∀i ∈ C
∑

j∈A

xij = 1

∀j ∈ A
∑

i∈C

xij ≤ Cj

∀i ∈ C, j ∈ A xij ≥ 0

In the above linear program,xij = 1 indicates that
client i is assigned to APj in the matching. The first
constraint indicates that each client is assigned to at
most one AP. The second constraint shows that APj
is assigned to at mostCj clients. Our objective is to
minimize the weight of the resulting matching.

Since there exists an assignment that covers all clients,
this linear program has a feasible solution. As mentioned
before, it is known that in bipartite graphs the integrality
gap of the above Linear Program is one. Thus, there is
an optimum solution with 0-1 variables.

The dual of the above linear program is as follows:

maximize
∑

i∈C

λi +
∑

j∈A

Cjπj (3)

subject to ∀i ∈ C, j ∈ A λi + πj ≤ wij

∀j ∈ A πj ≥ 0

Let (x∗

ij |i ∈ A, j ∈ C) denote the optimal solution to
the primal program, and(λ∗

i , π
∗

j |i ∈ A, j ∈ C) denote
the optimal solution to the dual program. We claim that
by setting log(Pj) = πj , the resulting assignment of
clients to APs corresponds to the assignment ofx∗

ij ’s.
In other words, by settingPj = eπj , client i will be
assigned to APj for which Pj

dα
ij

is maximized, and this
assignment is consistent to the mapping as specified by
x∗

ij .
To prove the above claim, we first make an obser-

vation that by settinglog(Pj) = πj , client i will be
assigned to APj for which Pj

dα
ij

is maximized. This is
equivalent to that clienti is assigned to the APj for
which ln

Pj

dα
ij

= πj − wij is maximized (or equivalently,
wij−πj is minimized). Then we show this assignment is
consistent to the assignment specified byx∗

ij . From the
dual program, it is clear thatλi = minj∈A(wij − πj).
From complementary slackness conditions,xij > 0 if
and only if λi + πj = wij . Thus, after this power
assignment clienti is assigned to APj if and only if
xij > 0. Therefore the power assignment realizes the
minimum weighted matching assignment.

Next we consider the other case, where there exists
an assignment that fills all APs’ capacity, but does not
satisfy all clients’ demands. We can use the following
linear program to specify the minimum weighted perfect
matching problem:

minimize
∑

i∈C,j∈A

wijxij (4)

subject to ∀i ∈ C
∑

j∈A

xij ≤ 1



∀j ∈ A
∑

i∈C

xij = Cj

∀i ∈ C, j ∈ A xij ≥ 0

The rest of the proof is similar to the first case. We
can write the dual of the above linear program, and find
the optimal set of powers to fill the capacity of all APs.
Again using complementary slackness conditions, we can
prove that this power assignment realizes the minimum
weighted matching assignment.

2) Finding the Power Assignment.:The previous sec-
tion described how to assign clients to APs to achieve
maximum throughput. Below we develop two power
assignment algorithms that enforce the client-to-AP as-
signment derived above.

a) An Algorithm Based on the Linear Program-
ming: Below is the algorithm to compute power assign-
ment for APs using a linear program. The proof of its
correctness is essentially in the proof of Theorem 1.

FindPowers1Algorithm
1) Solve the following linear program (Linear Pro-

gram 3).

maximize
∑

i∈C

λi +
∑

j∈A

Cjπj(5)

subject to ∀i ∈ C, j ∈ A λi + πj ≤ wij

∀j ∈ A πj ≥ 0

2) Let ({λ∗

i |i ∈ C}, {π∗

j |j ∈ A}) be the optimal
solution to the above linear program.

3) SetPj = eπ∗

j for all APs j.
4) Scale all powers by the same factor such thatPj ≥

Mj whereMj is the minimum power at which AP
j can reach all the clients that it has to serve.

b) A Combinatorial Algorithm:Next we design a
combinatorial algorithm to find the power assignment
that enforces the client-to-AP assignment derived in
Section IV-A.1. Assume that we are given the client to
AP assignmentxij ’s for i ∈ C, j ∈ A of clients to APs.
Let Pj denote the set of powers APj use to realize the
given assignment. Ifxij = 1, Pj

dα
ij

≥ Pk

dα
ik

for any APk. By

settingπ∗

k = − ln(Pk) andwik = −α ln(dik), we know
that xij = 1 if and only if −π∗

j + wij ≥ −π∗

k + wik for
all clientsi and APsj andk. For an APj ∈ A, let fj be
the farthest client inC that is connected toj (xfjj = 1).
Let Mj be the minimum transmission power at which an
AP j can reach clientfj and letmj = − ln(Mj) The
power of APj should be no less thanMj , i.e.,π∗

j ≤ mj .
Thus, a set of powers results in the desirable assignment
if and only if it satisfies the following inequalities:

∀i ∈ C, j ∈ A : xij = 1, ∀k ∈ A −π∗

j + π∗

k ≥ −wij + wik

∀j ∈ A π∗

j ≤ mj

We note that the above set of inequalities correspond to
a polytope on which we can optimize any linear function
as a linear program. For example, if we want to find a set
of powers such that the sum of the logarithm of power is
minimized, we can solve the following linear program:

maximize
∑

j∈A π∗

j

subject to

∀i ∈ C, j ∈ A : xij = 1,∀k ∈ A π∗

j − π∗

k ≤ wij − wik

∀j ∈ A π∗

j ≤ mj

(6)

The above linear program can be solved combinato-
rially using the shortest path algorithm. This is more
efficient than solving a linear program. For example, Di-
jkstra’s algorithm can find the shortest paths inO(|V |2),
where |V | is the number of vertices in the graph. We
convert this problem into finding the shortest paths as
follow. We construct a directed graphD(A ∪ {r}, E),
whereA is the set of APs,r is an extra root vertex, and
E is the set of edges between them. The length of edges
in graphD are as follows: there is an edge from each
vertex j ∈ A to r with length ljr = mj . If client i ∈ C
is assigned to APj ∈ A, we put an edge fromj ∈ A to
k in graphD of length ljk = mini∈C:xij=1(wij − wik).
Let pj be the shortest path from vertexj to r in graphD.
In fact, the inequalities in the program are the triangle
inequalities for the shortest path to the rootr. Thus, it is
not hard to see thatpj ’s satisfy all inequalities of Linear
Program 6.

Hence, we have the following combinatorial algorithm.

FindPowers2Algorithm
1) Given an instance of the power control problem

as specified in Section III, we can construct the
following weighted bipartite graphG(A,C,E),
whereA is the set of APs,C is the set of clients,
andE is the set of edges between them. There is
an edge between each APi and each clientj. The
weight of the edge from APi to client j is equal
to wij = α ln(d(i, j)).

2) Find the minimum weight bipartite matching in G,
where the capacity of every client is1, and the
capacity of an APi is Ci. In other words, among
all the maximal assignments of clients to access
points in which a client can be assigned to at most
one AP and an APi can be matched to at mostCi

clients, find the one with minimum total weight.
3) Construct a directed graphD(A∪{r}, E). For two

APs j andk, set ljk = mini∈C:x∗

ij
=1(wij − wik).

For an edgejr from AP j to r, set ljr = mj .
4) Setpj as the shortest path from APj to r in graph

D.
5) Set the power of APj, Pj = e−pj .



The AlgorithmFindPowers2outputs a set of powers
that enforces the most efficient assignment. The proof of
correctness of this algorithm is from Theorem 1, and the
fact that the shortest paths to vertexr in graphD is a
feasible solution to Linear Program 6. We will give a
formal of proof of this fact in the proof of Theorem VII
in Section 3.

The main advantage of AlgorithmFindPowers2over
Algorithm FindPowers1 is that this algorithm is combi-
natorial, and has a better running time. Moreover, as we
will show in Section VII, AlgorithmFindPowers2 can
also be applied to optimize the sum of the logarithms of
powers of APs, while maximizing throughput.

3) Multiple Preferred APs:In the previous sections,
we proved that when each client selects the AP with
the maximum RSSI, the set of powers from Algorithms
FindPowers1andFindPowers2maximizes throughput.
However, for a given set of powers, it is possible for
a client to have multiple APs with similar RSSI. We
call all these APs as this client’s preferred APs. In
such a case, a client will randomly choose among these
preferred APs, and the performance may degrade, since
the client may choose an AP other than the one in the
assignment derived above. To handle this case, we use
Algorithm FindPowers2to enforce stronger inequalities,
i.e., instead of the inequalityπ∗

j −π∗

k ≤ wij−wik, we can
put the inequalityπ∗

j −π∗

k ≤ wij −wik−β, whereβ > 0
is a given threshold (β represents the smallest signal
strength difference a client can sense). The advantage
of these stronger inequalities is that it ensures each
client has a unique preferred AP, and the performance
degradation caused by random tie breaking is avoided.
We note that this change to the linear program may make
it infeasible due to stronger inequalities. But this is a
useful heuristic, which we will use in our evaluation, to
find a set of powers that yield a unique assignment. When
the stronger inequalities cannot be satisfied, we then use
the random tie breaking for assigning a client that has
multiple preferred APs.

B. Maximizing Throughput for Heterogeneous Demands

In this section, we develop a power control algo-
rithm for heterogeneous client demands. We consider
two cases: splittable and unsplittable demands. Under
unsplittable demands, we gain the benefit of satisfying
a demand only if we satisfy this demand completely.
This setting is motivated by real-time services, e.g., the
video streaming. In these services, if the demand cannot
be completely satisfied, it is better not to service the
demand, because the video requires certain bandwidth
to achieve an acceptable performance. In the case of
splittable demands, the throughput from a demand is pro-
portional to the fraction of the demand that is provided by

APs. The main application of this setting is in the best-
effort services such as web browsing. In these settings,
we can derive a benefit even if we cannot transfer files
at a desirable data rate.

1) Unsplittable Heterogeneous Demands:It is not
hard to see that under unsplittable demands the problem
of maximizing throughput is NP-complete, since the
assignment problem is a multiple knapsack problem [10].
In fact, a polynomial time1 + ǫ-approximation (PTAS)
is known for the multiple knapsack problem [10]. We
observe that the power assignment problem to maximize
throughput for the unsplittable heterogeneous demands is
APX-hard. The proof of this fact is via a reduction from
the generalized assignment problem(GAP) [10], where
each item can be assigned to a subset of bins (and not
to all of them). We can reduce an instance ofGAP

to the power assignment problem by putting very large
distances between the items and bins that cannot hold
these items. The details of this reduction is omitted in
the interest of brevity.

Here, we present an algorithm based on linear pro-
gramming. This algorithm solves the problem approxi-
mately when the number of clients is much larger than
the number of APs. LetDi denote the demand from
client i. The linear program formulation in Section IV-A
changes to:

minimize
∑

i∈C,j∈A

wijxij (7)

subject to ∀i ∈ C
∑

j∈A

xij = 1

∀j ∈ A
∑

i∈C

Dixij ≤ Cj

∀i ∈ C, j ∈ A xij ≥ 0

The dual program becomes:

maximize
∑

i∈C

λi +
∑

j∈A

Cjπ
∗

j (8)

subject to ∀i ∈ C, j ∈ A Diλi + π∗

j ≤ wij

∀i ∈ C λi ≥ 0

We can show that when the number of clients is
much more than the number of APs, Linear Program 7
has solutions in which most of thexij ’s are either0
or 1. These solutions are simply the corner points of
the polyhedra. We call them extreme point solutions.
They are also called basic feasible solutions. We use the
following algorithm to find power assignment.

FindPowers3Algorithm for heterogeneous demands

1) Find the optimum extreme point solutionx∗

ij to
the Linear Program (7), and its corresponding dual



optimum λ∗

i and π∗

j to the dual Linear Program
(8).

2) SetPj := eπj .
3) Connect every clienti to the APj for which x∗

ij =
1 if such j exists. Otherwise do not servei.

4) Scale all powers by the same factor such thatPj ≥
Mj , whereMj is the minimum power by which
AP j can reach all the clients that it has to serve.

As we noted before, unlike the Linear Program 2,
the primal Linear Program (7) does not always have an
integral (0 or 1) solution. In other words, it might be the
case that for somei and j, 0 < x∗

ij < 1. We will say
that clientj is assigned integrally ifx∗

ij = 1 for somei.
Otherwise, we will say that it is fractionally set.

The following facts are implied by the theory of linear
programming. The proof can be found in [34].

Lemma 1:The extreme point optimum solution to the
primal programx

∗ assigns at leastN −K clients to APs
integrally, whereN is the number of clients, andK is
the number of APs.

Proof: Let r denote the number of variables in the
primal Linear Program 7. An extreme point solution is
defined by the constraints in the linear program, where
the inequality constraints are changed to equality con-
straints. Among theser independent variables, at least
r−K−N should be of typexij ≤ 0. Their corresponding
variables will be zero due to the last constraint in Linear
Program 7. Therefore the number of non-zerox∗

ij ’s are at
mostN + K. Let α andβ denote the number of clients
that are assigned integrally and fractionally, respectively.
We haveα + β = N and α + 2β ≤ N + K (since for
each client assigned fractionally, there are at least two
non-zerox∗

ij ’s). Thereforeα ≥ N − K.
In most cases, the number of clients is much larger

than the number of APs. In that case even by dropping
the clients that are assigned fractionally by the above
program, the total satisfied demand is still close to the
optimal.

The proof of the next lemma is similar to that of The-
orem 1, and follows from the complementary slackness
conditions.

Lemma 2:The assignment of clients to the APs de-
fined by the optimum primal solutionx∗ can be achieved
by setting the power of APs according toPj = eπ∗

j .
In other words, the optimal primal solution assigns the
clients i only to the AP j for which the ratio Pj

dα
ij

is
maximized.

Proof: From the dual program, it is clear that
Diλ

∗

i = minj∈A(wij −π∗

j ). From complementary slack-
ness conditions,x∗

ij > 0 if and only if Diλ
∗

i +π∗

j = wij .
This means thatx∗

ij > 0 if and only if wij − π∗

j is
minimized (or equivalently,π∗

j − wij is maximized).
Since π∗

j = lnPj and wij = α ln dij , x∗

ij > 0 if and
only if Pj

dα
ij

is maximized.

2) Splittable Heterogeneous Demands:The algo-
rithms for splittable heterogeneous demands is similar
to that of the homogeneous demands.

Here we give two ways to solve this problem. The
first algorithm is to split the demands into small uniform
demands and use AlgorithmFindPowers2. The second
algorithm is based on solving the Linear Programs 7
and 8. As we noted in the previous section, the primal
Linear Program 7 does not always have an integral (0 or
1) solution. However, as we allow splitting the demands,
the fractional solution to Linear Program 7 is a valid
solution. Therefore, we can use the optimal solution to
the dual Linear Program 8 to enforce the most efficient
assignment of clients to APs. The proof of correctness
of this algorithm follows from the proof of Theorem 1.

V. M AXIMIZING THROUGHPUT FOR ADISCRETESET

OF POWERS

In this section, we consider a variation of the problem
in which the powers of APs can only take certain discrete
values. This problem is motivated by the fact that APs
from many vendors have only a handful power levels
(e.g., Cisco Aironet [11]). In this case, the solution of
our linear programming is not directly applicable because
the power values computed by the linear program could
be arbitrary fractional numbers. One approach to remedy
this issue is to round the solution of our linear program
to the closest discrete values that APs can take. However
rounding may introduce significant performance degrada-
tion. In this section, we present an algorithm that finds
the power assignments in a more direct way.

Assume that the power of an APa ∈ A can be set to
one of the values from the set{P a

1 , P a
2 , ..., P a

h }, where
P a

1 ≥ P a
2 ≥ . . . ≥ P a

h = 0. Our algorithm starts by
setting the power of all APs to the maximum power level,
P a

1 ; then it tries to improve the solution in every step as
follow.
FindPowers4Algorithm for discrete powers

1) Assign the maximum powerP a
1 to each APa.

2) while there exists an APa of powerP a
ia

, 1 ≤ ia ≤
h, such that the AP cannot accommodate all the
demands assigned to it, we change the power of
AP a to P a

ia+1.
3) Among all power configurations generated in the

above step, choose the one that yields the highest
throughput.

It is easy to see that the above algorithm is very
efficient: the number of iterations in thewhile loop is
at mosthK. Therefore the algorithm has a polynomial
running time. Next we prove the optimality of the
algorithm under a certain condition, which is formally
specified in Theorem 2.

Theorem 2:If there exists a power assignment such
that each APa has capacity to accommodate all the



demands assigned to it, AlgorithmFindPowers4 finds
such an assignment in polynomial time.

Proof: Let F be the feasible (optimal) power
assignment. Suppose for1 ≤ ia ≤ h, the power of
AP a in F is P a

ia
, and the AlgorithmFindPowers4

assigns APa with power P a
i′a

. It is easy to see that
if i′a ≤ ia, we find a power assignment in which all
clients’ demands are served without overloading APs
(since the algorithm terminates at non-zero power only
when it finds a solution in which all client demands are
satisfied). Next we provei′a ≤ ia holds. Suppose by
contradiction, during thewhile loop, there is an APa
to which for the first time we assign a powerP a

i′a
for

i′a = ia + 1. Since the powers of all other APs are at
least the power in the optimal power assignment, the
total demands of clients that prefer APa can be at most
the total demands assigned toa in F . This cannot be
more than its capacity according to the definition ofF .
Therefore it is a contradiction.

Note that the above theorem holds even in the case
where the demands are heterogeneous and unsplittable.

We are assuming that for any power assignment to
APs, every client has a unique preferred AP. When
a client has multiple preferred APs (i.e., RSSI from
multiple APs are equal or similar to each other), the client
has a well-defined deterministic rule for breaking the
tie. This tie-breaking rule could be different for different
clients. This is a necessary condition, because sometimes
it is impossible to set the powers of APs so that every
client observes different signal strengths from different
APs. Even if such a power assignment exists, it is NP-
hard to find it. The proof of this fact is in our technical
report [4].

VI. DYNAMIC POWER ASSIGNMENT

So far we examine how to control power to optimize
throughput based on given client demands. When clients’
demands are continuously changing, it is often desirable
to find an assignment without requiring many clients to
handoff to different APs, since the overhead of handoff
is non-negligible. In this section, we develop a dynamic
algorithm for this purpose.

We assume that a client will not switch to a different
AP, unless its RSSI from a new AP is improved by
a threshold. We define a clienti to be happy if it is
connected to an APj, and the RSSI fromj is at least
1/γ ∗max(RSSIa) for all a ∈ A, wheremax(RSSIa)
denotes the maximum RSSI received from all APs, and
γ is larger than 1.

Our algorithm starts with the existing assignment of
clients to APs, and finds a number of changes to the
existing assignment so that all the clients are happy after
the changes. We use the auction algorithms introduced
in [9] to achieve this.

1) Start with the current power assignment and cur-
rent mapping of clients to APs.

2) Repeat the following procedure until either all the
clients are happy or all the APs are completely
utilized:

a) If a client i is not happy, it tries to find an
AP j, for which πj − wij is maximized. It
sends an association request to APj.

b) If an AP j receives an association request
from a client i, it accepts the request when
it has capacity. Otherwise, it sorts the clients
that are connected or requested to connect in
the decreasing order of theirλi−wij . Let k be
the highest index such that clients1, 2, · · · , k
can be served by APj. j accepts these clients,
and sets its power toλk − wkj − ǫ.

At the end of the algorithm, it might be the case that
the powers of all APs are decreased several times. We
can re-normalize by multiplying all the power values by
a constantδ. Clearly, this will not affect the assignment
of clients to APs.

The main advantage of the above algorithm is that
it tries to only make local adjustments to the existing
connections. Moreover, since the changes in the powers
are powers ofγ, the algorithm converges to the right
solution very quickly. Refer to [9] for a detailed analysis
of auction algorithms.

VII. POWER OPTIMIZATION

In the previous section, we developed power control
algorithms that maximize system throughput. In this sec-
tion, we study how to simultaneously maximize system
throughput and minimize APs’ power. Power minimiza-
tion is helpful to reduce interference among different
APs. For ease of explanation, we consider homogeneous
client demands. The same approach can be applied to
splittable heterogeneous client demands.

First, we consider the problem of optimizing the power
for a given mapping of clients to APs. In this case, we can
write Linear Program 6, and optimize the power given the
assignment of APs to clients. In the following theorem,
we prove that the shortest paths to vertexr in graphD of
Algorithm FindPowers2 are in fact the optimal solution
to Linear Program 6. This in turn gives a combinatorial
algorithm to optimize the sum of logarithms of powers
for a given assignment.

Theorem 3:Let (pj |j ∈ A) be the length of the
shortest path from vertexj to vertex r in graph D
of Algorithm FindPowers2. Thenpj ’s are the optimal
solution to the Linear Program 6.

Proof: Sincepk is the shortest path fromk to r,
pk ≤ pj + lkj for any j ∈ A. So pj − pk ≤ wij − wik,
and the vector(pj |j ∈ A) is a feasible solution for the
Linear Program 6. In order to show that this vector is



the optimal solution to the Linear Program 6, we prove
that for any feasible solution(p′j |j ∈ A), p′j ≤ pj for
any j ∈ A. We prove this by induction on the number
of edges on the shortest path fromj to r. If the number
of edges on the shortest path tor is equal to 1, then
p′j ≤ mj = pj . Assume thatpj ≥ p′j for all node j
with the shortest path of size at mostt edges between
j and r, we prove that for a nodek with the shortest
path ofk + 1 edges fromj to r. Sincepk is the shortest
path, there exists a vertexk′ for which pk = pk′ + lkk′ .
The size of the path fromk′ to r is at most t, thus
p′k′ ≤ pk′ . As (p′j |j ∈ A) is a feasible solution, we
know thatp′k−p′k′ ≤ wik−wik′ for any i ∈ C for which
xik′ = 1. Thusp′k − p′k′ ≤ lkk′ . Using these inequalities
we getp′k ≤ p′k′ + lkk′ ≤ pk + lkk′ = pk. This proves
the induction step.

A few comments follow. First, our power minimiza-
tion is conditioned on maximizing throughput. This is
achieved by ensuring the client-to-AP assignment is the
same as that derived from Section IV-A or Section IV-B.

Second, we can use a similar approach to minimize
the sum of APs’ powers (while maximizing system
throughput). This is done by minimizing the convex
function

∑
j∈A Pj =

∑
j∈A e−π∗

j instead of minimizing∑
j∈A −π∗

j in Linear Program 6 usinginterior point
methods(see e.g., [19]).

Finally, we note that minimizing the power while max-
imizing the system throughput is sometimes hard. We
prove this by showing that finding an assignment of all
clients to APs with minimum total power and maximum
throughput is APX-hard. Refer to our technical report [4]
for the proof.

VIII. E VALUATION METHODOLOGIES

We evaluate the combinations of three AP power
control schemes with two client association schemes.

• Basic power control: all APs are assigned the same
fixed power.

• Continuous power control: the APs’ power is deter-
mined by our power control algorithm, described in
Section IV-B, for continuous power assignment.

• Discrete power control: the APs’ power is deter-
mined by our power control algorithm, described
in Section V, for discrete power assignment. The
discrete power levels are based on Cisco Aironet
350 series [11]. It has the following 6 power levels:
20 dBm, 17 dBm, 15 dBm, 13 dBm, 7 dBm, and 0
dBm.

• Basic client association: a client associates with the
AP that has the highest RSSI.

• Smart client association: a client associates with the
AP with the maximum available capacity among all
the APs whose RSSI exceeds its received sensitivity
threshold.

Table VIII summarizes the five approaches that we
compare, and their notations.

Name AP Client
basic/basic fixed power assignment RSSI-based association
basic/smart fixed power assignment load sensitive association
cont./basic smart power assignment RSSI-based association

discrete/basic discrete power assignment RSSI-based association
cont./smart continuous power assignment load sensitive association

TABLE I

THE FIVE SCHEMES THAT WE EVALUATE.

We use the total throughput as the performance metric.
It represents the total amount of client demand that
can be serviced. A higher throughput indicates a more
efficient resource utilization, and hence is preferred.

We use both synthetic traces and real traces for our
evaluation. Evaluation using synthetic traces gives us
intuition about how the performance benefit varies with
different parameters. We examine the impact of the
following parameters:

• Total offered load: the ratio between the total client
demand and the sum of all APs’ capacity.

• The number of APs
• The distribution of client locations
We use two types of distributions to generate client

locations: uniform distribution and normal distribution.
When a normal distribution is used, we generate clients’
x andy coordinates such that they each follows a normal
distribution with the mean at the center of the area.
Normal distribution reflects the case where clients are
more concentrated in certain area. We vary the standard
deviation in the normal distribution to generate different
degrees of spatial locality.

In addition, we also use real traces to estimate the
performance benefit of our power control schemes in a
realistic environment. Table VIII shows the traces that
we use in our evaluation. These traces cover a diverse
set of environments: university campus, conference, and
a large corporate. (Dartmouth traces span many campus
buildings, and we use the traces from three buildings
labeled as AcadBldg10, SocBldg4, LibBldg2 in their
traces. We report the performance results for LibBldg2,
and the results for the other two buildings are similar.)

We use the traces in the following way. All the traces
record the amount of traffic generated from each client.

Location Time # APs # clients
UCSD SIGCOMM traces [40] Aug. 29-31, 2001 4 195

Dartmouth traces [12] Mar. 2001 ≈ 20/bldg. variable
Stanford campus traces [38] Sept. 1999 12 74

IBM traces [20] Aug. 2002 variable variable

TABLE II

FOUR TRACES USED IN OUR EVALUATION



For every 5-minute time interval, we compute the average
data rate for each client, and use it as the client demand.
In order to examine the impact of different load condi-
tions, we also scale the traffic so that the total offered
load varies from 25% to 100%. During the scaling, we try
to maintain the relative data rate from different clients;
for cases when a client’s demand after scaling exceeds
an AP’s capacity, we split the demand into multiple
clients, each assigned with at most 2Mbps. Dartmouth
and UCSD traces both record the APs’ locations, so we
use them for placing the APs. For the other two traces,
we randomly place the APs in a 500m*500m area. Since
none of the traces record clients’ location, we have to
synthetically generate clients’ location. As before, we
use both uniform and normal distribution for placing the
clients. Therefore the use of real traces mainly allow us to
explore how realistic traffic distributions among different
clients affect the performance of cell breathing.

Unless otherwise specified, we use the signal attenu-
ation factorα = 4, and AP’s capacity is 5 Mbps, which
approximates the data rate in 802.11b after taking into
account of the MAC overhead.

IX. EVALUATION RESULTS

In this section, we present our evaluation results using
both synthetic and real traffic traces.

A. Homogeneous client demand

First, we evaluate the different schemes using homo-
geneous client demand. In our evaluation, we randomly
place clients and APs in a 500m*500m area, and all
clients generate 1Mbps traffic.

Figure 1 shows the total throughput as we vary the
offered load. We make the following observations. First,
our power control schemes (both discrete and contin-
uous assignments) out-performs the common practice
(basic/basic), which uses a fixed power and lets the
clients select APs based on RSSI. The performance of
our approaches is close to that of using the smart AP
selection (basic/smart and cont./smart), which serve as
the upper bound. Second, the continuous assignment
yields better performance than the discrete assignment,
since the latter has more limited power choices. (Note
that it is not guaranteed that there exists a discrete power
assignment that results in maximum throughput.) Third,
the cont./smart overlaps with basic/smart, which suggests
that the AP power control scheme does not interfere with
the smart AP selection implemented at the clients. Finally
we observe that the performance benefit of the smart
AP selection and our power control schemes tends to
increase with the offered load. This is consistent with
our expectation, since load balancing is more useful for
high load situations.
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Fig. 1. Performance comparison under varying offered load, where
10 APs are deployed, and each client generates 1Mbps demand.

Figure 2 shows the total throughput as we vary the
number of APs deployed in the area. The benefit of
load balancing achieved using either power control or the
smart AP selection increases with the number of APs.
This is because when the number of APs increases, it
is more likely to have a lightly loaded AP nearby to
absorb some load from overloaded APs. In addition, the
curves of continuous and discrete assignments overlap,
both of which are close to the performance of the smart
AP selection.
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Fig. 2. Performance comparison for a varying number of APs, where
the offered load is 1, and each client generates 1Mbps demand.

Next we examine the impact of the distribution of
client locations. Figure 3 shows the performance as we
vary the standard deviation (in a normal distribution),
which is used to generate client locations. Note that a
smaller standard deviation indicates a stronger spatial
locality in the client load. As we can see, for small
deviations (i.e., most of clients are concentrated in a
certain area), the throughput under the basic scheme is
much lower than the sum of APs’ capacity. This indicates
inefficient resource utilization. In comparison, the load
balancing via continuous power assignment improves
throughput by up to a factor of 9. The performance
benefit of discrete power control is lower, but still signifi-
cant: it often doubles the throughput in such cases. When
the clients are more evenly distributed, the performance
benefit of load balance reduces, since in such cases APs’
load is already evenly distributed even under the basic
scheme. Finally, as before, the smart AP selection works



equally well with and without the power control at the
APs. Therefore in the remaining evaluation, when clients
apply the smart AP selection, we only consider APs’
using a fixed power (since the performance of APs’ using
power control is similar).
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B. Real WLAN traces

In this section, we present the performance results
based on real WLAN traces.

Figure 4 shows time series plots of the performance
results for the four WLAN traces. In all cases, our
continuous power control algorithm achieves similar
throughput as the smart AP selection scheme, and signifi-
cantly outperforms the basic scheme. The discrete power
assignment performs slightly worse than the continuous
power assignment due to limited flexibility in power
selection. However its throughput is still considerably
better than that of the basic scheme.

To examine the impact of different offered load, we
scale all clients’ traffic by a factor. As shown in Figure 5,
when the network is lightly loaded, all the schemes
yield comparable performance; when the network is
heavily loaded, the three load balancing schemes achieve
significantly higher throughput than the basic scheme,
by up to 50%. In addition, the performance difference
between the continuous and discrete power assignments
increases as the load increases. This is because during
a high load, the number of good power assignments is
fewer, which makes the discrete assignment harder to
find them due to limited power choices.

We further study how the distribution of client lo-
cations affect the performance. Figure 6 summarizes
the results. The performance benefit of power control
scheme is significant, by up to an order of magnitude
of throughput improvement. The improvement is larger
when clients are unevenly distributed (i.e., small standard
deviation). This is for the same reason as described in
Section IX-A.

C. Summary

To summarize, in this section we evaluate our power
control algorithms using both synthetic and real WLAN

traces. Our results show that our power control can sig-
nificantly out-perform the popular fixed power schemes,
and perform comparably to the smart AP selection that
require cooperation between clients and APs. Moreover,
the performance benefit is highest for an uneven spatial
distribution of client load. Such scenarios are quite
common in practice because clients tend to localize
themselves in particular areas (e.g., classrooms, meeting
rooms, airport gate area with departing flights). These
results demonstrate the effectiveness of the cell breathing
approach for handling sporadic congestion and improv-
ing resource utilization.

X. CONCLUSION

We have developed a set of load balancing algo-
rithms for handling sporadic client congestion in a wire-
less LAN. Our algorithms provide capacity where it
is needed, and when it is needed. Consequently, more
clients are satisfied and the overall utilization of the
network is improved.

Existing solutions for handling congestion fall short
since they either result in inefficient utilization of re-
sources and poor performance, or require changes to
the client software, which is hard to realize in practice.
Our proposal, cell breathing, achieves load balancing by
dynamically reconfiguring cell boundaries. It does not
require changes to the client software or the standard,
thereby making it rapidly deployable. Cell breathing is
implemented by adjusting the power at each AP in the
network. We show that our power control algorithms
work for both homogeneous and heterogeneous client de-
mands. In addition, the dynamic version of the algorithm
can adapt to changes in client demands by maximizing
the total satisfied demand while limiting the number of
clients that switch APs.

We demonstrate the effectiveness of cell breathing,
and show that it significantly out-performs the popular
fixed power schemes and perform comparably to the
sophisticated load balancing techniques where the client
and the APs are required to cooperate with one another.
Under high load, we show that with cell breathing
the throughput improves by up to 50% for uniform
distributions of client locations, and by up to an order
of magnitude for non-uniform client distributions.
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Fig. 4. Time series plots of performance results using real WLANtraces for uniform client locations. The offered load afterscaling is 1.
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Fig. 5. Performance results using different WLAN traces undervarious offered load and a uniform distribution of client locations.

[5] A. Balachandran, P. Bahl, and G. M. Voelker. Hot-spot congestion
relief in public-area wireless networks. InSIGCOMM Comput.
Commun. Review, 2002.

[6] A. Balachandran, G. M. Voelker, P. Bahl, and V. Rangan. Char-
acterizing user behavior and network performance in a public
wireless lan. InProc. of ACM SIGMETRICS, Jun. 2002.

[7] M. Balazinska and P. Castro. Characterizing mobility andnetwork
usage in a corporate wireless local-area network. InProc. of ACM
MOBISYS, May 2003.

[8] Y. Bejerano, S.-J. Han, and L. E. Li. Fairness and load balancing
in wireless lans using association control. InProc. of ACM
Mobicom, 2004.

[9] D. P. Bertsekas. Linear network optimization: Algorithmsand
codes.M.I.T. Press, Cambridge, MA, 1991.

[10] C. Chekuri and S. Khanna. A ptas for the mulitiple knapsack

problem. InSODA, pages 213–222, 2000.
[11] Cisco aironet 350 series. http://www.cisco.com/warp/public/cc/pd/witc/ao350ap/.
[12] Dartmouth campus-wide wireless traces.

http://www.cs.dartmouth.edu/ campus/.
[13] N. Devanur, C. Papadimitriou, A. Saberi, and V. Vazirani. Market

equilibrium via a primal-dual-type algorithm. InFOCS, 2002.
[14] L. Du, J. Bigham, and L. Cuthbert. A bubble oscillation algorithm

for distributed geographic load balancing in mobile networks,
March 2004.

[15] J. Edmonds. Maximum matching and a polyhedron with0, 1-
vertices.J. Res. Nat. Bur. Standards Sect. B, 69B:125–130, 1965.

[16] J. Edmonds. Paths, trees, and flowers.Canad. J. Math., 17:449–
467, 1965.

[17] Y. Fukuda, T. Abe, and Y. Oie. Decentralized access point selec-
tion architecture for wireless lans – deployability and robustness



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t
o
t
a
l
 
t
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
)

normalized standard deviation in user locations

basic/basic
cont./basic
discrete/basic
basic/smart

 0

 10

 20

 30

 40

 50

 60

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t
o
t
a
l
 
t
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
)

normalized standard deviation in user locations

basic/basic
cont./basic
discrete/basic
basic/smart

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t
o
t
a
l
 
t
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
)

normalized standard deviation in user locations

basic/basic
cont./basic
discrete/basic
basic/smart

(a) UCSD traces (b) Stanford traces (c) IBM traces
Fig. 6. Performance results using different WLAN traces for nonuniform client locations. We vary the standard deviation in a normal distribution
used to generate the client locations

for wireless lans. InProc. of IEEE VTC, September 2004.
[18] R. Garg and S. Kapoor. Auction algorithms for market equilib-

rium. In STOC, pages 511–518, 2004.
[19] H. Hindi. A tutorial on convex optimization. InProceedings of

American Control Conference, 2004.
[20] Wireless traces at ibm corporation. http://nms.lcs.mit.edu/ mbal-

azin/wireless/.
[21] K. Jain. A polynomial-time algorithm for computing an arrow-

debreu market equilibrium for linear utilities. InFOCS, 2004.
[22] G. Judd and P. Steenkiste. Fixing 802.11 access point selection.

In ACM SIGCOMM Poster, August 2002.
[23] V. Kawadia and P. R. Kumar. Power control and clustering in ad

hoc networks. InProc. of IEEE INFOCOM, Apr. 2003.
[24] F. Kelly. Mathematical modelling of the internet.Mathamatics

Unlimited - 2001 and Beyond, Springer-Verlag, pages 685–702,
2001.

[25] D. Kotz and K. Essien. Analysis of a campus-wide wireless
network. InProc. of ACM MOBICOM ’2002, Sept. 2002.

[26] S. Low and D. Lapsley. Optimization flow control, i: Basicalgo-
rithm and convergence.IEEE/ACM Transactions on Networking,
Vol 7, pages 861–875, 1999.

[27] S. Low, L. Peterson, and L. Wang. Understanding vegas: A
duality model.Journal of ACM, 49(2), pages 207–235, 2002.

[28] Prosafe 802.11g wireless access point - model wg302.
http://www.netgear.com/products/details/WG302.php/.

[29] T. S. E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. InProc. of IEEE INFOCOM,
Jun. 2002.

[30] I. Papanikos and M. Logothetis. A study on dynamic load balance
for ieee 802.11b wireless lan. InProc. COMCON, 2001.

[31] J. Qiu and J. Mark. A dynamic load sharing algorithm through
power control in cellular cdma, September 1998.

[32] R. Ramanathan and R. Rosales-Hain. Topology control of
multihop wireless networks using transmit power adjustment. In
Proc. of IEEE INFOCOM, Apr. 2000.

[33] A. Sang, X. Wang, M. Madihian, and R. Gitlin. Coordinated load
balancing, handoff/cell-site selection, and scheduling in multi-cell
packet data systems. InProc. of ACM MOBICOM, Sept. 2004.

[34] A. Schrijver. Theory of linear and integer programming. John
Wiley & Sons, New York, 1986.

[35] A. Schrijver. Combinatorial optimization. Polyhedra and effi-
ciency, volume 24 ofAlgorithms and Combinatorics. Springer-
Verlag, Berlin, 2003.

[36] D. Schwab and R. Bunt. Characterizing the use of a campus
wireless network. InProc. of IEEE INFOCOM, March 2004.

[37] S. Singh, M. Woo, and C. S. Raghavendra. Power aware routing
in mobile ad hoc networks. InProc. of ACM MOBICOM, Sept.
1998.

[38] Wireless lan traces from stanford university.
http://mosquitonet.stanford.edu/software.html.

[39] D. Tang and M. Baker. Analysis of a local-area wireless network.
In Proc. of ACM Mobicom, Aug. 2000.

[40] Wireless lan traces from acm sigcomm’01.
http://ramp.ucsd.edu/pawn/sigcomm-trace/.

[41] V. V. Vazirani. Approximation algorithms. Springer-Verlag,
Berlin, 2001.

[42] R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang. Distributed topol-
ogy control for power efficient operation in multihop wireless ad
hoc networks. InProc. of IEEE INFOCOM, 2001.

[43] D. B. West. Introduction to graph theory. Prentice Hall Inc.,
Upper Saddle River, NJ, 1996.

[44] Wireless security auditor (WSA).
http://www.research.ibm.com/gsal/wsa/.

APPENDIX

Appendix
A general algorithm for continuous-power assignment
based on primal-dual

Now we describe a continuous power assignment al-
gorithm for a more general received power function. Our
only assumption is that the received power is proportional
to the transmission power, which holds in general even
under obstruction. We do not assume any relationship
between the received power and the distance.

We observe that there is similarity between our prob-
lem and market equilibrium problem [13], [21], [18].
Market equilibrium has two popular settings. The one
relevant to our problem is called Fisher setting. In the
Fisher setting, there are two kinds of entities:sellersand
buyers. Sellers want to sell a set of goods they have.
Buyers want to buy a set of goods that they can afford
and provides the maximum happiness, calledutility in
economics. Buyers naturally put a demand on goods from
the various sellers depending upon the prices of the goods
each seller set. The classical market equilibrium theorem
says that under certain mild conditions sellers can set
the prices so that the demand of their products is exactly
equal to the supplies they have.

Our situation is quite analogous. Instead of buyers we
have clients; instead of sellers we have APs; instead of a
supply of goods we have a capacity on each AP; Instead
of prices we have power levels at each AP. Since we
have a simple setting: each client connects to the AP that
gives the best reception, we discuss the simplest setting
of market equilibrium, Fisher setting with linear utilities
(i.e., each buyer’s utility for a set of goods is a linear
function).



There has been numerous work on market equilibrium
problem with linear utilities. There are three kinds of
algorithms currently known: (i) convex programming
based [21], (ii) primal-dual based [13], and (iii) auction
based [18]. The first kind of algorithms, theoretically
has provided the fastest known running time and mathe-
matically has been able to provide various properties of
the market equilibrium. The drawback is that these algo-
rithms need the input upfront. Auction based algorithms,
on the other hand, are truly distributed. In between are
the primal dual algorithms: they are not distributed, but
still do not require the input upfront.

Here we describe a primal-dual type algorithm. The
idea is inspired by [13], but note that there are specific
difference between [13] and this. One major difference is
the loop invariant. [13] makes sure that all the demands
subsume the supplies. From that point onwards, the
algorithm keeps trying to increase the prices and reduce
the demands so that the demands still subsume the
supplies; but not strictly, in other words total demand
is equal to the total supplies.

Clearly if we have more capacity on the APs, demand
cannot subsume the supply. If we have less capacity on
the APs, the equilibrium does not even exist. If we have
the total capacity equal to the total number of clients, we
get the solution when we get the loop invariant for the
first time. That is, if demand can subsumes supply, then
the only way in this case is that demand is equal to the
supply. So we cannot follow the loop invariant technique
of [13].

Instead we start with an arbitrary assignment of pos-
itive powers to each AP. SupposeP is the power as-
signment vector. We define theequalitygraph as follow:
one side of the equality graph include all the clients, and
the other side include all the APs. Suppose we haven
clients, and the total capacity on the AP’s is at leastn.
Let j denote the client index, andi denote the AP index.
We put an equality edge betweeni andj wheni provides
the best reception toj. Note that there can be more than
one AP that provides the best reception to a client, but
there is always at least one AP that provides the best
reception to a client.

Theorem 4:If P is the equilibrium power, the equality
graph has a complete matching for the clients, i.e., the
size of the maximum matching isn. This means that the
total throughput is maximized.

Next we prove the above theorem. Define the defi-
ciency of a power assignment as the minimum number of
clients remain unserved. In other words, the deficiency
is n minus the size of the maximum matching in the
equality subgraph. SupposeS is a set of clients. Define
the neighborhood capacity ofS as the total capacities of
all those APs that have at least one edge fromS. Suppose
the neighborhood capacity of some setS is |S|−k. The

deficiency of the power assignment is at leastk. In fact,
in every matching at leastk clients fromS itself remain
unmatched. A well known fundamental theorem in the
graph theory says that the converse is also true.

The following lemma can be proved in more than one
way, and is a well known fundamental theorem in the
graph theory. A special case of this theorem, wherek =
0, is called Hall’s theorem.

Lemma 3: If the deficiency isk, there exist a setS of
the clients such that the neighborhood capacity ofS is
|S| − k.

This lemma clearly implies that in factk unmatched
clients belong toS. We take the smallest suchS. By
using the submodularity of the deficiency function or the
supermodularity of the neighborhood capacity function,
one can prove that there exists a unique suchS. The
intuition behind taking the smallestS is that we want to
corner the unmatchedk clients as much as possible so
that we can do something for them.

SinceS hask unmatched clients, and the neighbor-
hood capacity ofS is exactlyk less than the clients in
S, all the neighbor capacity will be assigned toS, and
S still needs some more neighborhood capacity. In this
case, we take all the APs not in the neighborhood ofS,
and start raising power on them. We do not raise powers
arbitrarily. Instead we do it in a systematic fashion. We
multiply the power of every AP not in the neighborhood
of S by a variablex. We initialize x = 1. We start
increasing the value ofx gradually. The following facts
can be easily proved by our power model of received
powers.

• All the edges from the complement ofS to the
neighborhood ofS do not remain equality edges,
so we remove them. Note that these edges are not
needed in the first place.

• All other equality edges remain equality edges.
• Eventually some edge fromS to the complement of

the neighborhood set ofS will be eventually added
into the set of equality edges. At this point, we stop
increasingx. We call it a phase.

The following lemma is self evident.
Lemma 4:After a phase, exactly one of the following

two events will happen.
• The size of the smallest set with deficiencyk

has increased. In fact, the new smallest set with
deficiencyk containsS.

• The deficiency of the new power assignment has
decreased. We call it an iteration.

The algorithm terminates when there is no deficient
set. Clearly the number of iterations in this algorithm
is at most the number of clients, and in each iteration
the number of phases is at most the number of clients.
Hence the algorithm terminates in timeO(n2) number
of matching computations.
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