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Abstract

Given a graph with costs on the edges, the power of a node is the maximum cost of an edge
leaving it, and the power of the graph is the sum of the powers of its nodes. Motivated by
applications in wireless networks, we consider several network design problems under the power
minimization criteria. Given a graph G = (V, E) with costs on the edges and requirements r(v)
for each v ∈ V , the Min-Power Edge-Multi-Cover problem (MPEMC) is to find a min-power
subgraph so that the degree of every node v is at least r(v). We give an O(log n)-approximation
algorithms for MPEMC (improving the previously best known O(log4 n)-approximation [17]);
this implies an O(log n+α)-approximation algorithm for the undirected Min-Power k-Connected
Subgraph (MPk-CS) problem, where α is the best known approximation for the min-cost variant
of the problem. (Currently, α = O(ln k) for n ≥ 2k2 and α = O(ln2 k·min{ n

n−k ,
√

k
ln n}) otherwise.)

We also consider the case of small requirements. Specifically, some of our approximation ratios
are: 3/2 for MPEMC with r(v) ∈ {0, 1} (improving the ratio 2 by [17]) and 3 2

3 (improving the
ratio 4 by [6]) for the min-power 2-connected and 2-edge-connected spanning subgraph problems.
Finally, we give a 4rmax-approximation algorithm for the undirected min-power Steiner Network
problem: find a min-power subgraph that contains r(u, v) pairwise edge-disjoint paths for every
pair u, v of nodes.
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1 Introduction

1.1 Motivation

Wireless networks are an important subject of study due to their extensive applications. A large
research effort focused on designing fault-tolerant networks while minimizing the power consump-
tion of the stations of the network. The power consumption of a station determines its transmission
range, and thus also the stations it can send messages to; the power typically increases at least
quadradically in the transmission range. Assigning power levels to the stations (nodes) determines
the resulting communication network. Conversely, a given communication network incures at every
node v only a cost of a direct transmission to the farhest node from v. In contrast, in wired net-
works every two stations that need to communicate directly incure a cost. We study the design
of symmetric wireless networks that meet some prescribed connectivity or degree properties, and
such that the total power is minimized.

An important network property is fault-tolerance, which is often measured by node-connectivity
or the degrees of the nodes in the network. These variants of fault-tolerant power-minimization
problems were already extensively studied, c.f., [2, 5, 16, 17, 9]. The simplest connectivity problem
is where we require the network to be connected. In this case, the min-cost variant is just the min-
cost spanning tree problem, while the min-power variant is APX-hard [9]. A 5/3-approximation
algorithm for the min-power spanning tree problem is given in [2].

1.2 Notation and basic definitions

Unless stated otherwise the graphs are assumed to be undirected. Let G = (V, E ; c) be a network,
that is (V, E) is a (possibly directed) graph and c is a cost function on E . Let n = |V | and m = |E|.
We sometimes write G = (V, E) and refer to G as graph. Let G = (V,E) be a spanning subgraph
of G. For v ∈ V , the power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an edge in G

incident to v. In directed graphs, p(v) is the maximum cost of an edge leaving v, while the edges
entering v do not affect its power. The power of the graph is the sum of the powers of its nodes.

For disjoint X, Y ⊆ V let δG(X, Y ) = δE(X, Y ) be the set of edges from X to Y in E, and let
d(X, Y ) = |δG(X, Y )| be the number of edges in G going from X to Y . We sometimes omit the
subscripts G and E if they are clear from the context. For brevity, δE(X) = δE(X, V − X), and
dE(X) = |δE(X)| is the degree of X.

1.3 Problem Formulation

Given a network G = (V, E ; c), our goal is to find a low power communication network, that is, a low
power subgraph G = (V,E) of G that satisfies some prescribed property. A fundamental property
is to satisfy prescribed degree requirements. Given an integral requirement function r on V , we say
that G (or E) is an r-edge cover if dG(v) ≥ r(v) for every v ∈ V . In the case of directed graphs we
require that the indegree of v in G is at least r(v). We consider the following fundamental problem:

Min-Power Edge-Multi-Cover (MPEMC):
Instance: A network G = (V, E ; c) and requirements {r(v) : v ∈ V }.
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Objective: Find a min-power subgraph G = (V,E) of G so that G is an r-edge cover.

The budgeted version of the problem is:

Power Budgeted Maximum Edge-Multi-Coverage (PBMEMC):
Instance: A network G = (V, E ; c) with requirements {r(v) : v ∈ V } and a power budget P .
Objective: Find a subgraph G of G with p(G) ≤ P and maximum

∑
v∈V min{dG(v), r(v)}.

MPEMC naturally arises in applications. For example, given designated sets A of ”suppliers”
and B of ”clients” (A,B may not be disjoint), we seek to design a low power communication network
in which every client can communicate with at least one supplier. The fault-tolerance variant of
this scenario requests reliability of communication: each b ∈ B needs to be able to communicate
with at least r(b) suppliers from A.

A (simple) graph is k-node-connected if it contains k internally-disjoint uv-paths between every
pair u, v of its nodes. In power optimization, it is more natural to study crashes of nodes rather
than edges. A central min-power fault-tolerance connectivity problem is:

Min-Power k-Connected Subgraph (MPk-CS):
Instance: A graph G = (V, E) with costs on the edges, and an integer k.
Objective: Find a min-power vertex k-connected spanning subgraph G of G.

In the edge-connectivity variant Min-Power k-Edge Connected Subgraph (MPk-ECS)
problem, the paths are required to be only edge disjoint. We study a generalization:

Min-Power Steiner Network (MPSN):
Instance: A network G = (V, E ; c) and requirement r(u, v) for every node pair u, v ∈ V .
Objective: Find a min-power subgraph G of G so that G contains r(u, v) pairwise edge-disjoint

uv-paths for every u, v ∈ V .

Our main results are for the undirected case, but sometimes we will need to discuss min-power
problems on directed networks. Note that in this case p(v) is the maximum cost of an edge
leaving v, while the degree requirements are on the number of edges entering v. For example, in
MPEMC the indegree of a node v should be at least r(v), while in PBMEMC we want to maximize∑

v∈V min{d+
G(v), r(v)}, where d+

G(v) is the indegree of v in G.

Given an instance of a problem, we assume that a feasible solution exists; otherwise our algo-
rithms can be easily modified to return an error message. Let opt denote the optimal solution value
of an instance at hand.

1.4 Previous work

Previous results on MPEMC: The Min-Cost Edge Multicover problem is solvable in polynomial
time c.f., [10], while the min-power variant MPEMC is APX-hard [17]. The previously best known
approximation ratio for MPEMC is min{rmax + 1, O(log4 n)} due to Hajiaghayi et. al [17]. It
is interesting to note that the directed MPEMC generalizes the classic Min-Cost Set-Multicover
problem; the later is a particular case where for every node v ∈ V the costs of the edges leaving
v are the same. In the same way directed PBMEMC generalizes the Cost-Budgeted Maximum
Coverage problem, that admits a (1 − 1/e)-approximation algorithm [20], which is tight unless
P=NP. The algorithm of [1] can be used to approximate the directed PBMEMC problem within
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ratio (1−1/e) and the directed MPEMC within ratio H(∆), where ∆ is the maximum outdegree of
a node in G, and H(k) denotes the kth Harmonic number. The details are omitted in this extended
abstract.

Previous results on connectivity problems: Min-cost connectivity problems were extensively
studied, see surveys in [19] and [24]. The best known approximation ratios for the Min-Cost k-
Connected Subgraph (MCk-CS) problem are O(ln2 k · min{ n

n−k ,
√

k
ln k}) for both directed and

undirected graphs [23], and O(ln k) for undirected graphs with n ≥ 2k2 [8]. It turns out that
(for undirected graphs) approximating MPk-CS is closely related to approximating MCk-CS and
MPEMC, as shows the following statement.

Theorem 1.1 ([17])
(i) If there exists an α-approximation algorithm for MCk-CS and a β-approximation algorithm for

MPEMC then there exists a (2α + β)-approximation algorithm for MPk-CS.
(ii) If there exists a ρ-approximation for MPk-CS then there exists a (2ρ + 1)-approximation for

MCk-CS.

One can combine various values of α, β with Theorem 1.1 to get approximation algorithms for
MPk-CS. In [17] the bound β = min{k + 1, O(log4 n)} was derived. The best known values for α

are: α = d(k + 1)/2e for 2 ≤ k ≤ 7 (see [3] for k = 2, 3, [11] for k = 4, 5, and [22] for k = 6, 7);
α = k for k = O(log n) [22], α = 6H(k) for n ≥ k(2k − 1) [8], and α = O(ln k ·min{

√
k, n

n−k ln k})
for n < k(2k − 1) [23].

Thus for undirected MPk-CS the following ratios follow: 3k for any k, k + 2d(k + 1)/2e for
2 ≤ k ≤ 7, and O(log4 n) unless k = n − o(n). Improvements over the above bounds are known
only for k ≤ 2. Calinescu and Wan [6] gave for k = 2 a 4-approximation algorithm for undirected
MPk-CS. They also gave a 2k-approximation algorithm for undirected MPk-ECS for arbitrary k.

For results on directed min-power connectivity problems see [5] and [26].

1.5 Our Contribution

The previous best approximation ratio for MPEMC was min{rmax + 1, O(log4 n)} [17]. We prove:

Theorem 1.2 The undirected MPEMC admits an O(log n)-approximation algorithm.

The previously best known approximation ratio for MPk-CS was O(α + log4 n) [17], where α is
the best ratio for MCk-CS. From Theorems 1.2 and 1.1 we get:

Theorem 1.3 Undirected MPk-CS admits an O(α + log n)-approximation algorithm, where α is
the best ratio for MCk-CS.

For the special case in which the cost of edges satisfy (weak) triangle inequalities, we can design
an O(log n)-approximation for MPk-CS. This setting makes sense for geometric graphs that is
justified in the the setting of wireless networks1. In this algorithm, for the second step, we use a
constant-factor approximation algorithm for metric MCk-CS by Khuller and Ragavachari [21]. This

1See [16] for details of the weak triangle inequality and the motivation in wireless networks.
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proof can be done by proving the power variant of Lemma 4.6 in [21]. The description and analysis
of this algorithm is left to the full version of the paper.

Remark It is rare that min-power and min-cost problems would be related with respect to ap-
proximation. However, Theorem 1.3 implies that unless MCk-CS admits a better than O(log n)
approximation ratio, the min-power version MPk-CS and the min-cost version MCk-CS of the k-
connected subgraph problem are equivalent. Currently, the best known ratio for the min-cost
version is O(ln2 k · min{ n

n−k ,
√

k
ln k}) for both directed and undirected graphs [23], and O(ln k) for

undirected graphs with n ≥ 2k2 [8].

We also consider the case of small requirements which often arise in practical networks. For
MPEMC with 0, 1-requirements the previously best known ratio was 2 [17]. We prove:

Theorem 1.4 MPEMC with 0, 1-requirements admits a 3/2-approximation algorithm.

Theorem 1.5 Undirected MPk-ECS with k arbitrary and undirected MPk-CS with k ∈ {2, 3} admit
a (2k − 1/3)-approximation algorithm.

For k = 2, Theorem 1.5 improves the best previously known ratio of 4 [6] to 32
3 . For k = 3 the

improvement is from 7 to 52
3 .

Finally, we consider the MPSN problem. Williamson et. al. [28] gave a 2rmax-approximation
algorithm for the Min-Cost case, and then this was improved to 2H(rmax) in [15]. The currently
best known approximation ratio for the min-cost case 2 [18]. We show that the algorithm of [28, 15]
for the min-cost case, has approximation ratio 4rmax for the min-power variant MPSN.

Theorem 1.6 Undirected MPSN admits a 4rmax-approximation algorithm.

To illustrate the performance of our algorithms in practical applications, we perform some
experiments by implementing our algorithm for k-connectivity and show large improvements for
randomly generated networks compared to some known algorithms. This is summarized in Appen-
dix C.

Theorem 1.2, 1.4, 1.5, and 1.6 are proved in Sections 2, 3, 4, and Appendix A, respectively.

1.6 Min-power versus min-cost: some examples

Note that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for unit costs; for
unit costs, if G is undirected, then c(G) = |E| and (if G has no isolated nodes) p(G) = |V |.
For example, if E is a perfect matching on V then p(G) = 2c(G). If G is a clique then p(G) is
roughly c(G)/

√
|E|/2. For directed graphs, the ratio of the cost over the power can be equal to the

maximum outdegree, e.g., for stars with unit costs. The following statement (c.f., [17]) shows that
these are the extremal cases for general edge costs.

Proposition 1.7 c(G)/
√
|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph G = (V,E), and if G is

a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed graph G holds: c(G)/∆(G) ≤ p(G) ≤ c(G),
where ∆(G) is the maximum outdegree of a node in G.

Min-power problems are usually harder than their min-cost versions. The min-power spanning
tree problem is APX-hard [9]. The problem of finding min-cost k pairwise edge-disjoint paths
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is in P (this is the min-cost k-flow problem, c.f., [10]) while the directed min-power variant is
unlikely to have even a polylogarithmic approximation [17]. Another directed example is finding
an arborescence rooted at s, that is a subgraph that contains an sv-path for every node v. The
min-cost case is in P (c.f., [10]), while the min-power variant is at least as hard as the Set-Cover
problem. However, if the paths are required to be to s, the min-power case is equivalent to the
min-cost case.

For min-cost problems, a standard reduction to reduce the undirected variant to the directed
one is: replace every undirected edge e = uv by two anti-parallel directed edges uv, vu of the
same cost as e, find a solution D to the directed variant and take the underlying graph G of D.
However, this is not at all the case for min-power problems. For example, our algorithm for the
undirected MPEMC uses as a subroutine a (1−1/e)-approximation algorithm for the max-coverage
with group budget constrains problem (see [1]). However, if the graph is undirected, every added
edge increases the power of both sides and so the problem seems much more complicated. Indeed,
the reduction described does not work for min-power problems, e.g., for MPEMC, since the power
of the underlying graph of G can be much larger than that of G, e.g., if G is a star. Hence, it may
happen that an algorithm for the directed case will select only one of the two anti-parallel edges,
and this does not correspond to a solution for the undirected case.

The contrast is even sharepr for PBMEMC. The directed version can easily be approximated
within a constant. We give strong evidence that the undirected PBMEMC may not admit a good
approximation algorithm (e.g., with a constant or a polylogarithmic approximation ratio) even for
unit costs and unit weights. The Densest k-Subgraph problem is given a graph G = (V, E) to find a
subgraph of G with k nodes and maximum number of edges. The best known approximation ratio
for the Densest k-subgraph problem is roughly n−1/3 [12], and in spite of numerous attempts to
improve it, this ratio holds for almost 10 years.

Proposition 1.8 If there exists a ρ-approximation algorithm for undirected PBMEMC with unit
costs, then there exist a ρ-approximation algorithm for the Densest k-Subgraph problem.

Proof: Given an instance G = (V, E) of the Densest k-Subgraph problem, define an instance G, r, P
with unit costs for PBMEMC as follows: r(v) = k− 1 for all v ∈ V and the power budget is P = k.
Then the problem is to find a node subset U ⊆ V with |U | = k so that the number of edges in the
subgraph induced by U in G is maximum. The later is the Densest k-Subgraph problem. 2

1.7 Techniques used

In most of our algorithm, we use new methods to relate power problems on undirected graphs to
special carefully chosen power problems on directed graphs. For example, our algorithm for MPEMC

works in iterations: at every iteration a threshold that depends on the residual demands is chosen
and edges of cost above the threshold are classified as ”dangerous”. We will show that among the
non-dangerous edges there exists a partial solution of power O(opt) that covers a fraction of the
demands. Such a partial solution is found by solving a related directed PBMEMC instance; the later
is reduced to the max-coverage with group budget constrains problem which can be approximated
within (1 − 1/e) [1]. This leads to the desired O(log n) approximation. As was mentioned, this
approach cannot be implemented directly (without deleting the dangerous edges) as the undirected
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PBMEMC is unlikely to have a good approximation, see Proposition 1.8.

For MPk-CS with k = 2, 3 we use a combination of techniques such as uncrossing, in order to
prove limitations on the out-degree of some directed solutions, and the known approximations for
the min-power spanning tree problem and more. We also use the fact that for k = 2, 3 a graph is k

connected if and only if it is ”k-inconnected” to some node s. We derive some results on min-power
connectivity problems in directed graphs that are of independent interest.

For approximating 0, 1-MPEMC we use a technique similar to the one that is used for the
Min-Power spanning Tree problem [2] of decomposing optimal solution into small parts, and thus
reducing with some penalty the problem to an easier problem in hypergraphs; in our case the
reduction is to the min-cost case.

2 Proof of Theorem 1.2

We show an O(log n)-approximation algorithm for (undirected) bipartite MPEMC where G = (A +
B, E) is bipartite and r(a) = 0 for every a ∈ A.

Lemma 2.1 If there exists a ρ-approximation algorithm for bipartite MPEMC then there exists a
2ρ-approximation algorithm for general MPEMC.

Proof: Given an instance G = (V, E), c, r of MPEMC, construct an instance G′ = (V ′ = A +
B, E ′), c′, r′ of bipartite MPEMC as follows. Let A = {av : v ∈ V } and B = {bv : v ∈ V } (so
each of A,B is a copy of V ) and for every uv ∈ E add two edges: auav and avau each with cost
c(uv). Also, set r′(bv) = r(v) for every bv ∈ B and r′(av) = 0 for every av ∈ A. Given F ′ ⊆ E ′ let
F = {uv ∈ E : aubv ∈ F ′ or avbu ∈ F ′} be the edge set in E that corresponds to F ′. Now compute
an r′-edge cover E′ in G′ using the ρ-approximation algorithm and output the edge set E ⊆ E that
corresponds to E′, namely E = {uv ∈ E : aubv ∈ E′ or avbu ∈ E′}.

It is easy to see that if F ′ is an r′-edge cover then F is an r-edge cover. Furthermore, if
for every edge in F correspond two edges in F ′ (|F ′| = 2|F |), then F is an r-edge cover if, and
only if, F ′ is an r′-edge cover. The later implies that opt′ ≤ 2opt, where opt and opt′ is the
optimal solution value to G, c, r and G′, c′, r′, respectively. Consequently, E is an r-edge cover, and
pE(V ) ≤ pE′(V ′) ≤ ρopt′ ≤ 2ρopt. 2

We henceforth prove that bipartite MPEMC admits an O(log n)-approximation algorithm. The
residual requirement of v ∈ V w.r.t. an edge set I is

rI(v) = max{r(v)− dI(v), 0} .

The approximation is performed by approximating in iterations the directed budgeted ver-
sion PBMEMC of MPEMC. Before we describe the reduction of undirected MPEMC to directed
PBMEMC, we explain how to efficiently approximate directed PBMEMC. We reduce directed
PBMEMC to the max-coverage with group budget constrains problem that can be approximated
within (1− 1/e) [1].

Instance: A bipartite graph G = (A + B, E), costs {c(a) : a ∈ A}, requirements {r(b) : b ∈ B},
budget P , and a partition A of A.
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Objective: Find S ⊆ A with c(S) ≤ P and |S∩Ai| ≤ 1 for every Ai ∈ A and
∑

b∈B min{d(S, b), r(b)}
maximum.

Given an instance of directed PBMEMC build a bipartite instance G for the max-coverage with
group budget constrains as follows. The set A contains a node av

i for every v ∈ V and ei ∈ δE(v).
The set B contains a copy v′ for every v ∈ V . The vertex av

i is given cost ci = c(ei). The set
Av = {av

1, a
v
2, . . .} is declared a group in the partition A of A. Now, add an edge (av

i , u
′) into G if

and only if there is e′ = (v, u) ∈ δE(v) and c(e′) ≤ c(ei). Intuitively, av
i represents the choice of ei

as the largest cost edge of v in the solution. Namely, the choice of power p(v) = c(ev
i ) for v. Hence,

the nodes joined to v with edge-costs at most c(ei) can be covered by av
i obeying this power choice.

Clearly, if we are given a max-coverage solution for G obeying the budget P so that at most
one vertex is chosen out of every group Av, this solution defines in a unique way a solution to
directed PBMEMC of the same power, and vice versa. Therefore, directed PBMEMC admits a
(1− 1/e)-approximation algorithm by [1].

The main challange remaning is to transform undirected MPEMC into directed PBMEMC with-
out incurring a large loss in the cost. This is described now. The ultimate goal is to prove:

Lemma 2.2 For bipartite MPEMC there exists a polynomial time algorithm that given an integer
τ and γ > 1 either establishes that τ < opt or returns an edge set I ⊆ E such that

pI(V ) ≤ (γ + 1)τ (1)

rI(B) ≤ (1− β)r(B) , (2)

where β = (1− 1/e)(1− 1/γ).

Note that if τ < opt the algorithm may return a edge set I that satisfies (1) and (2); if the
algorithm declares ”τ < opt” then this is correct. An O(log n)-approximation algorithm for the
bipartite MPEMC easily follows from Lemma 2.2:

While r(B) > 0 do
Find the least integer τ so that the algorithm in Lemma 2.2 returns an edge set I

so that (1) and (2) holds.
E ← E + I, E ← E − I, r ← rI .

End While

We note that the least integer τ as in the main loop can be found in polynomial time using binary
search. For any constant γ > 1, say γ = 2, the number of iterations is O(log r(B)), and at every
iteration an edge set of power at most (1+γ)opt is added. Thus the algorithm can be implemented
to run in polynomial time, and has approximation ratio O(log r(B)) = O(log(n2)) = O(log n).

In the rest of this section we prove Lemma 2.2. Let τ be an integer and let R = r(B) =∑
b∈B r(b). An edge ab ∈ E with b ∈ B is dangerous if c(ab) ≥ γτ · r(b)/R. Let I be the set of

non-dangerous edges in E .

Lemma 2.3 Assume that τ ≥ opt. Let F be a set of dangerous edges with pF (B) ≤ τ . Then
rF (B) ≥ R(1− 1/γ). Thus rI(B) ≤ R/γ.
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Proof: Let D = {b ∈ B : dF (b) > 0}. We show that r(D) ≤ R/γ, implying rF (V ) ≥ R − r(D) ≥
R(1− 1/γ). Since all the edges in F are dangerous, pF (b) ≥ γτ · r(b)/R for every b ∈ D. Thus

τ ≥ opt ≥
∑
b∈D

pF (b) ≥
∑
b∈D

(γτ · r(b)/R) =
γτ

R

∑
b∈D

r(b) =
γτ

R
r(D) .

For the second statement, note that there exists E ⊆ E with pE(V ) ≤ τ so that rE(B) = 0. Thus
rI(B) ≤ R/γ holds for the set I of non-dangerous edges in E. As I ⊆ I, the statement follows. 2

Lemma 2.4 pI(B) ≤ γτ .

Proof: Note that pI(b) ≤ γτ · r(b)/R for every b ∈ B. Thus:

pI(B) =
∑
b∈B

pI(b) ≤
∑
b∈B

(γτ · r(b)/R) =
γτ

R

∑
b∈B

r(b) = γτ .

2

Lemmas 2.3 and 2.4 imply that we may ignore the dangerous edges and still be able to cover a
fraction of the demand. Once dangerous edges are ignored, the algorithm does not need to take the
power incured in B into account. Even the choice of all the non-dangerous edges will only incurr
an O(opt) cost on the B side. Therefore, the problem was transformed into directed PBMEMC.
The algorithm is as follows:

1. With budget τ , compute an edge set I ⊆ I using the (1− 1/e)-approximation algorithm
for directed PBMEMC.

2. If rI(B) ≤ (1− β)R (recall that β = (1− 1/e)(1− 1/γ)) then output I;
Else declare ”τ < opt”.

We show that if τ ≥ opt then the algorithm outputs an edge set I that satisfies (1) and (2).
By Lemma 2.3, if the algorithm returns an edge set I then (1) holds for I, and if the algorithm
declares ”τ < opt” then this is correct. All the edges in I are not dangerous, thus pI(B) ≤ γτ by
Lemma 2.4. As we used budget τ , pI(A) ≤ τ . Thus pI(V ) = pI(A) + pI(B) ≤ (1 + γ)τ .

3 Proof of Theorem 1.4

Given S ⊆ V we say that an edge set F on V is an S-cover, if every node in S has an edge in
F incident to it. Note that 0, 1-MPEMC is equivalent to the Min-Power S-Cover problem, where
S = {v ∈ V : r(v) = 1}. Our approach for Min-Power S-Cover is inspired by the ”decomposition
method” used in [2] for the Min-Power Spanning Tree problem: a reduction to the min-cost case in
3-uniform hypergraphs with loss of 5/3 in the approximation ratio. We reduce Min-Power S-cover
to Min-Cost S-Cover in 2-uniform hypergraphs (that is, in graphs, where the problem is solvable in
polynomial time, c.f., [10]) with loss of 3/2 in the approximation ratio. That is, given an instance
G, S of Min-Power S-Cover, we construct in polynomial time an instance G′, S of Min-Cost S-Cover
such that opt(G′) ≤ 3opt(G)/2 and such that for any feasible solution F ′ to G′ corresponds a feasible
solution F to G with p(F ) ≤ c′(F ′).

Clearly, any inclusion minimal S-cover is a union of node disjoint stars. Let F be (an edge set
of) a star with center v0. A partition F = {F1, . . . , F`+1} of F into stars is a t-decomposition of
F if |F`+1| ≤ t− 1 and any other part has at most t edges; F`+1 covers all the nodes its edges are
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incident to (in particular, it covers v0) while each part in F − F`+1 covers the nodes its edges are
incident to except v0 (so every node is covered exactly once). The power p(F) =

∑
Fj∈F p(Fj) of F

is the sum of the powers of its parts. A t-decomposition of a collection of stars is defined similarly.

Lemma 3.1 Any star F with costs c has a t-decomposition F so that p(F) ≤ (1 + 1/t)p(F ).

Proof: Let v0 be the center of F , let {v1, . . . , vd} be the leaves of F , and let ei = v0vi and
ci = c(ei) for i = 1, . . . , d. Assume w.l.o.g. that c1 ≥ c2 ≥ · · · ≥ cd ≥ 1. Define a t-decomposition
F of F as follows. Let ` = b(d − 1)/tc, and set: Fj = {e(j−1)t+1, . . . , ejt} for j = 1, . . . ` − 1 and
F` = {e(`−1)t+1, . . . , ed}. Note that p(F ) = c(F ) + c1 and c(j−1)t+1 ≤ c(Fj)/t for j = 2, . . . , `; the
later is since e(j−1)t+1 ∈ Fj , while every edge in Fj−1 has cost larger than any edge in Fj . Therefore,

p(F) = c(F )+ c1 +
∑̀
j=2

c(j−1)t+1 ≤ c(F )+ c1 +
∑̀
j=2

c(Fj−1)/t ≤ (1+1/t)(c(F )+ c1) = (1+1/t)p(F ) .

2

Given an instance (G = (V, E ; c), S) of MPEMC we construct an instance (G′ = (S, E ′; c′), S)
of min-cost edge-cover as follows. G′ is a complete graph on S, and for every pair u, v ∈ S let
c′(uv) = p(Fuv), where Fuv is some minimum power {u, v}-cover that consists of one edge or
two adjacent edges. Clearly, we can construct (G′, S) and compute a min-cost S-cover in G′ in
polynomial time. The following statement that follows from Lemma 3.1 with t = 2 finishes the
proof of Theorem 1.4.

Corollary 3.2 If F ′ is a min-cost S-cover in G′ then F = ∪{Fuv : uv ∈ E′} is an S-cover in G
and p(F ) ≤ c′(F ′) ≤ 3opt/2.

4 Proof of Theorem 1.5

A (possibly directed) graph is k-inconnected to s if it contains k internally-disjoint vs-paths for
every v ∈ V . When the paths are only required to be edge-disjoint the graph is k-edge-inconnected
to s. Note that a graph is k-connected (resp., k-edge-connected) if it is k-inconnected (resp., k-
edge-inconnected) to every s ∈ V . We need to consider the following ”augmentation” version of
the problem, where G contains a subgraph G0 = (V,E0) of power zero which is k0-inconnected to
s. The goal is to augment G0 by a min-power edge set F ⊆ I = E −E0 so that the resulting graph
G = G0 + F is k-inconnected to s. That is:

Min-Power (k0, k)-Inconnectivity Augmentation (MP(k0, k)-IA):
Instance: A k0-inconnected to s graph G0 = (V,E0), an edge set I on V , cost function c on

I, and an integer k > k0.
Objective: Find a min-power edge set F ⊆ I so that G = G0 + F is k-inconnected to s.

When G is required to be k-edge-inconnected to s we get the Min-Power (k0, k)-Edge-
Inconnectivity Augmentation (MP(k0, k)-EIA) problem. The following statement was implicitly
proved in [26]; for completeness of exposition its proof is given in Appendix B.

Lemma 4.1 If F is an inclusion minimal solution to directed MP(k0, k0 + 1)-IA or to directed
MP(k0, k0 + 1)-EIA, then dF (v) ≤ 1 for every v ∈ V , and thus the power of F equals its cost.

9



By Lemma 4.1, the augmentation problem of increasing the inconnectivity (or edge-inconnectivity)
of a directed graph by 1, the min-power case is equivalent to the min-cost case; the later is solvable
in polynomial time [14, 13]. As we will show later, Lemma 4.1 implies the following statement:

Lemma 4.2 Undirected MP(k0, k0 + 1)-IA and MP(k0, k0 + 1)-EIA admit a 2-approximation algo-
rithm.

Theorem 1.5 easily follows by combining Lemma 4.2 with the 5/3-approximation algorithm of
[2] for the Min-Power Spanning Tree problem. Indeed, we can apply the algorithm as in Lemma 4.2
sequentially to produce edge sets F1, . . . , Fk so that G` = F1+· · ·+F` is `-inconnected (resp., `-edge-
inconnected) to s, and p(F1) ≤ 5opt/3 (F1 is a spanning tree computed by the 5/3-approximation
algorithm of [2]) and p(F`) ≤ 2opt for ` = 2, . . . , k. Consequently, if E = F1 + · · · + Fk then
G = (V,E) is k-inconnected (resp., k-edge-inconnected) to s, and

p(E) ≤ p(F1) +
k∑

`=2

p(F`) ≤
5
3
opt +

k∑
`=2

2opt = 2(k − 1/3)opt .

Finally, the (2k − 1/3)-approximation algorithm for MPk-CS with k ∈ {2, 3} follows from the
following two facts (c.f., [3]):
(i) Any undirected minimally k-connected graph has at least |V |/3 nodes of degree k;
(ii) For k ∈ {2, 3}, if s is a node of degree k in an undirected graph G, then G is k-inconnected to

s if, and only if, G is k-connected.

Hence for k ∈ {2, 3} undirected MPk-CS is equivalent (via an approximation ratio preserving
reduction) to the problem of finding a min-power k-inconnected to s subgraph so that the degree
of s is exactly k. The later problem admits a (2k− 1/3)-approximation algorithm for any constant
k, by trying O(nk+1) possible choices of s and the k edges incident to it. In fact, using penalty
methods (see [11]) the exhaustive search can be reduced to O(n2) possible choices of s and one
edge incident to it (details omitted). This gives a (2k− 1/3)-approximation algorithm for MPk-CS

with k ∈ {2, 3}.

In the rest of this section we prove Lemma 4.2. A biderection of an undirected network G is
a directed network obtained by replacing every edge e = uv of G by two opposite directed edges
uv, vu each having the same cost as e; if D is a subgraph of a bidirection of G, then we say that G

is the underlying network (or graph) of D. Clearly, if D is a bidirection of G then p(G) = p(D).

Lemma 4.3 p(G) ≤ (∆(D) + 1)p(D) for the underlying graph G of a directed network D.

Proof: By induction on the number m of edges in D. For m = 1 the statement is obvious. Assume
that the statement is true for digraphs with at most m − 1 edges. Let v ∈ V be a node in D of
maximum power cmax. Let D′ = D − δD(v) and let G′ be the underlying graph of D′. Clearly,
p(D′) = p(D)−cmax and p(G′) ≥ p(G)−(∆(D)+1)cmax. Combining with the induction hypothesis
gives: p(G) ≤ p(G′) + (∆(D) + 1)cmax ≤ (∆(D) + 1)(p(D) + cmax) = (∆(D) + 1)p(D). 2

The 2-approximation algorithm for MP(k0, k0 + 1)-IA is as follows:

1. Let D0 and A be the bidirections of G0 and I, respectively.
2. Compute an optimal edge set A ⊆ A so that D0 + A is (k0 + 1)-inconnected to s.
3. Output the underlying edge set I of A.
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Let I∗ be an optimal solution to MP(k0, k0 + 1)-IA instance (so p(I∗) = opt) and let A∗ be the
bidirection of I∗. Note that ∆(A) ≤ 1, by Lemma 4.1. This implies p(I) ≤ (∆(A)+1)p(A) ≤ 2p(A),
by Lemma 4.3. Thus we have:

p(I) ≤ 2p(A) ≤ 2p(A∗) = 2p(I∗) = 2opt .

The algorithm and the analysis for (MP(k0, k0 + 1)-EIA) is similar. This finishes the proof of
Lemma 4.2, and thus the proof of Theorem 1.5 is complete.
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Appendix A: Proof of Theorem 1.6

We need some definitions and a description of certain results from [28, 15].

Min-cost/power Steiner Network problem can be formulated as a set-function edge-cover prob-
lem. Let h : 2V → Z+ be a set-function defined on a groundset V . An edge set E on V is an h-cover,
if dE(X) ≥ h(X) for every X ⊆ V . For Steiner Network problems, an appropriate choice of h is as
follows. By Menger’s Theorem, E is a feasible solution to min-cost/power Steiner network problem
if, and only if, dE(X) ≥ R(X) for all ∅ ⊂ X ⊂ V , where R(X) = max{r(u, v) : u ∈ X, v ∈ V −X}
(and R(∅) = R(V ) = 0). That is

dE(X) ≥ h(X) ≡ max{0, R(X)} ∀ ∅ ⊆ X ⊆ V. (3)

The function h defined above is skew-supermodular, that is h(∅) = 0 and for every X, Y ⊆ V with
h(X) > 0, h(Y ) > 0 at least one of the following holds:

h(X) + h(Y ) ≤ h(X ∩ Y ) + h(X ∪ Y ) (4)

h(X) + h(Y ) ≤ h(X − Y ) + h(Y −X) (5)

Note that h is also symmetric, that is, h(X) = h(V −X) for all X ⊆ V .

Several connectivity problems can be formulated as (min-cost/power) edge cover problems of
a skew-supermodular function, see [24]. A seminal paper of Jain [18] gives a 2-approximation
algorithm for finding a min-cost edge-cover of an arbitrary skew-supermodular set function h,
provided certain queries related to h can be answered in polynomial time (note that h is usually
not given explicitly). For h defined in (3) these queries can be realized via max-flows, which implies
a 2-approximation algorithm for the min-cost Steiner network problem. Earlier, Williamson et. al
[28] gave an algorithm with approximation ratio 2hmax, which was improved later to 2H(hmax) by
Goemans et. al [15].

Given a set function q, let q̂(X) = 1 if q(X) = qmax and hq(X) = 0 otherwise, where qmax =
maxX⊆V q(X). It is easy to see that any inclusion minimal edge-cover of a {0, 1}-valued set function
is a forest. For an edge set E, let pE be defined as follows: pE(X) = max{p(X)− dE(X), 0}. It is
well known that if h is skew supermodular, so is hE (for any edge set E), see [18]. Consider the
following algorithm that applies on an arbitrary set-function h, and begins with E = ∅.

While there is X ⊆ V with hE(X) > 0 do:
1. Find an ĥE-cover F ⊆ E − E;
2. E ← E + F .

End While

The approximation ratio of the algorithm depends on step 1. A set function is called uncrossable
if it is {0, 1}-valued skew supermodular. It is easy to see that if q is skew supermodular, so is q̂,
that is q̂ is uncrossable. Williamson et. al [28] gave an algorithm that finds an edge cover of an
uncrossable function q̂ of cost at most twice the optimum of the following LP-relaxation:

min{
∑

e∈E−E

c(e)xe :
∑

e∈δ(X)

xe ≥ q̂(X) ∀X ⊆ V, xe ≥ 0} . (6)
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Williamson et. al [28] proved:

Theorem 4.4 ([28]) For h defined by (3) the above algorithm can be implemented in polynomial
time, so that at any iteration for q = hE the forest F found has cost at most twice the optimal
value of (6).

Note that the number of iterations of the algorithm is at most hmax. Thus Theorem 4.4 implies
that for the min-cost Steiner network problem the algorithm has approximation ratio 2hmax ≤
2rmax. Later, Goemans et. al [15] used linear programming scaling techniques to show that the
approximation ratio is in fact 2H(rmax). This scaling method does not work for the min-power
variant.

We can show that for the min-power variant, the algorithm of [28] has approximation ratio 4rmax.
This follows from Theorem 4.4 and the second part of Proposition 1.7. Indeed, the algorithm of
[28] constructs the solution from at most rmax forests, where each forest has cost at most 2optc,
where optc is the optimal solution value to the min-cost variant. By Proposition 1.7, each forest has
power at most 2 · 2optp = 4optp, where optp is the otimal solution value to the min-power variant.
This completes the proof of Theorem 1.6.

Appendix B: Proof of Lemma 4.1

It would be convenient to prove Lemma 4.1 for the following problem that generalizes both
MP(k0, k0 + 1)-IA and MP(k0, k0 + 1)-EIA. A graph G = (V,E) is `-edge-connected from U to
s if there are ` edge-disjoint us-paths for every u ∈ U .

Directed Min-Power (U, s)-Connectivity-Augmentation
Instance: A graph G0 = (V,E0) which is k0-edge-connected from U to s and an edge set I on V

with costs {ce : e ∈ I} so that every edge in I has its tail in U .
Objective: Find a min-power I ⊆ I so that G0 + I is (k0 + 1)-edge-connected from U to s.

MP(k0, k0+1)-EIA is a special case of this problem when U = V . For MP(k0, k0+1)-IA apply the
following well known reduction, c.f., [13]. Given an instance G0 = (V,E0), k0, s, I for MP(k0, k0+1)-
IA obtain an instance G′

0 = (V ′, E′
0), U

′, k0, s
′, I ′, c′ for the above problem as follows. Replace every

node v ∈ V by the two nodes vt, vh connected by the edge vtvh of cost zero and replace every
edge uv ∈ E0 ∪ I by the edge uhvt having the same cost as uv (which is zero if uv ∈ E0). Let
s′ = st, U ′ = {vh : v ∈ V }, E′

0 = {uhvt : uv ∈ E0} + {vtvh : v ∈ V }, and I ′0 = {uhvt : uv ∈ I}.
This establishes a bijective correspondence between edges in I and the edges in I ′. It is not hard
to verify (c.f., [13]) that G′

0 = (V ′, E′
0) is k0-edge-connected from U ′ to s′, and that if I ′ ⊆ I

corresponds to I ⊆ I then:
(i) I is a feasible solution if, and only if, I ′ is a feasible solution;
(ii) dI(v) = dI′(vh) and dI′(vt) = 0 for every v ∈ V (thus I and I ′ have the same power).

Thus Lemma 4.1 will be proved if we show that dF (v) ≤ 1 for any inclusion minimal solution F

to Directed Min-Power (U, s)-Connectivity-Augmentation. We say that an edge set F covers a set
family F if for every X ∈ F there is an edge in F leaving X. A set family F on V is intersecting if
X ∩Y, X ∪Y ∈ F for any intersecting X, Y ∈ F . We say that X ⊆ V −s is tight in G0 if X ∩U 6= ∅
and dG0(X) = k0. From Menger’s Theorem we have:
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Fact 4.5 Let G0 = (V,E0) be k0-edge-connected from U to s. Then G = G0+F is (k0+1)-connected
from U to s if, and only if, F covers all the tight sets.

By Fact 4.5 F is an inclusion minimal solution to Directed Min-Power (U, s)-Connectivity-
Augmentation if, and only if, F is an inclusion minimal cover of the family of tight sets of G0.
However, since only edges with tail in U can be added, F covers the tight sets of G0 if, and only
if, F covers the family:

F = {X ∩ U : X is tight in G0} . (7)

It is well known and easy to show that (c.f. [13]):

Fact 4.6 The family F defined in (7) is intersecting.

Thus the following statement finishes the proof of Lemma 4.1.

Lemma 4.7 If F is an inclusion minimal cover of an intersecting family F , then dF (v) ≤ 1 for
every v ∈ V , and thus the power of F equals its cost.

Proof: By the minimality of F , for every e ∈ F there exists We ∈ F such that δF (We) = {e}; we
call such We a witness set for e; note that e might have several distinct witness sets.

Let We,Wf be intersecting witness sets of two distinct edges e, f ∈ F . We claim that then
We ∩Wf is a witness for one of e, f and We ∪Wf is a witness for the other. This implies that there
cannot be v ∈ V with e, f ∈ δF (v), as otherwise e, f ∈ δ(We ∩Wf ) which is a contradiction. Thus
by Proposition 1.7, the power of F equals its cost.

We now prove that We ∩Wf is a witness for one of e, f and We ∪Wf is a witness for the other.
Note that there is an edge in F leaving We ∩Wf and there is an edge in F leaving We ∪Wf ; this
is since We,Wf ∈ F implies that We ∩Wf ,We ∪Wf belong to F and thus each of them is covered
by some edge in F . However, if for arbitrary sets X, Y an edge covers one of X ∩ Y, X ∪ Y then it
also covers one of X, Y , and if some edge covers both X ∩ Y and X ∪ Y then it must cover both X

and Y . Thus no edge in E − {e, f} can cover We ∩Wf or We ∪Wf , so one of e, f covers We ∩Wf ,
and thus the other must cover We ∪Wf . 2

Appendix C: Performance Evaluation

In the previous sections, we proved a worst-case bound for the performance of our algorithms com-
pared to the optimal solution. In this section, we report our observations on the implementation of
the algorithm for MPk-CS. In order to understand the effectiveness of our algorithm, we compare
its output to a previous heuristic, namely the Cone-based topology control heuristic of Wattenhofer
et al. [27] and Li et al. [25] and Bahramgiri et al. [4]. In this heuristic, each node increases trans-
mission power until the angle between any pair of adjacent neighbors is at most 2π

3k . Bahramgiri,
Hajiaghayi, and Mirrokni [4] proved that if the original graph is k-connected, the resulting graph
after this heuristic is also k-connected. This algorithm has an advantage of being localized; how-
ever we show that the power consumption of the resulting solution can be much worse than our
algorithm based on approximating MPEMC.

We generate random networks, each with at most 50 nodes. The maximum possible power at
each node is fixed at Emax = (250)2. We assume that the power attenuatin exponent c = 2. This
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CBTC Heuristic Algorithm based on MPEMC

Connectivity # 2 3 4 2 3 4

Density Degree ERR

17 33.12 76.15 92.66 98.02 44.32 58.01 64.07

20 42.76 61.19 83.60 94.73 28.16 58.85 64.62

25 49.18 61.62 83.70 93.19 29.21 35.95 40.18

30 54.56 58.82 75.12 92.43 16.32 25.52 41.90

35 59.32 54.76 75.04 90.37 30.83 39.51 44.03

Table 1: Expended Energy Ratio for 2,3, and 4-connectivity and c = 2

implies a maximum communication radius R of 250 meters. We evaluate the performance of our
algorithms on networks of varying density. For the performance measure, we compute the average
expended energy ratio (EER) of both algorithms for these random networks:

EER =
Average Power

Emax
× 100.

We assume that the MAC layer is ideal. Our sample networks are similar to the sample networks
used by Wattenhofer et al. [27], Cartigny et al. [7]. Our experimental results are summarized in
Table 1.

As expected, our algorithm outperforms CBTC for all networks in our experiment. Note that the
worst-case approximation factor of the algorithm based on approximating MPEMC does not depend
on k. As a result, we expect that the performance of this algorithm is better compared to CBTC as k

increases. One can verify this fact by observing that the performance of CBTC heuristic decreases
by a larger factor from 2-connectivity to 4-connectivity. For example, EER for CBTC increases
from 54.76 to 90.37 for one instance and from 76.15 to 98.02 for another instance. However, for the
same instances, the EER for the algorithm based on approximating MPEMC increases from 30.83
to 44.03 and from 44.32 to 64.07, respectively. This indicates the faster diminishing performance
of CBTC compared to our algorithm as k increases.
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