
(Almost) Optimal Coordination Mechanisms for Unrelated
Machine Scheduling

YOSSI AZAR ∗ KAMAL JAIN † VAHAB M IRROKNI ‡

Abstract

We investigate the influence of different algorithmic choices on the approximation ratio in self-
ish scheduling. Our goal is to design local policies that minimize the inefficiency of resulting equi-
libria. In particular, we design optimal coordination mechanisms for unrelated machine scheduling,
and improve the known approximation ratio fromΘ(m) to Θ(log m), wherem is the number of
machines.

A localpolicy for each machine orders the set of jobs assigned to it only based on parameters of
those jobs. Astrongly localpolicy only uses the processing time of jobs on the the same machine.
We prove that the approximation ratio of any set of strongly local ordering policies in equilibria
is at leastΩ(m). In particular, it implies that the approximation ratio of agreedy shortest-first
algorithm for machine scheduling is at leastΩ(m). This closes the gap between the known lower
and upper bounds for this problem, and answers an open question raised by Ibarra and Kim [16],
and Davis and Jaffe [10]. We then design a local ordering policy with the approximation ratio
of Θ(log m) in equilibria, and prove that this policy is optimal among all local ordering policies.
This policy orders the jobs in the non-decreasing order of their inefficiency, i.e, the ratio between
the processing time on that machine over the minimum processing time. Finally, we show that best
responses of players for the inefficiency-based policy may not converge to a pure Nash equilibrium,
and present aΘ(log2 m) policy for which we can prove fast convergence of best responses to pure
Nash equilibria.

∗azar@tau.ac.il. Microsoft Research, Redmond and Tel-Aviv University, Tel-Aviv, 69978, Israel. Research sup-
ported in part by the Israel Science Foundation.

†kamalj@microsoft.com. Microsoft Research, Redmond.
‡mirrokni@microsoft.com. Microsoft Research, Redmond.

1 Introduction

In order to study the influence of algorithmic choices in the presence of selfish users, we need to study
the inefficiency of equilibrium points. The approximation ratio of a decentralized algorithm in lack of
coordination can be captured by the the worst case performance of a Nash equilibrium over a global
social optimum, i.e., the price of anarchy [19]. A natural question is to design decentralized algorithms
to reduce the price of anarchy for selfish users. In these algorithms, a central authority can only design
protocols and define rewarding rules and hope that the independent and selfish choices of the users
-given the rules of the protocols- result in a socially desired outcome. To this end, different approaches
have been proposed such as imposing economic incentives in the form of monetary payments [5, 8, 13],
and using the Stackelberg strategy [4, 18, 22, 25] which is enforcing strategies upon a fraction of users.
The main disadvantage of these two strategies is that they assume global knowledge of the system
and thus have high communication complexity. In many settings, it is important to be able to compute
mechanisms locally. A different approach, which is the focus of our paper, is calledcoordination mech-
anisms, first introduced by Christodoulou, Koutsoupias and Nanavati [7]. A coordination mechanism
is a local policy that assigns a cost to each strategys, where the cost ofs is a function of the users who
have chosens.

Consider, for example, theselfish scheduling gamein which there aren jobs owned by independent
users,m machines and a processing timepij for job i on machinej. We concentrate onpure strategies
case where each user selects one machine to assign his job. Each user is aware of the decisions made by
other users and behaves selfishly. Specifically, it wishes tominimize its completion time by assigning its
job to the machine at which its job would complete first. The global objective however, is to minimize
the make span - maximum completion time. A coordination mechanism [7] for this game is a set of
local policies, one for each machine, that determines how toschedule jobs assigned to that machine. A
machine’s policy is a function only of the jobs assigned to that machine. This allows the policy to be
implemented in a completely distributed and local fashion.

We mainly studyorderingpolicies. Ordering policies characterize all deterministic non-preemptive
policies that satisfy the independence of irrelevant alternatives or IIA property1. We considerstrongly
local policies in which the ordering of jobs on machinej only depends on the processing time of the
setSj of jobs on machinej, and local policies in which the ordering for machinej depends on all
parameters of jobs inSj. Two examples of the strongly local ordering policies are the ShortestFirst

andLongestFirst policies in which we order the jobs in non-decreasing and non-increasing order of
their processing times, respectively.

Several local policies have been studied for machine scheduling problems, both in the context of
greedy or local search algorithms for machine scheduling [16, 12, 23, 10, 1, 3, 6, 26], and also in the
context of coordination mechanisms [19, 9, 7, 17]. Ibarra and Kim [16] present a greedy shortest-first
algorithm and proved an upper bound ofm for its approximation factor. It has been shown that the
output of this greedy algorithm is equivalent to the pure Nash equilibria of theShortestFirst policy in
selfish scheduling [17]. AnΩ(log m) lower bound has been proved for the approximation factor of this
algorithm [10].

1For the definition of non-preemptive policies and the IIA property, see Section 2.

1

Our Results. In Section 3, we show that any set of strongly local ordering policies results in the price
of anarchy ofΩ(m). This result implies that theShortestFirst policy has the price of anarchy ofΘ(m).
Moreover, this bound closes the gap between the known lower and upper bounds of the approximation
ratio of the shortest-first greedy algorithm (i.e., Algorithm D by Ibarra and Kim [16]) and answers an
open question originally raised in 1977 [16, 10, 17].

In Section 4, we design a local ordering policy for which the price of anarchy isΘ(log m). Specif-
ically, on each machine, we order the jobs by in the non-decreasing order of theirinefficiency, i.e., the
ratio of the job’s processing time on this machine to its fastest processing time. Also we show that
any deterministic non-preemptive set of local policies satisfying the IIA property results in the price of
anarchy ofΩ(log m). In particular, it shows that the inefficiency-based policyis almost optimal among
local ordering policies. In Section 6, we study existence ofpure Nash equilibria for ordering policies
and prove convergence to pure Nash equilibria for some special cases. The main result of this section is
that pure Nash equilibria may not exist for the inefficiency-based policy and the best responses of play-
ers may not converge to it. Finally, in Section 7, we design a local policy for which the best-response
dynamics of players converges to a pure Nash equilibrium in polynomial time and the price of anarchy
is Θ(log2 m).

Related work. Coordination mechanisms are related to local search algorithms. Starting from a
solution, a local search algorithm iteratively moves to a neighbor solution which improves the global
objective. This is based on a neighborhood relation that is defined on the set of solutions. The local
improvement moves in the local search algorithm correspondto the best-response moves of users in the
game defined by the coordination mechanism. The speed of convergence and the approximation factor
of local search algorithms for scheduling problems have been studied in several papers [10, 11, 12, 16,
23, 24, 26, 1, 3]. Vredeveld surveyed some of the results on local search algorithms for scheduling
problems in his thesis [26].

Ibarra and Kim [16] analyzed several greedy algorithms for unrelated machine scheduling. In
particular, they proved that the shortest-first greedy algorithm is anm-approximation for the maximum
completion time. Davis and Jaffe [10] showed that the approximation factor of this greedy algorithm is
at leastlog m. The best known approximation factor is given by a central 2-approximation algorithm
due to Lenstra, Shmoys and Tardos [20].

A widely studied scheduling policy is theMakespan policy in which we process all jobs on the same
machine in parallel so that the completion time of a job on machine j is the makespan of machinej.
The price of anarchy of this policy is unbounded even for two machines. Tight price of anarchy results
for (mixed) Nash equilibria are known for this policy for special cases of the unrelated scheduling
problem [9, 2, 14, 19].

Coordination mechanism design was introduced by Christodoulou, Koutsoupias and Nanavati [7].
In their paper, they analyzed theLongestFirst policy for P ||Cmax and also studied a selfish routing
game. Immorlica, Li, Mirrokni, and Schulz [17] study four coordination mechanisms for four types of
machine scheduling problems and survey the results for these problems. They further study the speed of
convergence to equilibria and existence of pure Nash equilibria for theShortestFirst andLongestFirst

policies.

2

2 Preliminaries

The unrelated machine scheduling problemor R||Cmax is defined as follows: there arem machines
andn users, where useri (i = 1, . . . , n) has a job that can be assigned to any machine. Jobi for
i = 1, . . . , n is associated with anm-vector ~pi, wherepij indicates the processing time of jobi if
assigned to machinej.

Given an instance of theR||Cmax problem, we define theglobal optimum(denote it byOPT) to be
the assignment of jobs to machines that minimizes the makespan, i.e., the maximum completion time.
We slightly abuse the notation and useOPT to denote also the value of the optimal solution. The goal
is to find a schedule which minimizes the total makespan.

In selfish scheduling, each job is owned by an independent user whose goal is to minimize the
completion time of his job. In order to make the selfish users to take globally near-optimal actions, we
can define the following notion ofcoordination mechanism[7]. A coordination mechanism is a set of
local scheduling policies, one for each machine. A scheduling policyPj for a machinej maps any set
S of jobs on machinej to a schedule of all jobs inS. The policy is run locally at a machine, and so
does not have access to information regarding the global state of the system, for example the set of jobs
scheduled on other machines. As a result, for any policyPj and a set of jobsS for machinej, each job
i ∈ S is mapped to a completion timePj(S, i).

A scheduling policyPj is strongly local if it only looks at the processing time of jobs inSj on
machinej and assign each jobi ∈ Sj a completion time. A strongly local policyPj may have an
arbitrary tie-breaking rule for jobs of the same processingtime. In order to formally define thetie-
breaking rules, we assume that each job has aunique IDand a local policy’s tie breaking rule is a
function of the set of IDs of jobs. Alocal policy looks at all parameters of jobs assigned to machine
j and assigns each jobi ∈ Sj a completion time . Note that a local policy that is not strongly local
may use the processing times of the jobs ofSj on other machines, but it does not have any information
about other jobs that are not assigned to this machine.

A policy is a non-preemptivepolicy if it processes each job in an un-interrupted fashionwithout
any delay. A policy is apreemptivepolicy if it can interrupt jobs during the scheduling and canput
some delay on the machine. We say that a policy satisfies theindependence of irrelevant alternativesor
IIA property if for any setS of jobs and any two jobsi, i′ ∈ S, if i has a smaller completion time thani′

in S, theni should have a smaller completion time thani′ in any setS ∪ {k}. In other words, whether
i or i′ is preferred should not be changed by the availability of a job k. The IIA property appears as an
axiom in voting theory, bargaining theory, and logic [27].

A scheduling policy is anorderingpolicy if for each instance of the scheduling problem, it orders
the jobs non-preemptively based on a global ordering. It is not hard to show that any deterministic
non-preemptive policy that satisfies the IIA property is an ordering policy. TheShortestFirst and
LongestFirst policies are ordering policies in which we order the jobs in non-decreasing and non-
increasing order of their processing times, respectively.Note that theShortestFirst andLongestFirst

may have arbitrary tie-breaking rules based on the IDs of jobs.

A special class of theR||Cmax problem is the machine scheduling forrestricted assignment(B||Cmax)
in which each jobi can be scheduled on a subsetTi of machines, i.e.,pij is equal topi if j ∈
Ti and is equal to∞ otherwise.

3

3 A Lower Bound for Strongly Local Policies

In this section, we show that the approximation ratio of any set of strongly local ordering policies is
Ω(m). In the next section, we present a local ordering policy thatachieves the factorO(log m) and
will prove a matching lower bound for local policies.

Theorem 3.1 The price of anarchy for any set of deterministic non-preemptive strongly local policies
satisfying the IIA property is at leastΩ(m).

Proof: We observe that any deterministic non-preemptive policy satisfying the IIA property is an or-
dering policy. As a result, we show that for any strongly local ordering policy, the price of anarchy is at
leastΩ(m). Let nj = 2(m−1)!

(j−1)! for 1 ≤ j ≤ m andn =
∑m

j=1 nj. Consider the set ofm machines and
a setP1, . . . ,Pm of strongly local ordering policies on thesem machines. Given this set of policies,
we construct an instance ofn jobs for which the price of anarchy isΩ(m). Since the policyPj is a
strongly local ordering policy, it only looks at the processing time of jobs on machinej and their IDs.
As a result, if the processing time of all jobs on machinej is equal to (j−1)!

(m−1)! , Pj orders the jobs based
on a global ordering of IDs. Letσj be this ordering on the IDs of jobs. We construct an instance in

which all jobs that can be scheduled on machinej has the same processing time(j−1)!
(m−1)! . We define a

family of subsetsS1, . . . , Sm such that|Sj | = nj for 1 ≤ j ≤ m. Jobs inSj can be scheduled only on
machinesj andj + 1 for 1 ≤ j ≤ m (jobs inSm can only go to machinem). The processing time of
all jobs on machinej is (j−1)!

(m−1)! = 2
nj

.

In order to defineSj ’s, we use the following notation. Given any orderingσ on the IDs ofn jobs,
a setT ⊂ {1, . . . , n} of IDs of jobs, and a numberk, let σk(T) be the set of firstk IDs in ordering
σ that are in setT . In particular,σk({1, 2, . . . , n}) is the set of firstk IDs in an orderingσ. Also, for
1 ≤ j ≤ m, let wj =

∑j
t=1 nt. Now, we are ready to defineSjs as a function of all orderingsσk as

follows: Sm is the set of lastnm IDs in the orderingσm, i.e.,

Sm := {σm(n), σm(n − 1), . . . , σm(n − nj + 1)}, and Mm := {1, 2, . . . , n}\Sm.

Also, for eachj (m − 1 ≥ j ≥ 1), we have

Mj := σ
wj−1

j (Mj+1), and Sj := Mj+1\Mj .

We claim that the price of anarchy of this instance ism
2 . An optimal solution of this instance schedules

jobs of setSj on machinej for 1 ≤ j ≤ m. The makespan of this schedule is2
nj

nj = 2. We prove the
following Lemma on this instance.

Lemma 3.2 In any pure Nash equilibrium of this instance, the makespan of machinej is equal toj for
anyj from1 to m. In particular, half of the jobs ofSj are scheduled on machinej and half of them are
scheduled on machinej + 1 for anyj from1 to m − 1.

Proof: By the construction ofSj (1 ≤ j ≤ m), policy Pj puts all jobs ofSj after all jobs ofSj−1

on machinej, since all jobs ofMj go before all jobs ofSj on machinej andSj−1 ⊆ Mj . We prove
the lemma by induction onj. For the base of the induction, defineS0 as an empty set and machine

4

0 as a dummy machine. For the induction hypothesis, assume that for k ≤ j − 1, in any pure Nash
equilibrium, half of the jobs ofSk are scheduled on machinek and half of them are scheduled on
machinek + 1. As a result, the load of machinek for k ≤ j − 1 is exactlyk, and the load of machine
j from jobs inSj−1 is nj−1

2
2
nj

= j − 1. We prove that in any pure Nash equilibrium, half of jobs ofSj

go to machinej and half of them go to machinej + 1. We prove the induction step by contradiction.
If in a pure Nash equilibrium, less than half of the jobs inSj are at machinej + 1, then the completion
time of the last jobq of Sj on machinej is strictly more thanj − 1 +

nj

2
2
nj

= j, since all jobs ofSj−1

will be scheduled before all jobs ofSj on machinej. Since only jobs inSj andSj+1 can be scheduled
on machinej + 1 andq ∈ Sj will be scheduled before any jobSj+1, if q moves to machinej + 1,
its completion time is at mostnj

2
2

nj+1
= j. Therefore,q has incentive to switch to machinej + 1.

In addition, if in a pure Nash equilibrium, more than half of the jobs inSj are scheduled on machine
j + 1, then the completion time of the last job is more thanj on machinej + 1 and this job can move
to machinej and improve its completion time. This proves the induction step.

The above lemma proves that in any pure Nash equilibrium the makespan of machinem is m, and
therefore, the price of anarchy for this instance is at leastm

2 . This completes the proof of the theorem.

Since theShortestFirst policy is a strongly local policy, the above theorem impliesthat the price
of anarchy of theShortestFirst policy is at leastm2 . Immorlica et.al. [17] observed that the set of
pure Nash equilibria of theShortestFirst policy is equivalent to the output of the shortest-first greedy
algorithm of Ibarra and Kim [16]. Therefore, the above lowerbound implies the lower bound ofm2 for
the shortest-first greedy algorithm, and answers an open question raised by Ibarra and Kim [16], and
Davis and Jaffe [10]. As a result, we have the following theorem:

Theorem 3.3 The price of anarchy of theShortestFirst policy is at leastm2 . In particular, it implies that
the approximation factor ofm proved by Ibarra and Kim [16] for the shortest-first greedy algorithm is
almost tight.

It is worth mentioning that the proof of Theorem 3.1 uses jobsof the same size and argue about tie
breaking rules. For theShortestFirst policy, we can actually perturb the example such that all jobs
have different sizes, and hence the shortest-first algorithm is uniquely define. A proof of Theorem 3.3
without jobs of the same size is given in the appendix.

4 A Logarithmic Upper Bound

In this section, we give a deterministic non-preemptive local policy with the IIA property for which the
price of anarchy isΘ(log m). Recall that in the unrelated links model, a jobi is associated with anm-
vector~pi = (pi1, . . . , pim) specifying its processing time on each machine. Denote bypi = minj pij

which is the fastest processing time of that job on any of the machines. The inefficiency of jobi on
machinej is eij = pij/pi. By definitioneij ≥ 1 for all i andj. Themin-weightof a setS of jobs is
equal to

∑
i∈S pi. Also, letW =

∑
1≤i≤n pi.

The inefficiency-basedpolicy for machinej orders the jobs assigned to it in the non-decreasing
order of their inefficiencyeij.

5

Theorem 4.1 The price of anarchy forR||Cmax for the inefficiency-based policy is at most2 log m+4.

Proof: Given this ordering strategy for each machine and a pure Nashequilibrium, we partition the
assignment into layers. For anyk ≥ 0, we denote byMkj all jobs (and parts of jobs) that are processed
on machinej after time2kOPT . Let Mk be the union over all machinesj of Mkj, i.e., Mk =
∪1≤j≤mMkj.

Let Rkj denote the min-weight of jobs inMkj, i.e., Rkj =
∑

i∈Mkj
pi. Specifically if job i is

partially processed on machinej for x units of time after time2kOPT , then its contribution toRkj is
x/eij = xpi/pij .

Let Rk =
∑

1≤j≤m Rkj which is the min-weight of jobs processed after time2kOPT . Note that
R0 = W since it is the total min-weight of all jobs. Our main lemma isthe following:

Lemma 4.2 For all k ≥ 1, Rk ≤ 1
2 · Rk−1.

Proof: Let Oj be the set of jobs processed on machinej by OPT . Let Okj be the intersection ofOj

andMk. Let fkj be the minimum inefficiency of all jobs inOkj in the equilibrium assignment. Each
job in Okj could switch to machinej. If Okj is not empty, then in the equilibrium assignment, machine
j is processing jobs of inefficiency of at most offkj up to time(2k−1)OPT otherwise the job with the
minimum inefficiency inOkj would move to machinej and complete by time(2k−1)OPT +OPT =
2kOPT .

Hence, machinej processes jobs of inefficiency at mostfkj between times(2k − 2)OPT and
(2k − 1)OPT which implies that

Rk−1,j − Rkj ≥ OPT/fkj .

On the other hand, all jobs inOkj are processed byOPT on machinej with inefficiency of at least
fkj and hence their total min-weight is at mostOPT/fkj. By combining the last two inequalities, we
conclude thatRk−1,j − Rkj is at least the min-weight of jobs inOkj . Summing up over allj, we get
that

Rk−1 − Rk ≥ Rk,

sinceMk is the union ofOkj over all machinesj. We conclude thatRk−1 ≥ 2Rk as required.

We are now ready to complete the proof of the Theorem. By applying the main lemma,b = dlog me
times we get that

Rb ≤
1

m
· R0 =

W

m
≤ OPT .

In particular, this implies that the total processing time of jobs of inefficiency1 in Mb is at mostOPT .
Hence each such job ends by time(2b)OPT +OPT = (2b+1)OPT . Consider a job that has not been
completed by time2bOPT . Such job has an option to run on a machine of inefficiency of1. In that
case it would start no later than(2b + 1)OPT and would finish no later than(2b + 1)OPT + OPT =
(2b + 2)OPT (since its min-weight is at mostOPT). Since the assignment is a Nash equilibrium, we
conclude that the maximum completion of any job is at most(2b + 2)OPT ≤ (2 log m + 4)OPT .

6

Remark 1 The above proof can be extended to bound the price of anarchy for mixed Nash equilibria
of the inefficiency-based policy. We can prove a lemma for mixed strategies similar to Theorem 4.1 with
the bound ofO(log m). Then using the Hoeffding inequality and the framework developed by Czumaj
and Vocking [9] (and also used by Awerbuch et. al. [2]), we canprove that the price of anarchy for
mixed Nash equilibria for this policy isΘ(log m).

5 A Lower Bound for Local Policies

In Section 3, we proved that the price of anarchy for any strongly local ordering set of policies is at
leastΩ(m). Here, we show that the price of anarchy for any set of local ordering policies is at least
Ω(log m). As a warm-up example, we show that our analysis is almost tight for the inefficiency-based
policy.

Theorem 5.1 The price of anarchy forR||Cmax when the ordering strategy is by non-decreasing inef-
ficiency is at leastlog m.

Proof: We use a standard example to show that even for the restrictedassignment model (B||Cmax) the
price of anarchy of this strategy is at leastlog m. Not that forB||Cmax the inefficiency of every job is
precisely1 on any legal machine for that job. Hence the algorithm may order the jobs on each machine
in any order. In this proof, we assume a global tie breaking rule on the order of all jobs. Without loss
of generality a job with a lower index has a higher priority (otherwise we can rename the jobs). In the
example, there arem = 2q machines andm− 1 jobs. All jobs have unit size. Each job can be assigned
to two machines. The jobs are partitioned intolog m groups. For1 ≤ k ≤ q, there arem/2k jobs
in groupk. Jobl of groupk for 1 ≤ l ≤ m/2k can be assigned to machinesl andm/2k + l. The
optimal algorithm can assign that job to machinem/2k + l and get a makespan of1. We claim that if
this job is assigned to machinel, it is a Nash equilibrium and results in a makespan oflog m (machine
1 haslog m completion time). It is easy to verify that all jobs in groupk have a completion time ofk
and if they would move to the other option they would still have a completion time ofk. Hence this
assignment is a Nash Equilibrium which completes the proof.

Now, we use the structure of the standard example in Theorem 5.1 to prove the following general lower
bound:

Theorem 5.2 The price of anarchy for all deterministic non-preemptive local policies satisfying the
IIA property forR||Cmax is at leastΩ(log m).

Proof: Without loss of generality, we assume thatm = 2q. We recall that deterministic non-preemptive
local policies satisfying the IIA property correspond to ordering the jobs in a certain order according
to all parameters of the jobs assigned to that machine. That means that the order depends on the IDs
of jobs and their full vector of processing times on all machines. Given a set of local ordering policies,
we construct an instance similar to the example used in Theorem 5.1. We start withm

2−m
2 jobs from

which exactlym−1 jobs are used in the final instance. In particular, all jobs are of unit size and can be
assigned to precisely two machines. Moreover, the ID of a possible job that can be assigned to machine

7

j and machinej′ is unique (say it ismj + j′). If we restrict ourselves only to these types of jobs, then
there are at mostm − 1 jobs that can be assigned to each machinej. Specifically, these jobs can be
described as(j, j′) for all j 6= j′, since all remaining parameters (i.e. ID and the full load vector) are
exact functions of the pair(j, j′). A local policy of each machinej for any1 ≤ j ≤ m corresponds to
an ordering of these jobs to be processed on machinej. Let σj be this ordering.

Let A0 = {1, . . . ,m} andJ0 = ∅. For k from 1 to log m, we constructAk andJk from Ak−1

as follows: first, letAk = ∅, andJk = ∅. We perform the following processm
2k times: Choose an

arbitrary machinej from Ak−1. Find the job of the highest priority to run on machinej among all
jobs (j, j′) wherej′ ∈ Ak−1, and denote its ID by(j,mk(j)), i.e., (j,mk(j)) is the first job inσj

among jobs(j, j′) ∈ Ak−1 × Ak−1. Then, letAk = Ak ∪ {j} andJk = Jk ∪ {(j,mk(j))}. Also, let
Ak−1 = Ak−1\{j,mk(j)}. At the end of the process,Ak−1 becomes empty,Ak has m

2k indices, and
Jk has m

2k jobs.

The set of jobs for the final instance is the union of the jobsJk for 1 ≤ k ≤ log m, i.e.,
∪1≤k≤log mJk. Hence we havem−1 jobs in the resulting instance. The following solution of makespan
1 is the optimal solution: assign job(j,mk(j)) ∈ Jk to machinemk(j). Consider an assignmentA
in which each job(j,mk(j)) ∈ Jk is assigned to machinej. We prove that this assignment is a pure
Nash equilibrium.

Using induction onk, we prove that for eachk from 1 to log m, in assignmentA, each job
(j,mk(j)) ∈ Jk is completed exactly at timek on machinej. Moreover, if it switches to machine
mk(j), its completion time is not less thank. For the base of induction, job(j,m1(j)) ∈ J1 has more
priority than all jobs(j,mk′

(j)) ∈ Jk′
for 2 ≤ k′ ≤ log m, and hence, its completion time is 1. Also,

this job would not want to switch to machinem1(j). The proof of the induction step is similar to the
base case and follow from the fact that by the construction ofJk, each job(j,mk(j)) ∈ Jk has more
priority than job(j,mk′

(j)) ∈ Jk′
for anyk < k′. This inductive argument proves that assignmentA

is a pure Nash equilibrium, and its makespan islog m. Specifically, machinej∗ ∈ Alog m has makespan
log m, since one job from each ofJ1, J2, . . . , J log m is scheduled on this machine. This instance shows
that for any set of local ordering policies, there is an instance for which the price of anarchy is at least
Ω(log m).

6 Existence of Pure Nash Equilibria

Pure Nash equilibria may not exist for some strategic games,and even if they exist, a sequence of
best responses of players may not converge to them.Potential gamesare games for which we can
find a potential functionthat maps any state (or any set of strategies) in the game to a number (or a
vector) such that after any best response of any player the value of the function strictly decreases (or
lexicographically decreases). Potential games possess pure Nash equilibria and any random sequence
of best responses of players converge to pure Nash equilibria with probability one.

We can prove the corresponding game of any ordering policy for B||Cmax is a potential game
and thus, possess pure Nash equilibria, but this is not the case forR||Cmax even for two machines.
Moreover, we can prove that the game corresponding to the inefficiency-based policy for two machines
always possess pure Nash equilibria, but this is not true forany number of machines. Here, we only
prove the main result of this section, and leave the rest of them to the appendix.

8

1 2 3 4
A 20 ∞ ∞ ∞

B 2 12 ∞ 1.98

C 4 24 25 3.95

D 5 28 ∞ 4.9

Table 1: An example without pure Nash equilibria: The processing time of four jobs on four machines.

Theorem 6.1 The corresponding game to inefficiency-based policy forR||Cmax may not possess any
pure Nash equilibrium.

Proof: Consider an instance ofR||Cmax with 4 machines and 5 jobsA,B,C,D, andT . JobT can only
be scheduled on machine 4 and its processing time is 50. The ordering on machine 4 isT,B,C,D,A.
The processing times of jobsA,B,C,D on machines1, 2, 3, 4 are depicted in Table 1.

As a result, the ordering of jobs in the inefficiency-based policy for machine 1 is(A,B,C,D, T),
and for machine 2 is(D,B,C,A, T), and for machine 3 is(C,A,B,D, T). We claim that no pure
Nash equilibria exist for this example. We have found this example by solving a mathematical pro-
gram that captures the inequalities required to prove that no pure Nash equilibrium exists. Here, we
give a brief description of why this instance does not have any pure Nash equilibrium. JobT is al-
ways scheduled on machine 4 and no other job wants to go to machine 4. We can show a schedule
on four machines as a sequence of subsets of jobs in each machine, for example, if jobsA,B, and
C are on machine 1, jobD is on machine2, and jobT is on machine4, the corresponding sequence
is (ABC,D, , T). From this schedule, jobC has incentive to switch to machine 3, and the resulting
schedule is (AB,D,C,T). This move is shown briefly by(ABC,D, , T) → (AB,D,C, T). Similarly,
(ABD, ,C, T) → (ABD,C, , T) → (AD,BC, , T) → (ACD,B, , T) → (AD,DB, , T) →
(ABC,D, , T) → (AB,D,C, T) → (ABD, ,C, T). Also (AD,B,C, T) → (ACD,B, , T).
Checking that no other pure Nash equilibrium exists is straightforward.

This theorem indicates the need for a coordination mechanism with small price of anarchy for
which we can prove convergence to pure Nash equilibria.

7 A Polylogarithmic Upper Bound with Fast Convergence

In Section 4, we designed a scheduling policy for each machine that has a low price of anarchy. How-
ever, in Section 6, we proved there may be no (pure) Nash Equilibrium for the jobs and the system
may not converge. In this section, we show that we can increase slightly the price of anarchy from
O(log m) to O(log2 m), but guarantee existence of Nash Equilibria as well as convergence to pure
Nash equilibria.

The algorithm is as follows. Each machine simulatesb = dlog me sub-machines. Sub-machinel
for 0 ≤ l ≤ b− 1 of machinej runs only jobs of inefficiency of at least2l and less than2l+1. Machine
j allocates continuously the same time for each of its sub-machines even if there are no jobs to process

9

on some sub-machines (this requires preemption and idle time). A job assigned to machinej will run
on sub-machinel of machinej wherel = beijc given thateij < m. If eij ≥ m, the job will be delayed
for ever on machinej. To complete the description of the processing strategy, weneed to define the
order in which each sub-machine processes its jobs. If it is an arbitrary order, we call the family of
strategiesSplit & Any. If it is ordered according toShortestFirst we call itSplit & Shortest.

Given an instance of theR||Cmax problem onm machines, we create a corresponding instance of
those jobs tomb sub-machines as follows: if in the original instance jobi has processing timepij,
then it would have processing timebpij on sub-machineslj of machinej wherelj = beijc given that
eij < m. On all other sub-machines ofj (in caseeij ≥ m on all sub-machines ofj) the processing
time is infinite. We start with the following lemma

Lemma 7.1 Given an instance to theR||Cmax problem and its corresponding instance onmb sub-
machines.

1. Given an assignment for the original instance on them machines, we can get an assignment for
the corresponding instance on themb sub-machines while increasing the makespan by a factor
of at most2b. In particular, the optimal makespan increases by a factor of at most2b.

2. Given an assignment for the corresponding instance on themb sub-machines, we can get an
assignment for the original instance where the completion time of each job remains the same
(and in particular the makespan does not increase).

Now, we can easily prove the following:

Theorem 7.2 The price of anarchy forR||Cmax usingSplit & Any is O(log2 m). In particular, the
price of anarchy for unrelated machines usingSplit & Shortestis O(log2 m).

Now, we show that our analysis is tight.

Theorem 7.3 The price of anarchy forR||Cmax usingSplit & Shortestis at leastlog2 m.

Finally, we show that this policy converges to a Nash equilibrium very fast.

Theorem 7.4 The corresponding game for theSplit & Shortestpolicy is a potential game. Moreover,
any sequence of best responses of players consisting ofn rounds of all players converges to a pure
Nash equilibrium.

8 Open Problems

In this paper, we proved that the best achievable price of anarchy by strongly local and local ordering
policies areΘ(m) andΘ(log m). Ordering policies characterize all deterministic non-preemptive poli-
cies satisfying the IIA property. An interesting open problem is to design preemptive or randomized
policies with a constant price of anarchy, or to prove that this is not possible. Another interesting open
problem is the speed of convergence to approximate solutions for the inefficiency-based policy [21].

10

Finally, since pure Nash equilibria for the inefficiency-based policy do not necessarily exist, it would
be interesting to bound the approximation ratio of the sink equilibria [15].

Acknowledgements. We thank Allan Borodin for interesting discussions about related work.

References

[1] Aspnes, Y. Azar, A. Fiat, S. Plotkin, and Waarts. On-linerouting of virtual circuits with applica-
tions to load balancing and machine scheduling.J. ACM 44, 3, 1997.

[2] B. Awerbuch, Y. Azar, Y. Richter, and Dekel Tsur. Tradeoffs in worst-case equilibria. 2003.

[3] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments.Journal of Algorithms,
18:221–237, 1995.

[4] A. Bagchi. Stackelberg differential games in economic models.Springer-Verlag, 1984.

[5] M. Beckman, C. B. McGuire, and C. B. Winsten.Studies in the Economics of Transportation.
Yale University Press, 1956.

[6] A. Borodin, M. Nielsen, and C. Rackoff. (incremental) priority algorithms. InSODA, pages 752
– 761, 2002.

[7] G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms. pages 345–357,
Turku, Finland, 12–16 July 2004.

[8] R. Cole, Y. Dodis, and T. Roughgarden. How much can taxes help selfish routing? InEC, pages
98–107, 2003.

[9] A. Czumaj and B. Vocking. Tight bounds for worst-case equilibria. In SODA, pages 413–420,
2002.

[10] E. Davis and J.M. Jaffe. Algorithms for scheduling tasks on unrelated processors.J. ACM,
28(4):721–736, 1981.

[11] E. Even-dar, A. Kesselman, and Y. Mansour. Convergencetime to nash equilibria. InICALP,
pages 502–513, 2003.

[12] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor scheduling.
BIT, 19:312–320, 1979.

[13] L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users in multicommodity
networks and generalized congestion games. InFOCS, pages 277–285, 2004.

[14] M. Gairing, T. Lucking, M. Mavronicolas, and B. Monien.Computing nash equilibria for schedul-
ing on restricted parallel links. InSTOC, pages 613–622, 2004.

[15] M.X. Goemans, V.S. Mirrokni, and A. Vetta. Sink equilibria and convergence. InProceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science(FOCS), pages 142–154,
2005.

11

[16] O.H. Ibarra and C.E. Kim. Heuristic algorithms for scheduling independent tasks on nonidentical
processors.J. ACM, 24(2):280–289, 1977.

[17] N. Immorlica, L. Li, V. Mirrokni, and A. Schulz. Coordination mechanisms for selfish scheduling.
In Workshop of Internet and Economics, 2005.

[18] Y.A. Korilis, A.A. Lazar, and A. Orda. Achieving network optima using Stackelberg routing
strategies.IEEE/ACM Transactions on Networking, 5(1):161–173, 1997.

[19] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS, pages 404–413, 1999.

[20] J. Lenstra, D. Shmoys, andÉ. Tardos. Approximation algorithms for scheduling unrelated parallel
machines.Mathematical Programming, 46:259–271, 1990.

[21] V.S. Mirrokni and A. Vetta. Convergence issues in competitive games. InAPPROX, pages 183–
194, 2004.

[22] T. Roughgarden. Stackelberg scheduling strategies. In STOC, pages 104–113, 2001.

[23] S. Sahni and Y. Cho. Bounds for list schedules on uniformprocessors.Siam J. of Computing,
9:91–103, 1980.

[24] P. Schuurman and T. Vredeveld. Performance guaranteesof local search for multiprocessor
scheduling. InIPCO, pages 370–382, 2001.

[25] H. von Stackelberg. Marktform und Gleichgewicht.Springer-Verlag, 1934. English translation
entitledThe Theory of the Market Economy.

[26] T. Vredeveld.Combinatorial approximation algorithms. Guaranteed versus experimental perfor-
mance. 2002. Ph.D. thesis.

[27] Wikipedia. http://en.wikipedia.org/wiki/Independenceof irrelevantalternatives.

Appendix

A Proof of Theorem 3.3

Proof: In order not to deal with the issue of breaking ties (which plays a major role in the general lower
bound), we would make all jobs of different size. We construct the following instance. There arem−1

types of jobs. Forj = 1 to m− 1, there arenj = 2 (m−1)!
(j−1)! jobs of typej. Jobk for 1 ≤ k ≤ nj of type

j has processing time2
nj

(1+ εkj) = (j−1)!
(m−1)! (1+ εkj) on machinej and 2j

nj
(1+ εkj) = j!

(m−1)! (1+ εkj)

on machinej + 1 and infinite (or large enough) on all other machines. We choose 0 < εkj < ε for
some small enoughε j + 1 whereεkj < εk+1,j for all k andj andεnj ,j < ε1,j+1.

The optimal solution may use the following assignment. Assign allnj jobs of typej on machinej.
This assignment results in completion time of at most2(1 + ε) for each machine (except them’th one
which remains empty).

12

Consider the following assignment. Half of the jobs of typej are assigned to machinej and half to
machinej +1 (we later specify which half). Then Machinej +1 for j = 1 to m−2 would have a load
of slightly more than(nj/2)(2j/nj) = j of jobs of typej and slightly more than(nj/2)(2/nj) = 1 of
jobs of typej + 1. Machine1 has a load of slightly more than1 (type1 jobs) and machinem a load of
slightly more thanm − 1 (typem − 1 jobs).

Note that all jobs on each machine have approximately the same size. Since we setεkj < εk′,j+1

for all j andk, k′ this implies that jobs of typej are processed before jobs of typej + 1 (on machine
j + 1).

Finally, we have to specify which set of jobs are actually assigned to each machine. This assignment
defines the order of jobs on each machine. Assume for a moment that εkj would have been0. This
would define a set of completion times for all jobs of typej on machinesj andj + 1. Assign the jobs
of typej to the two machines (j andj + 1) in non-decreasing order of the IDk according to the non-
decreasing order of completion time of that jobs. We claim that this assignment is a Nash Equilibrium.
Moreover the price of anarchy is aboutm/2.

Immorlica et.al. [17] observed that the set of pure Nash equilibria of the ShortestFirst policy is
equivalent to the output of the shortest-first greedy algorithm of Ibarra and Kim [16]. Therefore, the
above lower bound implies the lower bound ofm

2 for the shortest-first greedy algorithm.

B Pure Nash equilibria for Special Cases

In this section, we investigate the existence of pure Nash equilibria for general ordering policies and
for some special cases. In particular, we prove the following theorems.

Theorem B.1 The corresponding game of any ordering policy is a potentialgame forB||Cmax. Thus,
it has pure Nash equilibria forB||Cmax. Also, if the global ordering for all machines is the same, then
pure Nash equilibria exist for the corresponding game of theR||Cmax. However, forR||Cmax, there
are ordering policies without any pure Nash equilibria evenfor two machines.

Proof: Letw(i, j) be the position orrankof job i in the global ordering of machinej, i.e., jobi is at the
w(i, j)s position in the global ordering of machinej. Given a scheduleS of jobs on all machines, let
mi be the machine of jobi andTi be the starting time of jobi. In order to define the potential function
for S, we add a dummy jobdj of length∞ to the end of each machinej. The rank of the dummy job
dj on machinej is n + 1, i.e.,w(dj , j) = n + 1, andmdj

= j. After adding these dummy jobs, we
find the potential function for scheduleS as follows: sort the jobs in the non-decreasing order of their
starting time, and if there are ties between the starting times, sort them in the non-decreasing order of
their ranksw(i,mi). Since we added a dummy job for each machine, the length of thevector of the
potential function isn + m. Let the vector of jobs in this order be(1, 2, . . . , n + m). Therefore, by
definition,T1 ≤ T2 ≤ . . . ≤ Tn+m and if Tl = Tl+1, thenw(l,ml) ≤ w(l + 1,ml+1). The potential
function for this scheduleS is (w(1,m1), w(2,m2), . . . , w(n + m,mn+m)). If job k plays his best
response and goes to machinem′

k instead of machinemk, the starting time of jobk decreases (since
for B||Cmax when a job improves its completion time, it improves its starting time as well). As a result,
job k occupies an earlier position in the corresponding vector ofthe new schedule. Jobk cannot be the
last job on machinem′

k, since each machine has a dummy job who is the last. Let jobk′ be the job after

13

k on machinem′
k afterk moves (note thatk′ might be a dummy job). The rank of jobk is less than

the rank of jobk′ on machinem′
k. This proves that the potential function decreases lexicographically.

Therefore, the game is a potential game.

It is not hard to prove that if the global ordering for all machines is the same, then pure Nash
equilibria exist for the corresponding game of theR||Cmax and the game is a potential game. If the
global ordering on all machines is(1, 2, . . . , n) and the completion time of jobi in scheduleS isCi(S),
then the potential function in this case for scheduleS is (C1(S), C2(S), . . . , Cn(S)).

Finally, for R||Cmax, there are examples even for two machines for which the corresponding game
does not have any pure Nash equilibrium. Consider an examplewith two machines 1 and 2, and three
jobsA,B,C. The global ordering for machine 1 is(A,B,C) and the global ordering for machine 2 is
(C,A,B). The processing time of jobs on machines arepA1 = 12, pB1 = 16, pC1 = 2, pA2 = 10,
pB2 = 10, pC2 = 16. It is not hard to check that no set of strategies of players isa pure Nash
equilibrium in this game.

The above theorem shows that an arbitrary set of ordering policies may not have pure Nash equilibria
even for two machines. We showed that the corresponding gameof the inefficiency-based policy may
not possess pure Nash equilibria. The following theorem shows that the inefficiency-based policy
always have pure Nash equilibria for two machines.

Theorem B.2 The inefficiency-based mechanism always possess pure Nash equilibria for two ma-
chines.

Proof: The proof is by induction. The base of induction is for one jobfor which the proof is trivial.
Consider the most inefficient job on both machines and call itA. We do not letA go on the machine for
which it is less efficient, say machine 1. The induction is on the number of pairs of jobs and machines
(i, j) such that jobi can be scheduled on machinej. For the instance for which jobA cannot be
scheduled on machine 1, we find a pure Nash equilibriumS by induction. For the induction step, we
would like to change this equilibriumS to an equilibrium for the original instance. The only possibility
is that jobA in S wants to switch to machine 1. If we letA move to machine 1, no other job from
machine 2 wants to move to machine 1. We claim that jobs from machine 1 do not want to switch
to machine 2 either. Note that jobA is larger on machine 1 than on machine 2 and hence machine 1
ends in scheduleS (without jobA) before jobA starts on machine 2, otherwiseA would not like to
move from machine 2. Hence no jobs from machine 1 want to move to machine 2 (although jobA left
machine 2), since they would finish later if they move.

C Proofs of Section 7

Proof of Lemma 7.1. The second part of the lemma is easy. Each machine simulates the b sub-
machines continuously and provides1/b of the time for each. Since the processing time of each job in
the corresponding instance isb times its original processing time then the completion timeof each job
remains the same as needed.

Next, we prove the first part of the lemma. Given the an assignment to the original instance we
create a feasible assignment to the new instance with increase in makespan by factor of at most2b. We

14

do it in two steps. In the first step we create a new assignment for the original instance where no jobi
runs on machinej with eij ≥ m. This will (at most) double double the makespan. We do it by simply
moving each jobi that runs on machinej with eij ≥ m to the best machine for that job, i.e., to machine
j′ whereeij′ = 1. Let I be the set of such jobs. Clearly the makespan has increased additively by at
most

∑
i∈I pi (even if all these jobs were to go on the same machine). However

∑
i∈I pij ≥

∑
i∈I mpi.

Hence the original makespan was at least

1

m

∑

i∈I

pij ≥
1

m

∑

i∈I

mpi =
∑

i∈I

pi

which means that the makespan at most doubled.

In the second step, we create from the modified assignment an assignment for the sub-machines
instance by increasing the makespan by a multiplicative factor of b. This is easily done by assigning
job i that is assigned to machinej to the sub-machinel = beijc of machinej which is feasible and
always exists sinceeij < m. The load of each sub-machine of machinej does not increase since the
jobs were split among the sub-machines. However, since the processing time is multiplied byb, the
completion time is scaled up by a factor ofb. Hence, after applying the two steps the makespan for the
corresponding instance is increased by at most2b as required. �

Proof of Theorem 7.2. We can viewSplit & Any for the original instance as processing the jobs
on the corresponding instance in ‘almost’ non-decreasing order of the inefficiency. All jobs on each
sub-machine have ‘almost’ the same (i.e. up to factor of 2) inefficiency. If we change the size of
jobs to have precisely the same inefficiency then by using Theorem 5.1 the price of anarchy is at most
O(log m) with respect to the optimal assignment for the corresponding instance (with the original size
we lose only additional factor of 2). Nevertheless, the makespan of the optimal assignment for the
corresponding instance is at mostO(log m) times the the makespan of the optimal assignment of the
original instance. Hence the price of anarchy ofSplit & Any is O(log2 m) with respect to its optimum.
Since,Split & Shortestbelongs to the family ofSplit & Any its price of anarchy is not larger. �

Proof of Theorem 7.3. We use again a variation on the standard example from Theorem5.1 to show
that even for the restricted assignment model (B||Cmax) the price of anarchy of this strategy is at least
log2 m. Note again that forB||Cmax, the inefficiency of every job is precisely1 on any legal machine
for that job. Hence, only the first sub-machine of each machine is doing any work. We use the example
from Theorem 5.1 but we slightly perturb the job sizes. All jobs are of processing time slightly smaller
than1 where all jobs in classk are slightly shorter than all jobs in classk + 1. Hence the algorithm
may order the jobs on each machine (on the first sub-machine) according to classes and hence we get a
similar (up to a small perturbation) example as in Theorem 5.1. Since only one sub-machine is active,
the makespan of the example described is multiplied bylog m and becomeslog2 m where the optimum
remains the same i.e., 1. �

Proof of Theorem 7.4. The completion time of each job inSplit & Shortestis precisely equal to the
completion time of each job in the corresponding instance onthemb sub-machines. That instance is
ShortestFirst on each sub-machine. Hence, any sequential improvement process converges to a Nash
equilibrium [11, 17]. A potential function for theShortestFirst policy is the vector of the completion
time (sorted in non-decreasing order) of all jobs which decreases lexicographically after each best

15

response. Also it is proved in [17] that at mostn rounds of best responses of players converges to pure
Nash equilibria in this game. �

16

