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The switched system model abstracts away the discrete mechanisms of a hybrid system in terms of
an exogenous switching signal. Dwell Time and Average Dwell Time (ADT) criteria, introduced

by Morse and Hespanha, define restricted classes of switching signals that guarantee stability of

the whole system, provided the individual modes of the switched system are stable. In this paper,
we present a set of techniques for establishing stability through verification of ADT properties.

We introduce a new type of simulation relation for hybrid automata—switching simulation—that

allows us to show that the ADT of one automaton is no less than that of another. We show that
the question of whether a given hybrid automaton has ADT τa can be answered by checking a

carefully designed invariant or by solving an optimization problem. The invariant-based method
is applicable to any hybrid automaton. For suitable classes of automata the invariant in question

can be checked automatically. The optimization-based method is applicable to a restricted class

of initialized hybrid automata. For this class, a solution of the optimization problem either gives
a counterexample execution that violates the ADT property, or it confirms that the automaton

indeed satisfies the property. The optimization-based approach is automatic and complements the

invariant-based method in the sense that they can be used in combination to find the unknown
ADT of a given hybrid automaton.

Categories and Subject Descriptors: D. Software [D.2 Software Engineering]: D.2.4. Soft-

ware/Program Verification

General Terms: Hybrid Systems, Stability, Verification

Additional Key Words and Phrases: Hybrid systems, Simulation relation, Optimization-based

verification

1. INTRODUCTION

Rapid growth in communication and microprocessor technologies is fueling the
development of complex embedded devices which are being deployed to perform
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increasingly more critical and sophisticated tasks. Stability of such devices and
systems is often a natural requirement. For digital control systems, stability is of
fundamental importance and has been an area of intense research. Stability prop-
erties are also important in distributed computation and control type applications.
For instance, a set of mobile robots starting from arbitrary locations in the plane
are required to coordinate and converge to some formation; a set of failure prone
processes communicating over unreliable channels are expected to perform some
useful computation once the failures cease and the message delays become normal.
Both the above requirements can be phrased as stability properties of the respective
systems.

The standard approach for describing complex embedded systems consisting of
software components and physical processes is to assume that the state space of the
system is partitioned into finite number of equivalence classes. Each equivalence
class is called a mode. We denote the set of modes by P. The evolution of the state
x in mode i, for some i ∈ P, is described by some differential equation of the form
d(x) = fi(x). Mode transitions are described by guards and and reset maps. Hybrid
automata-like models (see e.g. [Alur et al. 1995; Lynch et al. 2003]) embody the
above point of view. Verification of safety properties of hybrid automata through
reachable set computations and deductive techniques have received a lot of attention
in the recent years (see, e.g., [Mitchell and Tomlin 2000; Prajna and Jadbabaie 2004;
Kurzhanski and Varaiya 2000; Henzinger and Majumdar 2000; Livadas et al. 1999;
Heitmeyer and Lynch 1994; Mitra et al. 2003] .

Analyzing the stability of hybrid automata is challenging because the stability
of the continuous dynamics of each individual mode does not necessarily imply the
stability of the whole automaton. The basic tool for studying stability relies on the
existence of a Common Lyapunov function, whose derivative along the trajectories
of all the modes must satisfy suitable inequalities. When such a function is not
known or does not exist, Multiple Lyapunov functions [Branicky 1998] are useful
for proving stability of a chosen execution. These and many other stability results
are based on the switched system [Liberzon 2003; van der Schaft and Schumacher
2000] view of hybrid systems.

Switched systems may be seen as higher-level abstractions of hybrid automata.
A switched system model neglects the details of the discrete mechanisms of hybrid
automata, namely the guards and the reset maps, and instead relies on an exogenous
switching signal to bring about the mode switches. Assuming that the switching
signal belongs to a certain class, one can focus on the stability of a hybrid system
with respect to its continuous dynamics. If the individual modes of the automaton
are stable, then the Dwell Time [Morse 1996] and the more general Average Dwell
Time (ADT) criteria of [Hespanha and Morse 1999] define restricted classes of
switching signals that guarantee stability of the whole system.

To be more specific, a hybrid automaton A has ADT τa if, in every execution
fragment of A, any τa interval of time, on an average, has at most one mode switch.
A large average dwell time means that the system spends enough time in each mode,
so as to dissipate the transient energy gained through mode switches. Having a large
average dwell time itself is not sufficient for stability; in addition, the individual
modes of the automaton must also be stable. In fact, the problem of proving the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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stability of a hybrid system can be broken down into, (a) finding Lyapunov functions
for the individual modes, and (b) checking the appropriate ADT property. In this
paper we assume that a solution to part (a)—a set of Lyapunov functions for the
individual modes—is known from existing techniques from systems theory [Khalil
2002], and we present semi-automatic methods for proving the ADT properties.
Thus, we provide a missing piece in the toolbox for analysis of stability of hybrid
systems.

1.1 Contributions

In order to verify ADT, we have to use a model that captures both the discrete
and continuous mechanisms of hybrid systems. We use the Structured Hybrid Au-
tomaton (SHA) model derived from the Hybrid Input/Output Automaton (HIOA)
framework of [Lynch et al. 2003]. First of all, we define what it means for a given
SHA to switch “faster than” another SHA with respect to ADT. We introduce a
new kind of simulation relation, called switching simulation, which gives a suffi-
cient condition for establishing the above “faster than” relationship between pairs
of automata. That is, if automaton A1 is simulated by a faster automaton A2, and
A2 has ADT τa, we can conclude that the ADT of A1 is at least τa. This gives us a
sound method for abstraction that is particularly geared towards ADT verification.

Our first method for ADT verification relies on checking invariant properties.
In order to check if automaton A has ADT τa, we transform it to a new au-
tomaton A(τa), such that A has ADT τa if and only if A(τa) has a particular
invariant property I(τa). We can then appeal to suitable invariant checking tools,
like HyTech [Henzinger et al. 1997], PHAVer [Frehse 2005b] or PVS [Owre et al.
1996], to check I(τa). This method is applicable to general SHAs; however, the in-
variant I(τa) can be checked automatically only for restricted classes of automata.
For hybrid automata that are not amenable to automatic invariant checking, semi-
automatic deductive techniques can be used.

Our second method for ADT verification is based on solving optimization prob-
lems. To check if automaton A has ADT τa, we formulate an optimization problem
OPT(τa). From the solution of OPT(τa) we either get a counterexample execution
fragment of A that violates the ADT property τa, or else we get a proof that no such
counterexample exists, and that A has ADT τa. We show that for certain classes
of SHAs OPT(τa) can indeed be formulated and solved using standard mathemat-
ical programming techniques. The optimization-based method complements the
invariant method because the two can be combined to find the ADT of SHAs.

1.2 Organization

The rest of the paper is organized as follows: in Section 2 the Structured Hybrid
Automaton (SHA) model is formally introduced and briefly compared to other ex-
isting models; the linguistic conventions used throughout the paper for describing
SHAs are presented; stability and Average Dwell Time (ADT) properties of SHAs
are defined. The section concludes with the definition of switching simulation rela-
tions and the soundness theorem. Section 3 presents the invariant-based approach
for verifying ADT. The necessary transformations are presented and the ADT veri-
fication of two hybrid systems—a scale-independent hysteresis switch and a leaking
gas burner—are described. Section 4 presents the optimization-based method for
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verifying ADT. At first, the optimization problem OPT corresponding to ADT ver-
ification is stated. It is established that for initialized rectangular SHAs and for
more restricted one-clock initialized SHAs OPT can be solved effectively. These
results along with switching simulation relations are used to automatically verify
ADT of a linear hysteresis switch and a thermostat with nondeterministic switches.
For initialized rectangular SHAs, a Mixed Integer Linear Program formulation for
solving OPT is presented. Section 5 concludes this paper with a summary of con-
tributions and with some remarks interesting directions for future research.

2. STRUCTURED HYBRID AUTOMATA, STABILITY AND AVERAGE DWELL TIME

This section forms the mathematical basis for the rest of the paper. First we
introduce the Structured Hybrid Automata (SHA) model, a simplified version of
the HIOA model of [Lynch et al. 2003] tailored for the results in this paper. In
Section 2.3 we introduce the linguistic conventions used throughout the paper to
describe SHAs. In Section 2.4 we define the different notions of stability and the
role of Average Dwell Time criterion in stability analysis. Finally, in Section 2.6
we define switching simulation relations for SHAs and show that they provide a
sufficient condition for proving equivalence of SHAs with respect to ADT.

Several models for hybrid systems have been proposed in the literature. For in-
stance, the Hybrid Automaton model of [Alur et al. 1995] is well established; the
switched system model [Liberzon 2003] has been widely used to obtain many sta-
bility related results; the General Hybrid Dynamical System of [Branicky 1995;
Branicky et al. 1998] is proposed with particular emphasis of controller design. We
will not dwell on the relationship of the SHA model with all the above, however,
we briefly note the features of the SHA model that make it suitable for this paper.

First, the SHA model imposes a variable structure on the state-space. Indeed,
this adds some notational overhead, but it is a convenient feature for modelling
hybrid systems whose discrete state consists of not just locations (or modes) but
interesting data structures such as, counters, queues and heaps. Secondly, between
the Hybrid Automaton model of [Alur et al. 1995] and SHA, the latter is closer to the
switched system model because it provides direct handle on the trajectories and it
does not require built in structures (such as guards and reset maps) for describing
the discrete mechanism. Thus, SHA is more suitable for adopting results from
the theory of switched systems such as stability via ADT. Further, owing to the
structure of SHAs invariants and simulation relations can be proved inductively by
a case analysis on the actions and the trajectories. Even for systems where fully
automatic verification is impossible, such proofs can be partially automated using
theorem provers [Mitra and Archer 2005]. Finally, the HIOA framework, of which
SHA is a part, provides powerful compositionality theorems. We do not make use of
composition in this paper, however, in the future when we study external stability
and input to state stability, we can do so within the same mathematical framework.

2.1 Variables and trajectories

We denote the domain of a function f by f.dom. For a set S ⊆ f.dom, we write
f d S for the restriction of f to S. If f is a function whose range is a set of functions
and Y is a set, then we write f ↓ Y for the function g with g.dom = f.dom such
ACM Journal Name, Vol. V, No. N, Month 20YY.
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that for each c ∈ g.dom, g(c) = f(c) d Y . For a tuple or an array b with n elements,
we refer to its ith element by b[i].

We fix the time axis T to be R≥0. For any J ⊆ T we define J+t = {t′+t | t′ ∈ J}.
In the SHA model a variable structure is used to specify states. Let X be a set
of state variables; X is partitioned into Xd, the set of discrete variables, and Xc,
the set of continuous variables. Each variable x ∈ X is associated with a type,
which is the set of values that x can assume. Each x ∈ Xd (respectively, Xc) has
dynamic type, which is the pasting closure of the set of constant (resp. continuous)
functions1 from left-closed intervals in T to the type of x. A valuation x for the
set of variables X is a function that associates each x ∈ X to a value in its type.
The set of all valuations of X is denoted by val(X). A trajectory τ : J → val(X)
specifies the values of all variables in X over a time interval J with left endpoint of
J equal to 0, with the constraint that evolution of each x ∈ X over the trajectory
should be consistent with its dynamic type. The set of all trajectories for the set
of variables X is denoted by traj(X).

A trajectory with domain [0, 0] is called a point trajectory. The limit time of a
trajectory τ , written as τ.ltime, is the supremum of τ.dom. If τ.dom is right closed
then τ is closed . The first state of τ , τ.fstate is τ(0), and if τ is closed, then the
last state of τ , τ.lstate, is τ(τ.ltime).

Given a trajectory τ and t ∈ T, the function (τ + t) : (τ.dom + t) → X is
defined as (τ + t)(t′) := τ(t′ − t), for each t′ ∈ (τ.dom + t). Given two trajectories
τ1 and τ2, τ1 is a prefix of τ2, written as τ1 ≤ τ2, if τ1 = τ2 d τ1.dom. Also,
τ1 is a suffix of τ2 if τ1 = (τ2 d [t,∞)) − t, for some t ∈ τ2.dom. If τ1 is a
closed trajectory with τ1.ltime = t and τ2.fstate = τ1.lstate, then the function
τ1

_ τ2 : τ1.dom ∪ (τ2.dom + t) → X is defined as τ1(t) if t ≤ u and τ2(t − u)
otherwise.

A set of trajectories T for X is closed under prefix (suffix) if for any τ ∈ T a prefix
(suffix) τ ′ of τ is also in T . Suppose τ ∈ traj(X) and let x be some variable name
in X. With some abuse of notation we define the function x : τ.dom → type(x) to
be x(t) := (τ ↓ x)(t), for every t ∈ τ.dom.

2.2 Structured hybrid automata

The Structured Hybrid Automaton model is derived from the Hybrid Input/Output
Automaton (HIOA) model of [Lynch et al. 2003]. We are concerned with internal
stability of hybrid systems in this paper, so SHAs do not have input/output vari-
ables and do not distinguish among input, output, and internal actions. On the
other hand, this model describes the trajectories of automata using “state models”
that are collections of differential and algebraic equations, instead of abstract sets
of functions.

Definition 2.1. A state model F for a set of variables X is a set of differential
equations for Xc of the form d(xc) = f(xc), such that: (1) For every x ∈ val(X),
there exists solution τ of F with τ.fstate = x d Xc, and (2) for all t ∈ τ.dom,
(τ ↓ Xd)(t) = (τ ↓ Xd)(0). The prefix and suffix closure of the set of trajectories of
X that satisfy the above conditions is denoted by traj(X, F ).

1This set of functions must be closed under time-shift, restriction to subintervals, and pasting.

See [Kaynar et al. 2005] for formal definition of these closure properties
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Definition 2.2. A Structured Hybrid Automaton (SHA) is a tupleA = (X, Q, Θ, A,D, P ),
where (1) X is a set of variables, including a special discrete variable called mode.
(2) Q ⊆ val(X) is the set of states, (3) Θ ⊆ Q is a nonempty set of start states, (4)
A is a set of actions, (5) D ⊆ Q×A×Q is a set of discrete transitions, and (6) P
is an indexed family Fi, i ∈ P, of state models, where P is an index set.

A transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A is
clear from context. A transition x a→ x′ is called a mode switch if x d mode 6= x′ d
mode. The set of mode switching transitions is denoted by MA. The precondition
of action a is Prea := {x ∈ Q | ∃x′,x a→ x′ ∈ D}.

In this paper, we assume that the right hand sides of the differential equations in
the state models are well behaved (locally Lipschitz), and the differential equations
have solutions defined globally in time. Therefore, for each Fi, i ∈ P and x ∈ Q
with x d mode = i, there exists a trajectory τ starting from x that satisfies Fi and
if τ.dom is finite then τ.lstate ∈ Prea for some a ∈ A. The set T of trajectories of
SHA A is defined as T :=

⋃
i∈P traj(X, Fi).

An execution fragment captures a particular run of A; it is defined as an alter-
nating sequence of actions and trajectories α = τ0a1τ1a2 . . ., where (1) each τi ∈ T ,
and (2) if τi is not the last trajectory then τi.lstate

ai+1→ τi+1.fstate. The first state
of an execution fragment α, α.fstate, is τ0.fstate. An execution fragment α is an
execution of A if α.fstate ∈ Θ. The length of a finite execution fragment α is the
number of actions in α. An execution fragment is closed if it is a finite sequence,
and the domain of the last trajectory is closed. Given a closed execution fragment
α = τ0, a1, . . . , τn, its last state, α.lstate, is τn.lstate and its limit time, α.ltime,
is defined as

∑n
i=0 τi.ltime. A closed execution fragment α of SHA A is a cycle if

α.fstate = α.lstate. We define the following shorthand notation for the valuation
of the variables of A at t ∈ [0, α.ltime], α(t) := α′.lstate, where α′ is the longest
prefix of α with α′.ltime = t.

A state x ∈ Q is reachable if it is the last state of some execution of A. An
execution fragment α is reachable if α.fstate is reachable. An invariant property
or simply an invariant of A is a condition on X that holds in all reachable states
of A. An invariant property I can be proved inductively by showing: (a) for all
x ∈ Θ, I(x), (b) for all x a→ x′, if I(x) then I(x′), and (c) for all closed trajectories
τ ∈ TA, if I(τ.fstate), then I(τ.lstate).

2.3 Linguistic conventions

The standard circle-arrow diagrams used for specifying hybrid automata become a
little cumbersome for automata with many modes and discrete transitions. In this
paper, we use an extension of the TIOA Language [Kaynar et al. 2005] to specify
SHAs. We briefly describe the semantics of this language using the code in Figure 1
as an example.

Variable names, their static and dynamic types, and initial values are defined in
the Variables section (lines 1–3). All but the real valued variables are considered to
be discrete; a real valued discrete variable is declared using the Discrete keyword.

Action names are declared in the Actions section (lines 5–6) and the correspond-
ing transitions are defined in the Transitions section using the precondition-effect
style. The predicate following the Precondition keyword after action a defines
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Prea. The assignment statements after the keyword Effect define the relation
between pre and the post state of the corresponding transition.

The Trajectories section (lines 21–29) defines the state model, the invariants
and the stopping condition for each mode. For example, in the leaking mode, the
continuous variables evolve according to the simple differential equation d(x) =
1 (line 27); the stopping condition x = D2 following the Stop when keyword,
means that if (τ ↓ x)(t) = D2, for some t ∈ τ.dom, then t is the limit time of τ .

Burner(D1, D2), where D1, D2 ∈ R≥0

Variables:

2 mode ∈ {normal, leaking}, initially normal
x, z ∈ R, initially x = 0

4

Actions
6 leak, repair

8 Transitions:
leak

10 Precondition

mode = normal ∧ x ≥ D1

12 Effect

mode ← leaking, x ← 0

13

repair
15Precondition

mode = leaking ∧ x = D2

17Effect
mode ← leaking, x ← 0

19

21Trajectories:

Trajdef normal
23Evolve d(x) = 1

25Trajdef leaking
Invariant x ≤ D2

27Evolve d(x) = 1

Stop when x = D2

Fig. 1: Leaking gas burner

2.4 Stability and ADT

We adopt the standard stability definitions [Khalil 2002] and state them in the
language of SHAs. Stability is a property of the continuous variables of SHA A,
with respect to the standard Euclidean norm in Rn which we denote as | · |. We
assume that each state model Fi ∈ P of A has the origin as its common equilibrium
point, that is, Fp(0) = 0 for all i ∈ P. The origin is a stable equilibrium point of a
SHA A, in the sense of Lyapunov, if for every ε > 0, there exists a δ > 0, such that
for every execution α of A,

|α(0)| ≤ δ ⇒ |α(t)| ≤ ε ∀t 0 ≤ t ≤ α.ltime, (1)

and we say that A is stable. An SHA A is asymptotically stable if it is stable and δ
can be chosen so that

|α(0)| ≤ δ ⇒ α(t) → 0 as t →∞ (2)

If the above condition holds for all δ then A is globally asymptotically stable.
Uniform stability is a concept which guarantees that the stability property in

question holds not just for executions, but for any execution fragment. A is uni-
formly stable in the sense of Lyapunov, if for every ε > 0 there exists a constant
δ > 0, such that for any execution fragment α,

|α(t0)| ≤ δ ⇒ |α(t)| ≤ ε,∀t0, t, 0 ≤ t0 ≤ t ≤ α.ltime

ACM Journal Name, Vol. V, No. N, Month 20YY.
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An SHA A is said to be uniformly asymptotically stable if it is uniformly stable
and there exists a δ > 0, such that for every ε > 0 there exists a T , such that for
any execution fragment α,

|α(t0)| ≤ δ ⇒ |α(t)| ≤ ε, ∀t ≥ t0 + T (3)

It is said to be globally uniformly asymptotically stable if the above holds for all δ,
with T = T (δ, ε). All the above stability properties are by definition uniform over
executions.

It is well known that a switched system is stable if all the individual subsystems
are stable and the switching is sufficiently slow, so as to allow the dissipation of the
transient effects after each switch. The dwell time [Morse 1996] and the average
dwell time [Hespanha and Morse 1999] criteria define restricted classes of switching
signals, based on switching speeds, and one can conclude the stability of a system
with respect to these restricted classes.

Definition 2.3. Given a duration of time τa > 0, SHA A has Average Dwell
Time (ADT) τa if there exists a positive constant N0, such that for every reachable
execution fragment α,

N(α) ≤ N0 + α.ltime/τa, (4)

where N(α) is the number of mode switches in α. The number of extra switches of
α with respect to τa is defined as Sτa(α) := N(α)− α.ltime/τa.

Theorem 1 from [Hespanha and Morse 1999], adapted to SHA, gives a sufficient
condition for stability based on average dwell time. Roughly, it states that a hybrid
system is stable if the discrete switches are between modes which are individually
stable, provided that the switches do not occur too frequently on the average. See
Section 3.2 of [Liberzon 2003] for a proof2.

Theorem 2.4. Suppose there exist positive definite, radially unbounded, and con-
tinuously differentiable functions Vi : Rn → Rn, for each i ∈ P, and positive
numbers λ0 and µ such that:

∂Vi

∂xc
fi(xc) ≤ −λ0Vi(xc), ∀xc, ∀i ∈ P, and

Vi(x
′
c) ≤ µVj(xc), ∀x a→A x′, where i = x′ d mode and j = x d mode.

Then, A is globally uniformly asymptotically stable if it has an ADT τa > log µ
λ0

.

This stability condition effectively allows us to decouple the construction of Lya-
punov functions—the Vi’s for each i ∈ P, which we assume are known from available
methods of system theory—from the problem of checking that every execution of
the automaton has a certain average dwell time.

2.5 ADT verification overview

In general, it is hard to prove properties like the ADT property which are quantified
over all the executions of an automaton. Our first approach for verifying ADT

2In [Hespanha and Morse 1999] and [Liberzon 2003] this theorem is presented for the case when
discrete transitions do not change the valuation of the continuous variables, but the same proof

establishes the result stated here.
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relies on simple transformations defined by a small set of history variables, that
are sufficient to convert the ADT property to an equivalent invariant. This enables
us to prove ADT properties using the techniques available for proving invariants.
Our second method is based on a complementary approach. We attempt to find
an execution of the automaton, that violates (4). We show that this search can be
formulated as an optimization problem, and for certain restricted classes of SHA,
we show that the optimization problem can be solved efficiently.

The invariant-based approach is generally applicable to any SHA. Automated
invariant checking tools are only available for restricted classes of SHAs. For cases
where automated invariant checking is not possible, we can inductively prove the
invariants. Such proofs can be partially automated using theorem provers (see e.g.,
[Mitra and Archer 2005]). On the other hand, the optimization-based approach
is applicable for classes of SHAs where the resulting optimization problem can be
solved using available mathematical programming techniques. When applicable,
this approach yields an automatic method for verifying ADT.

The two methods for verifying ADT can be combined to find ADT of a given
SHA as follows: we can start with some candidate value of τa > 0 and search for a
counterexample execution fragment for it using the optimization-based approach. If
such an execution fragment is found, then we decrease τa (say, by a factor of 2) and
try again. If eventually the optimization approach fails to find a counterexample
execution fragment for a particular value of τa, then we use the invariant approach
to try to prove that this value of τa is an ADT for the given system.

2.6 Equivalence with respect to ADT: Switching simulations

To check if τa is an ADT for a given SHA A, it is often easier to check the same
ADT property for another, more abstract, SHA B that is “equivalent” to A with
respect to switching behavior. Formally, given SHAs A and B, if for all τa > 0, τa

is an ADT for B implies that τa is an ADT for A, then we write this as A ≥ADT B.
If B ≥ADT A and A ≥ADT B then we say A and B are equivalent with respect to
switching.

In this section we will develop a simulation relation-based method for proving
the above equivalence relationship. Traditionally, simulation relations have been
widely used to prove that the set of visible behavior of one automaton is included
in that of another automaton [Lynch and Vaandrager 1996]. Simulation relations
have been used for verifying safety and timing-based properties of hybrid systems
(see e.g., [Frehse 2005a; Lynch 1996; Weinberg and Lynch 1996; Lim et al. 2005]).
For ADT verification, the “visible” part of an execution we are concerned with is
the number of mode switches that occur and the amount of time that elapses over
the execution. Following this intuition we define a new kind of simulation relation
that gives us a way of inductively proving the ≥ADT relationship between a pair of
SHAs.

Definition 2.5. Consider SHAs A and B. A switching simulation relation from A
to B is a relation R ⊆ QA ×QB satisfying the following conditions, for all states x
and y of A and B, respectively:

(1) If x ∈ ΘA then there exists a state y ∈ ΘB such that x R y.
(2) If x R y and α is an execution fragment of A with α.fstate = x and consisting
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of one single action surrounded by two point trajectories, then B has a closed
execution fragment β, such that β.fstate = y, N(β) ≥ 1, β.ltime = 0, and
α.lstate R β.lstate.

(3) If x R y and α is an execution fragment of A with α.fstate = x and consisting
of a single closed trajectory, then B has a closed execution fragment β, such
that β.fstate = y, β.ltime ≤ α.ltime, and α.lstate R β.lstate.

Lemma 2.6. If A and B be SHAs, and let R be a switching simulation relation
from A to B, then for all τa > 0 and for every execution α of A, there exists an
execution β of B such that Sτa

(β) ≥ Sτa
(α).

Proof. We fix τa and α and construct an execution of B that has more extra
switches than α. Let α = τ0a1τ1a2τ2 . . . and let α.fstate = x. We consider cases:

(1) α is an infinite sequence.
We can write α as an infinite concatenation α0

_ α1
_ α2 . . ., in which the exe-

cution fragments αi with i even consist of a trajectory only, and the execution
fragments αi with i odd consist of a single discrete transition surrounded by
two point trajectories.
We define inductively a sequence β0β1β2 . . . of closed execution fragments of B
such that x R β0.fstate, β0.fstate ∈ ΘB, and for all i, βi.lstate = βi+1.fstate,
αi.lstate R βi.lstate, and Sτa

(β) ≥ Sτa
(α). Property 1 of the definition of

switching forward simulation ensures that there exists such a β0.fstate because
α0.fstate ∈ ΘA. We use Property 3 of the definition of switching simulation
for the construction of the βi’s with i even. This gives us βi.ltime ≤ αi.ltime
for every even i. We use Property 2 of the definition of switching simulation for
the construction of the βi’s with i odd. This gives us βi.ltime = αi.ltime and
N(βi) ≥ N(αi) for every odd i. Let β = β0

_ β1
_ β2 . . .. Since β0.fstate ∈ ΘB,

β is an execution for B. Since β.ltime ≤ α.ltime and N(β) ≥ N(α), the
required property follows.

(2) α is a finite sequence ending with a closed trajectory.
Similar to first case.

(3) α is a finite sequence ending with an open trajectory.
The final open trajectory of β is constructed using a concatenation of infinitely
many smaller and smaller closed trajectories. The proof of this case is also
similar to first case, except that the open trajectory of β is constructed using
Lemma 4.22 of [Kaynar et al. 2005].

Theorem 2.7. If A and B are SHAs and R is a switching simulation relation from
A to B, then B ≥ADT A.

Proof. We fix a τa. Given N0 such that for every execution β of B, Sτa
(β) ≤ N0,

it suffices to show that for every execution α of A, Sτa
(α) ≤ N0. We fix α. From

Lemma 2.6 we know that there exists a β such that Sτa
(β) ≥ Sτa

(α), from which
the result follows.

Corollary 2.8. Let A and B be SHAs, and let R be a switching forward simulation
relation both from A to B and from B to A. Then, A and B are equivalent with
respect to switching.
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3. VERIFYING ADT: INVARIANT APPROACH

In this section we present a method for verifying ADT of SHAs which relies on
checking invariants. In Sections 3.2 and 3.3 we use this method to verify ADT of a
simple leaking gas-burner and a scale-independent hysteresis switch.

3.1 Transformations for ADT verification

To prove that a given SHA A = (X, Q, Θ, A,D, P ) has average dwell time τa, we
transform it to a new SHA A(τa) = (X1, Q1,Θ1, A1,D1, P1) as follows:

(1) X1 = X ∪ {q, y}, where q ∈ Z is a counter and y ∈ R≥0 is a timer.
(2) Θ1 = {(x, q, y) | x ∈ Θ, q = 0, y = 0}
(3) A1 = A ∪ {decrement.}.
(4) D1 has the following transitions:

i. ∀ x a→A x′ ∈ D \MA, q ∈ Z, y ∈ R≥0 (x, q, y) a−→A(τa)(x′, q, y),
ii. ∀ x a→A x′ ∈ MA, q ∈ Z, y ∈ R≥0, (x, q, y) a−→A(τa)(x′, q + 1, y),
iii. ∀ x ∈ Q, q ∈ Z, (x, q, τa)decrement−→ A(τa)(x, q − 1, 0).

(5) P1 is obtained by adding to each state model in P the differential equation
d(y) = 1 and the stopping condition y = τa.

Informally, the counter q increments every time there is a mode switch of A, and the
timer reduces the count by 1 in every τa time by triggering the decrement action.
For every trajectory τ ∈ T ′, the restriction of τ on the set of variables X is a
trajectory of A, and d(y) = 1, and if (τ ↓ y)(t) = τa then τ.ltime = t.

Lemma 3.1. If τa is not an ADT for automaton A, then for every N0 ∈ N there
exists a closed execution α of A, such that N(α) > N0 + α.ltime/τa.

Proof. Let us fix N0. Automaton A does not have ADT τa, so we know that
there exists an execution α of A such that N(α) > N0 +α.ltime/τa. If α is infinite,
then there is a closed prefix of α that violates (4). If α is finite and open, then the
closed prefix of α excluding the last trajectory of α violates (4).

Theorem 3.2. Given τa > 0, all executions of A have ADT τa if and only if there
exists N0 ∈ N such that q ≤ N0 is an invariant for A(τa).

Proof. From Lemma 3.1 we know that it is sufficient to show that all closed
executions of A satisfy (4) if and only if q ≤ N0 is an invariant for A(τa). For
the “if” part, consider a closed execution α of A and let α′ be the “corresponding”
execution of A(τa). Let x′ = α.lstate, from the invariant we know that x′ d q ≤ N0.
From construction of A(τa) we know that N(α) = N(α′) and α′.ltime = α.ltime

and therefore x′ d q = N(α′)− bα′.ltime
τa

c. It follows that N(α)− α.ltime
τa

≤ N0.
For the “only if” part, consider a reachable state x′ of A(τa). There exists a

closed execution α′ such that x′ is the last state of α′. Let α be an execution of A
“corresponding” to α′. Since N(α) ≤ N0+bα.time

τa
c implies N(α′) ≤ N0+bα′.ltime

τa
c,

it follows that x′ d q ≤ N0.

Remark. In Equation (4), the number N0 can be arbitrary. Thus to show that
a given τa is an average dwell time of an automaton, we need to show that q is
bounded uniformly over all executions.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The above transformation is acceptable for asymptotic stability, but it allows q to
become negative and then rapidly return to zero. So, it does not guarantee uniform
stability. For uniform stability we want all reachable execution fragments of A to
satisfy (4). Consider any reachable execution fragment α of A, with α.ftime = t1,
and α.ltime = t2. Let Nτa(t2, t1) and Sτa(t2, t1) denote the number of switches and
the number of extra switches over α with respect to average dwell time τa. Thus,
every reachable execution fragment α of A satisfies (4), if

Nτa(t2, t1) ≤ N0 +
t2 − t1

τa
, or Sτa(t2, t1) ≤ N0,

where t1 = α.ftime, and t2 = α.ltime. We introduce an additional variable qmin

which stores the magnitude of the smallest value ever attained by q. For uniform
stability we need to show that the total change in q between any two reachable
states is bounded by N0. Instead of introducing the new variable qmin we could
restrict the variable q to have only non-negative values, to obtain uniform stability3.

Theorem 3.3. Given τa > 0, all reachable execution fragments of A have ADT τa

if and only if q − qmin ≤ N0 is an invariant for A(τa).

Proof. From Lemma 3.1 we know that it suffices to consider closed execution
fragments only. For the “if” part, consider a reachable closed execution fragment α
of A which is a part of the execution β, such that α.fstate = β(t1) and α.lstate =
β(t2). Let α′ and β′ be the “corresponding” execution (fragment) of A(τa). Based
on whether or not qmin changes over the interval [t1, t2], we have the following two
cases:

If qmin does not change in the interval, then β′(t1) d qmin = β′(t2) d qmin =
β′(t) d q for some tmin < t1, and q(t2, t1) = q(t2, tmin) − q(t1, tmin) ≤ q(t2, tmin).
Since β′(t2) satisfies the invariant, q(t2, tmin) = β′(t2) d q − β′(t2) d qmin ≤ N0

from which we get q(t2, t1) ≤ N0.
Otherwise, there exists some tmin ∈ [t1, t2], such that β′(t2) d qmin = β′(tmin) d

q < β′(t1) d qmin, and q(t2, t1) = q(t2, tmin)+ q(tmin, t1) ≤ q(t2, tmin). Again, from
the invariant property at β′(t2), we get q(t2, t1) ≤ q(t2, tmin) ≤ N0.

For the “only if” part, let x′ be a reachable state, and ξ′ be a closed execution
of A(τa), such that x′ = ξ′.lstate. Further, let ξ be the “corresponding” execution
of A, and t0 be the intermediate point where q attains its minimal value over ξ,
that is, ξ(t) d qmin = ξ(t0) d q. Since ξ is a reachable execution fragment of A, it
satisfies Equation (4), and we have: N(t, t0) ≤ N0 + t−t0

τa
. Rewriting,

q(t, 0) +
t

τa
− q(t0, 0)− t0

τa
≤ N0 +

t− t0
τa

By assumption, q(t0, 0) = ξ′(t) d qmin = x′ d qmin, therefore, it follows that
x′ d q − x′ d qmin ≤ N0.

3.2 Leaking gas burner

The above transformations yield a simple method for verifying ADT properties of
SHA. We illustrate this with the toy leaking gas-burner system from [Alur et al.

3We thank Andy Teel for suggesting this alternative formulation.
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1993]. The specification of the leaking gas-burner automaton is given in Figure 1
in Section 2.3. The gas-burner system has two modes, the normal mode and the
leaking mode, and it switches between these two modes according to the following
two rules. Every leak continues for D2 seconds after which it is repaired and the
system returns to the normal mode, and no leak occurs within the next D1 seconds;
it is known that D2 < D1. Mode switches are brought about by the leak and repair
actions. Indeed, the ADT of this simple hybrid automaton is D1+D2

2 .
To check whether a given τa is an average dwell time for Burner we transform

this automaton according to the transformation described in Section 3.1. As the
dynamics of the continuous variables in this system are suitable for model checking,
we use the HyTech tool [Henzinger et al. 1997] to check if the q ≤ N0 is an invariant
property of the transformed automaton.

For D1 = 20, D2 = 4, N0 = 1000 and for different values of τa, we check if q ≤ N0

is an invariant for the transformed Burner. HyTech tells us that q ≤ N0 is indeed
an invariant for τa ≤ 12, and not otherwise. It follows that the ADT of Burner
with the above parameters is 12.

3.3 Scale-independent hysteresis switch

We verify the ADT property of a more interesting hybrid system, namely a Scale-
independent hysteresis switch. This switching logic unit is a subsystem of an adap-
tive supervisory control system taken from [Hespanha et al. 2003] (also Chapter 6
of [Liberzon 2003]). Our goal is to prove the ADT property of this switching logic,
which guarantees stability of the overall supervisory control system. The above
references also present a proof of this property by a different approach.

Let P = {1, . . . ,m}, m ∈ N, be the index set for for a family of controllers.
An adaptive supervisory controller consists of a family of candidate controllers
ui, i ∈ {1, . . . ,m}, which correspond to the parametric uncertainty range of the
plant in a suitable way. Such a controller structure is particularly useful when the
parametric uncertainty is so large that robust control design tools are not applicable.
The controller operates in conjunction with a set of on-line estimators that provide
monitoring signals µi, i ∈ {1, . . . ,m}. Intuitively, smallness of µi indicates high
likelihood that i is the actual parameter value. Based on these signals, the switching
logic unit changes the variable mode, which in turn determines the controller to be
applied to the plant.

In building the SHA model HSwitch (see Figure 2), we consider the monitoring
signals to be generated by differential equations of the form, d(µ) = fi(µ), where
i ∈ {1, . . . ,m}, and µ is the vector of monitoring signals. Our analysis does not
depend on the exact nature of these differential equations. Instead, we require
the monitoring signals for each µi to be continuous, monotonically nondecreasing,
satisfying the following lower and upper bounds:

µi(0) ≥ C0 (5)
µi∗(t) ≤ C1 + C2e

λt, for some i∗ ∈ {1, . . . ,m} (6)

where λ, C0, C1 and C2 are positive constants. The switching logic unit implements
scale-independent hysteresis switching as follows: at an instant of time when con-
troller i is operating, that is, mode = i for some i ∈ {1, . . . ,m}, if there exists a
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j ∈ {1, . . . ,m} such that µj(1 + h) ≤ µi, then the switching logic sets mode = j
and applies output of controller j to the plant. Here h is a fixed positive hysteresis
constant.

Since the monitoring signals are specified in terms of nonlinear bounds and there
are arbitrary number of modes, we cannot apply model checking techniques directly
to this system. Instead, we inductively prove a sequence of invariants which together
with Theorem 3.2 establish the ADT of the hysteresis switch to be at least log(1+h)

mλ .
For the ease of this analysis we introduce several extra history variables to

HSwitch in addition to those described at the beginning of Section 3.1. The result
is the automaton TRHSwitch of Figure 3. Lines 4–6, lines 26–29 and line 38 cor-
respond to the transformation of Section 3.1. Note that the timer y is not reset to 0
after every decrement and therefore it records the total time elapsed. The following
additional variables are introduced for ease of analysis: c counts the number of
mode switches; ci counts the number of switches to mode i; µr

i stores the value of
µi at the instant when mode became equal to i for the rth time. Initially µ0

i = µi,
for all i ∈ {1, . . . ,m}, µ1

i0
= µi0 , where i0 is the initial mode; the rest of the µr

i s
are set to a null value ⊥.

HSwitch(m, h) where m ∈ N, h ∈ R≥0

Variables:
2 mode ∈ {1, . . . , m}, initially mode = i0

µ ∈ Rm, initially µi ≥ C0 ∀ i ∈ {1, . . . , m}
4 Derived

µmin = mini{µi}
6

Actions:

8 switch(i,j), i,j ∈ {1, . . . , m}

9Transitions:
switch(i,j)

11Precondition

mode = i ∧ (1+h)µj ≤ µi

13Effect mode ← j

15Trajectories:
Trajdef modei, i ∈ {1, . . . , m}

17Evolve d(µ) = fi(µ)
Stop when

19∃ j ∈ {1, . . . , m}
such that (1 + h)µj ≤ µi

Fig. 2: Hysteresis switch

For simplicity of presentation, we prove the invariants required for asymptotic
stability, and not uniform asymptotic stability. Accordingly the average dwell time
property we get is over executions and not over execution fragments of the automa-
ton. The first two invariants state some straightforward properties of the state
variables.

Invariant 3.4. q ≤ c− y
τa

+ 1.

Invariant 3.5. For all i, j ∈ {1, . . . ,m}, if mode = j then µj ≤ (1 + h)µi, in
addition if cj > 0 and yj = 0 then µj ≤ µi.

Invariant 3.6. For all i ∈ {1, . . . ,m}, ci ≥ 2 ⇒ µci
i ≥ (1 + h)µci−1

i .

Proof. We fix some i in {1, . . . ,m}. The base case holds vacuously. For the
induction step, since the invariant involves only discrete variables, we only have
to consider discrete transitions of the form x a→ x′, where a = switchi. Let x d
ACM Journal Name, Vol. V, No. N, Month 20YY.
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TRHSwitch(m, h, τa) where m ∈ N, h, τa ∈ R≥0

Variables:
2 mode ∈ {1, . . . , m}, initially mode = i0

µ ∈ Rm, initially µi ≥ C0 ∀ i ∈ {1, . . . , m}
4 q ∈ Z, initially q = 0

k ∈ N, initially k = 0

6 y ∈ R, initially y = 0

Discrete µk ∈ R ∪ {⊥}, k ∈ N,
8 initially µ0 = µ, ∀ k 6= 0, µk = ⊥

c, ci ∈ N, i ∈ {1, . . . , m}
10 initially c = 0, ci0 = 1, ∀ i 6= i0, ci = 0,

12 Derived variables
µmin = mini{µi}

14

Actions:
16 switch(i,j), i,j ∈ {1, . . . , m}

decrement

17

Transitions:

19switch(i,j)

Precondition
21mode = i ∧ (1+h)µj ≤ µi

Effect mode ← j

23c← c + 1; cj ← cj + 1;
q ← q + 1; µcj = µj

25

decrement
27Precondition

y = (k + 1)τa

29Effect

q ← q − 1; k ← k + 1

31

Trajectories:

33Trajdef modei, i ∈ {1, . . . , m}
Evolve d(µ) = fi(µ)

35Stop when

∃ j ∈ {1, . . . , m}
37such that (1 + h)µj ≤ µi

∨ y = (k + 1)τa

Fig. 3: Transformed hysteresis switch

mode = j and x′ d ci = r + 1. That is, action a is the (r + 1)st switch to mode
i. From the transition relation, we know that (1 + h)(x d µi) = x d µj . It follows
that:

x′ d µr+1
i = x′ d µi = (1 + h)(x′ d µj) (7)

Let x′′ be the post state of the rth switchi action. From the first part of In-
variant 3.5, (1 + h)(x′′ d µj) ≥ x′′ d µi = x′′ d µr

i . From monotonicity of
µi, x′ d µi ≥ x′′ d µi. Since x′′ d µr

i = x′ d µr
i (no switchi action in be-

tween), we get x′ d µj ≥ x′ d µr
i . Combining this last inequality with (7) we

get, x′ d µr+1
i ≥ (1 + h)(x′ d µr

i ).

Now we are ready to prove the main invariant property, which states that for a
particular choice of τa, the value of the variable q is bounded by some constant.

Theorem 3.7. Let τa = log(1+h)
λm . q ≤ N0 is an invariant of TRHSwitch, where

N0 = 2 + m + m
log(1+h) log

(
C1+C2

C0

)
.

Proof. Consider any reachable state x. We observe that, the counter c is in-
cremented every time a switchi action occurs for any i ∈ {1, . . . ,m}, and for each
i ∈ {1, . . . ,m} the counter ci is incremented when the corresponding switchi ac-
tion occurs. If x d c is less than m then the result follows immediately from
Invariant 3.4. Otherwise, x d c ≥ m and there must be some j ∈ {1, . . . ,m},
such that mode j is visited more than dxdc−1

m e times, that is, x d cj ≥ dxdc−1
m e.

Therefore, from Invariant 3.6 we know that there exists j in {1, . . . ,m} such that
ACM Journal Name, Vol. V, No. N, Month 20YY.
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x d µ
cj

j ≥ (1 + h)d
xdc−1

m e−1(x d µ1
j ). Taking logarithm and rearranging we have,

x d c ≤ 1 + m +
m

log(1 + h)
log

 
x d µ

cj

j

x d µ1
j

!
Let x′ be the post state of the cth

j switchj action, then x d µ
cj

j = x′ d µj . From the
second part of Invariant 3.5 and monotonicity of the monitoring signals, it follows
that, for all k ∈ {1, . . . ,m}, x d µ

cj

j = x′ d µ
cj

j ≤ x′ d µk ≤ x d µk. It follows that,
for all k ∈ {1, . . . ,m},

x d c ≤ 1 + m +
m

log(1 + h)
log

„
x d µk

x d µ1
j

«
.

Form monotonicity and property (5) of the monitoring signals, µ1
j ≥ µ0

j ≥ C0.
Therefore, for all k ∈ {1, . . . ,m},

x d c ≤ 1 + m +
m

log(1 + h)
log

„
x d µk

C0

«
.

≤ 1 + m +
m

log(1 + h)
log

„
C1 + C2e

λ (xdy)

C0

«
, replacing k with i∗ of (6)

≤ 1 + m +
m

log(1 + h)
log

„
C1 + C2

C0

«
+

λm (x d y)

log(1 + h)

Using Invariant 3.4, and putting τa = log(1+h)
λm , we get the result.

Remark. From the above invariant and Theorem 3.2 it is established that HSwitch
has an average dwell time of at least log(1+h)

λm . To ensure stability of the overall
supervisory control system, the parameters h and λ must be such that this average
dwell time satisfies the inequality of Theorem 2.4. For details we refer the reader
to Chapter 6 of [Liberzon 2003].

4. OPTIMIZATION BASED APPROACH

In this section we develop the second method for verifying ADT properties. From
Definition 2.3 it follows that τa > 0 is not an ADT of a given SHA A if and only
if, for every N0 > 0 there exists a reachable execution fragment α of A such that
Sτa(α) > N0. Thus, if we solve the following optimization problem:

OPT(τa) : α∗ ∈ arg max Sτa(α)

over all the execution of A, and the optimal value Sτa
(α∗) turns out to be bounded,

then we can conclude that A has ADT τa. Otherwise, if Sτa
(α∗) is unbounded then

we can conclude that τa is not an ADT for A. However, OPT(τa) may not be
directly solvable because, among other things, the executions of A may not have
finite descriptions. In the remainder of this paper we study particular classes of
SHA for which OPT(τa) can be formulated and solved efficiently.

4.1 One-clock initialized SHA

We consider a special class of SHA, called one-clock initialized SHA, for which
OPT(τa) can be solved using classical graph algorithms. Consider a directed graph
G defined by: a finite set of vertices V, a set of directed edges E ⊆ V × V, a cost
function w : E → R≥0 for the edges, and a special start edge e0 ∈ E . The cost of a
ACM Journal Name, Vol. V, No. N, Month 20YY.
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path in G is the sum of the costs of the edges in the path. Given G = (V, E , w, e0),
the corresponding one-clock initialized SHA Aut(G) is specified by the code in
Figure 4. The source and the target vertices of an edge e are denoted by e[1] and
e[2], respectively.

Aut(G) where G = (V, E ⊆ V × V, w : E → R≥0, e0 ∈ E)

Variables:

2 mode ∈ E, initially e0

x ∈ R, initially 0

4

Actions:
6 switch(e,e′), e,e′ ∈ E

8 Transitions:
switch(e,e′)

9Precondition

mode = e ∧ e[2 ] = e′[1 ] ∧ x = w(e)
11Effect

mode ← e′, x ← 0

13

Trajectories:

15Trajdef edge(mode)

Evolve d(x) = 1
17Invariant x ≤ w(mode)

Stop when x = w(mode)

Fig. 4: Automaton Aut(G) defined by directed graph G

Intuitively, the state of Aut(G) captures the motion of a particle moving with
unit speed along the edges of the graph G. The position of the particle is given by
the mode, which is the edge it resides on, and the value of x, which is its distance
from the source vertex of mode. A switch from mode e to mode e′ corresponds to
the particle arriving at vertex e[2] via edge e, and departing on edge e′. Within edge
e the particle moves at unit speed from e[1], where x = 0 to e[2], where x = w(e).

The next theorem implies that in order to search for an execution of Aut(G) that
maximizes OPT(τa), it is necessary and sufficient to search over the space of the
cycles of G.

Theorem 4.1. Consider τa > 0 and a one-clock initialized SHA Aut(G). OPT(τa)
for Aut(G) is bounded if and only if for all m > 1, the cost of any reachable cycle
of G with m segments is at least mτa.

Proof. It is easy to see that if there is a cycle of G, β = v0e1v1 . . . emvm,
such that the cost

∑m
i=1 w(ei) < mτa, then OPT(τa) is unbounded. Since β is a

cycle with v0 = vm, we can construct an execution γ of Aut(G) by concatenating
β _ β _ β . . ., k times. Therefore, the total number of extra mode switches in
γ is Sτa(γ) = N(γ) − γ.ltime

τa
= km − k

τa

∑m
i=1 w(ei) = k

τa
(mτa −

∑m
i=1 w(ei)). If

mτa >
∑m

i=1 w(ei), then the right hand side can be made arbitrarily large by
increasing k.

Next, suppose OPT(τa) is unbounded for Aut(G). We choose N0 to be larger
than the number of vertices |V| of G. Let β be the shortest execution of Aut(G)
with more than N0 extra switches. Suppose the length of β is l. Since Sτa(β) > N0,
l− 1

τa

∑l
i=1 wi > N0. Since N0 is larger than the number of vertices Aut(G), some

of the vertices must be repeated in β. That is, β must contain a cycle. Suppose
β = βp.γ.βs, where γ is cycle, and let l1, l2, l3 be the lengths of βp, γ, and βs,
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respectively. Then,

l1 + l2 + l3 > N0 +
1

τa

l1X
i=1

wi +
1

τa

l2X
i=1

wi +
1

τa

l3X
i=1

wi

For the sake of contradiction we assume that the cost of the cycle γ,
∑l2

i=1 wi ≥ l2τa.
Therefore,

l1 + l3 > N0 +
1

τa

"
l1X

i=1

wi +

l3X
i=1

wi

#
(8)

From Equation (8), Sτa
(βp

_ βs) > N0, and we already know that βp
_ βs is shorter

that β, which contradicts our assumption that β is the shortest execution with
more than N0 extra switches.

Thus, the problem of solving OPT(τa) for Aut(G) reduces to checking whether G
contains a cycle of length m, for any m > 1, with cost less than mτa. This is
the well known mean cost cycle problem for directed graphs and can be solved
efficiently using Bellman-Ford algorithm or Karp’s minimum mean-weight cycle
algorithm [Cormen et al. 1990].

4.2 Linear hysteresis switch

Using Theorem 4.1 and switching simulations we verify the ADT of a linear version
of the HSwitch automaton of Figure 2 in Section 3.3. For the linear hysteresis
switch LinHSwitch (shown in Figure 5), we consider monitoring signals generated
by linear differential equations. For each i ∈ {1, . . . ,m}, d(µi) = ciµi if mode = i,
otherwise d(µi) = 0. Here the ci’s are positive constants. The switching logic unit
implements the same scale independent hysteresis switching as in HSwitch.

LinHSwitch(m, h) where m ∈ N, h ∈ R≥0

Variables:

2 mode ∈ {1, . . . , m},
initially mode = i0

4 µi ∈ R, i ∈ {1, . . . , m},
initialy µi0 = (1+h)C0

6 ∀ i 6= i0, µi = C0

Derived variables
8 µmin = mini{µi}

10 Actions:

switch(i,j), i,j ∈ {1, . . . , m}

11Transitions:

switch(i,j)

13Precondition
mode = i ∧ (1+h)µj ≤ µi

15Effect mode ← j

17Trajectories:
Trajdef modei, i ∈ {1, . . . , m}

19Evolve d(µi) = ciµi

d(µj) = 0 ∀ j ∈ {1, . . . , m}, j 6= i,

21Stop when
∃ j ∈ {1, . . . , m} such that (1 + h)µj ≤ µi

Fig. 5: Linear hysteresis switch

The LinHSwitch automaton is not a one-clock initialized SHA. We cannot ap-
ply Theorem 4.1 to verify its ADT directly. However, the switching behavior of
LinHSwitch does not depend on the value of the µi’s but only on the ratio of

µi

µmin
, which is always within [1, (1 + h)]. When LinHSwitch is in mode i, all the

ratios remain constant, except µi

µmin
. The ratio µi

µmin
increases monotonically from
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1 to either (1 + h) or to (1 + h)2, in time 1
ci

ln(1 + h) or 2
ci

ln(1 + h), respectively.
Based on this observation, we will show that there exists a one-clock initialized
automaton B, which is equivalent to LinHSwitch with respect to ADT.

Consider a graph G = (V, E , w, e0), where:

(1) V ⊂ {1, (1 + h)}m, such that for any v ∈ V , all the m-components are not equal. We
denote the ith component of v ∈ V by v[i].

(2) An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . , m}, such that, u[j] 6= v[j] and for all i ∈ {1, . . . , m}, i 6= j,
u[i] = v[i]. The cost of the edge w(u, v) := 1

cj
ln(1 + h) and we define ζ(u, v) := j.

(b) There exists j ∈ {1, . . . , m} such that u[j] = 1, v[j] = (1 + h) and for all i ∈
{1, . . . , m}, i 6= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge w(u, v) :=
2
cj

ln(1+h) and we define ζ(u, v) := j. The ith component of the source (destination)

vertex of edge e is denoted by e[1][i] (e[2][i], respectively).

(3) e0 ∈ E , such that e0[1][i0] = (1 + h) and for all i 6= i0, e0[1][i] = 1.

Let G be the graph of Figure 6. Aut(G) is the one-clock initialized automaton
corresponding to LinHSwitch with m = 3. A typical execution α = τ0, a1, τ1, a2, τ2

of LinHSwitch is as follows: τ0 is a point trajectory that maps to the state (mode =
1, [µ1 = (1 + h)C0, µ2 = C0, µ3 = C0]), a1 = switch(1, 3), τ1.dom = [0, 1

c3
ln(1 + h)],

(τ1 ↓ µ3)(t) = C0e
c3t, a2 = switch(3, 2), τ2.dom = [0, 2

c2
ln(1 + h)], (τ2 ↓ µ2)(t) =

C0e
c2t. Note that each edge e of G corresponds to a mode of LinHSwitch; this

correspondence is captured by the ζ function in the definition of G.

[1+h,1,1]

[1+h,1+h,1]

[1,1,1+h]

[1,1+h,1+h]

[1+h,1,1+h]

[1,1+h,1]

1
c2

ln(1 + h) 1
c3

ln(1 + h)
2
c1

ln(1 + h)

2
c3

ln(1 + h)

1
c2

ln(1 + h)

1
c3

ln(1 + h)
2
c2

ln(1 + h)

1
c1

ln(1 + h)
2
c1

ln(1 + h)

Fig. 6: Graph from which the one-clock initialized abstraction for LinHSwitch is obtained.

We define a relationR on the state spaces onA = LinHSwitch and B = Aut(G).
This relation essentially scales the monitoring signals in LinHSwitch by an ap-
propriate factor and equates them with the variable x of Aut(G). The switching
pattern of LinHSwitch is governed by the multiplicative hysteresis constant h and
is independent of this scaling. Indeed, the relation R will turn out to be a switching
simulation relation from A to B.

Definition 4.2. For any x ∈ QA and y ∈ QB, x R y if and only if:

(1) ζ(y d mode) = x d mode
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(2) For all j ∈ {1, . . . , n},
(a)

xdµj

xdµmin
= ecj(ydx), if j = ζ(y d mode),

(b)
xdµj

xdµmin
= (y d mode)[k][j], k ∈ {1, 2}.

Part 1 of Definition 4.2 states that if A is in mode j and B is in mode e, then
ζ(e) = j. Part 2 states that for all j 6= ζ(e), the jth component of e[1] and e[2] are
the same, and are equal to µj/µmin, and for j = ζ(e), µj = µminecjx.

Lemma 6.1 states that R is a switching simulation relation from A and B and
from B to A. The proof follows the typical pattern of simulation proofs. We first
show that R is a switching simulation relation from A to B. This we show by a
case analysis that every action and trajectory of automaton A can be simulated by
an execution fragment of B with at least as many extra switches. The proof of the
second part is similar. The complete proof is given in Appendix A.

Lemma 4.3. R is a switching simulation relation from A to B and from B to A.

From Corollary 2.8 it follows that SHA LinHSwitch and Aut(G) are ADT-
equivalent. As Aut(G) is one-clock initialized SHA, from the results in Section 4.1,
we conclude that the ADT properties of Aut(G) and therefore LinHSwitch can
be verified efficiently by finding the minimum mean cost cycle of G.

For LinHSwitch with m = 3, c1 = 2, c2 = 4, and c3 = 5 we compute the
minimum mean-cost cycle. The cost of this cycle, which is also the ADT of this
automaton, is 19

40 log(1+h). We can also use Theorem 3.7 to get an estimate of the
ADT of LinHSwitch. If we plug in λ = c1 = 2, we get that ADT of this automaton
is at least 1

6 log(1+h). The discrepancy in the two quantities is because of the fact
that the mean-cost cycle analysis uses exact information about the behavior of the
monitoring signals whereas the Theorem 3.7 is based on upper and lower bounds
given by Equations (5) and (6).

4.3 Initialized SHA

In this section we study ADT properties of Initialized SHA. A SHA A is said to
be initialized if every action a ∈ A is associated with two sets Ra, P rea ⊆ Q, such
that x a→ x′ is a (mode switching) discrete transition if and only if x ∈ Prea and
x′ ∈ Ra. The set Ra is called the initialization predicate of a.

Our next theorem implies that for an initialized SHA A, it is necessary and
sufficient to solve OPT(τa) over the space of the cyclic fragments of A instead of
the larger space of all execution fragments.

Theorem 4.4. Given τa > 0 and initialized SHA A, OPT(τa) is bounded if and
only if A does not have any cycles with extra switches with respect to τa.

Proof. For simplicity we assume that all discrete transitions of the automaton
A are mode switches and that for any pair of modes i, j, there exists at most one
action which can bring about a mode switch from i to j. Existence of a reachable
cycle α with extra switches with respect to τa is sufficient to show that τa is not an
ADT for A. This is because by concatenating a sequence of α’s, we can construct an
execution fragment α_ α_ α . . . with an arbitrarily large number of extra switches.

We prove by contradiction that existence of a cycle with extra switches is neces-
sary for making OPT(τa) unbounded. We assume that OPT(τa) is unbounded for
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A and that A does not have any cycles with extra switches. By the definition of
OPT, for any constant N0 there exists an execution that has more than N0 extra
switches with respect to τa. Let us choose N0 > |P|3. Of all the executions that
have more than N0 extra switches, let α = τ0a1τ1 . . . τn be a closed execution that
has the smallest number of mode switches. From α, we construct β = τ∗0 a1τ

∗
1 . . . τ∗n,

using the following two rules:

(1) Each τi of α is replaced by:

τ∗i = arg min{τ.ltime | τ.fstate ∈ Rai , τ.lstate ∈ Preai+1}.

(2) If there exists i, j ∈ {1, . . . , m}, such that ai = aj and ai+1 = aj+1, then we make
τ∗i = τ∗j .

Claim 4.5. The sequence β is an execution fragment of A and Sτa(β) > |P|3.

Proof of claim: We prove the first part of the claim by showing that each application
of the above rules to an execution fragment of A results in another execution
fragment. Consider Rule (1) and fix i. Since τ∗i .fstate ∈ Rai

and τi−1.lstate ∈
Preai , τi−1.lstate

ai→ τ∗i .fstate. And, since τ∗i .lstate ∈ Preai+1 and τi+1.fstate ∈
Rai+1 , we know that τ∗i .lstate

ai+1→ τi+1.fstate. Now for Rule (2), we assume there
exist i and j such that the hypothesis of the rule holds and suppose τ∗j = τ∗i = τi.
We know that even if τ∗j 6= τj , the first states of both are in Raj and the last states
are in Preaj+1 . Therefore, aj matches up the states of τj−1 and τ∗j and likewise
aj+1 matches the states of τ∗j and τj+1.

The second part of the claim follows from the fact that each trajectory τi is
replaced by the shortest trajectory τ∗i from the initialization set of the previ-
ous transition Rai to the guard set of the next transition Preai+1 . That is, for
each i, 0 < i < n, τ∗i .ltime ≤ τi.ltime and therefore β.ltime ≤ α.ltime and
Sτa

(β) > N0 > |P|3.

Since N(β) > |P|3, there must be a sequence of 3 consecutive modes that ap-
pear multiple times in β. That is, there exist i, j ∈ {1, . . . ,m}, and p, q, r ∈ P, such
that τ∗i .fstate d mode = τ∗j .fstate d mode = p, τ∗i+1.fstate d mode = τ∗j+1.fstate d
mode = q, and τ∗i+2.fstate d mode = τ∗j+2.fstate d mode = r. Then, from Rule (2)
we know that τ∗i+1 = τ∗j+1. In particular, τ∗i+1.fstate = τ∗j+1.fstate, that is, we can
write β = βp

_ γ _ βs, where γ is a cycle. Then we have the following:

N(βp) + N(γ) + N(βs) > N0 + βp.ltime/τa + γ.ltime/τa + βs.ltime/τa

N(βp) + N(βs) + Sτa(γ) > N0 + βp.ltime/τa + βs.ltime/τa

N(βp
_ βs) > N0 + βp

_ βs.ltime/τa [βp.lstate = βs.fstate]

The last step follows from the assumption that Sτa
(γ) ≤ 0. Therefore, we have

Sτa
(βp

_βs) > N0 which contradicts our assumption that β has the smallest number
of mode switches among all the executions that have more than N0 extra switches
with respect to τa.

The following corollary allows us to limit the search for cycles with extra switches
to cycles with at most |P|3 mode switches. It is proved by showing that any cycle
with extra switches that has more than |P|3 mode switches can be decomposed into
two smaller cycles, one of which must also have extra switches.
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Corollary 4.6. If initialized SHA A has a cycle with extra switches, then it has a
cycle with extra switches that has fewer than |P|3 mode switches.

Proof. Follows from the last part of the proof of Theorem 4.4.

4.4 MILP formulation of OPT(τa)

A SHA is rectangular if the differential equations in the state models have constant
right hand sides, and the precondition and the initialization predicates (restricted
to the set of continuous variables) are polyhedral. We use the above results to
solve the ADT verification problem for rectangular initialized SHA with Mixed
Integer Linear Programming (MILP). Figure 7 shows the specification of a generic
initialized rectangular SHA A. The automaton A has a single discrete variable
called mode which takes values in the index set P = {1, . . . , N}, and a continuous
variable vector x ∈ Rn. For any i, j ∈ P, the action that changes the mode
from i to j is called switch(i, j). The precondition and the initialization predicates
of this action are given by sets of linear inequalities on the continuous variables,
represented by: G[i, j]x ≤ g[i, j] and R[i, j]x ≤ r[i, j], respectively, where G[i, j]
and R[i, j] are constant matrices with N columns and g[i, j], r[i, j] are constant
vectors.

Rectangular(P, G, A, R, q, a, r, c)

Variables:
2 mode ∈ P, initially p

x ∈ Rn, initially x0

4

Actions

6 switch(p,q), p,q ∈ P

8 Transitions:

switch(p,q)

9Precondition
mode = p ∧G[p,q ]x ≤ g[p, q]

11Effect
mode ← q

13x ← x′ such that R[p,q ]x′ ≤ r[p, q]

15Trajectories:

Trajdef mode(p)

17Invariant A[p ]x ≤ a[p]
Evolve d(x) = c[p ]

Fig. 7: Generic rectangular initialized SHA with parameters P, G, A, R, q, a, r, c.

For each mode i ∈ P, the invariant is stated in terms of linear inequalities of the
continuous variables A[i]x ≤ a[i], where A[i] is a constant matrix with n columns
and a[i] is a constant vector. The evolve clause is given by a single differential
equation d(x) = c[i], where c[i] is a constant vector.

We describe a MILP formulation MOPT(K, τa) for finding a cyclic execution with
K mode switches that maximizes the number of extra switches with respect to τa.
If the optimal value is positive, then the optimal solution represents a cycle with
extra switches with respect to τa and we conclude from Corollary 4.6 that τa is not
an ADT for A. On the other hand, if the optimal value is not positive, then we
conclude that there are no cycles with extra switches of length K. To verify ADT
of A, we solve a sequence of MOPT(K, τa)’s with K = 2, . . . , |P|3. If the optimal
values are not positive for any of these, then we conclude that τa is an ADT for A.
By adding extra variables and constraints we are able to formulate a single MILP
that maximizes the extra switches over all cycles with K or less mode switches,
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but for simplicity of presentation we discuss MOPT(K, τa) instead of this latter
formulation. The following are the decision variables for MOPT(K, τa).

—xu ∈ Rn, u ∈ {0 . . . , K}, value of continuous variables

—tu ∈ R, u ∈ {0, 2, 4, . . . , K}, length of uth trajectory

—muj =


1, if mode over uth trajectory is j
0, otherwise. for each u ∈ {0, 2, . . . , K}, j ∈ {1, . . . , N}

—pujk =


1, if mode over (u− 1)st trajectory is j and over (u + 1)st trajectory is k
0, otherwise. for each u ∈ {0, 2, 4, . . . , K}, j, k ∈ {1, . . . , N}

The objective function and the constraints are shown in Figure 8. In MOPT(K, τa),
an execution fragment with K mode switches is represented as a sequence x0,x1, . . . ,xK

of K valuations for the continuous variables. For each even u, xu goes to xu+1 by
a trajectory of length tu. If this trajectory is in mode j, for some j ∈ {1, . . . , N},
then muj = 1, else muj = 0. For each odd u, xu goes to xu+1 by a discrete transi-
tion. If this transition is from mode j to mode k, for some j, k ∈ {1, . . . , N}, then
pujk = 1, else pujk = 0. These constraints are specified by Equation (9) in Fig-
ure 8. For each odd u, Constraints (11) and (12) ensure that (xu, switch(j, k),xu+1)

Objective function: Sτa :
K

2
− 1

τa

KX
u=0,2,...

tu

Mode: ∀ u ∈ {0, 2, . . . , K},
NX

j=1

muj = 1 and ∀ u ∈ {1, 3, . . . , K − 1},
NX

j=1

NX
k=1

pujk = 1

(9)

Cycle: x0 = xK and ∀ j ∈ {1, . . . , N}, m0j = mKj (10)

Preconds: ∀ u ∈ {1, 3, . . . , K − 1},
NX

j=1

NX
k=1

G[j, k].pujk.xu ≤
NX

j=1

NX
k=1

pujk.g[j, k] (11)

Initialize: ∀ u ∈ {1, 3, . . . , K − 1},
NX

j=1

NX
k=1

R[j, k].pujk.xu+1 ≤
NX

j=1

NX
k=1

pujk.r[j, k] (12)

Invariants: ∀ u ∈ {0, 2, . . . , K},
NX

j=1

A[j].muj .xu ≤
NX

j=1

muj .a[j] (13)

Evolve: ∀ u ∈ {0, 2 . . . , K}, xu+1 = xu +

NX
j=1

c[j].muj .tu (14)

Fig. 8: The objective function and the linear and integral constraints for MOPT(K, τa)

is a valid mode switching transition. These constraints simplify to the inequalities
G[j, k]xu ≤ g[j, k] and R[j, k]xu+1 ≤ r[j, k] which correspond to the precondition
and the initialization conditions on the pre and the post-state of the transition.
For each even u, xu evolves to xu+1 through a trajectory in some mode, say j.
Constraint (13) ensures that xu satisfies the invariant of mode j described by the
inequality A[j]xu ≤ a[j]. An identical constraint for xu+1 is written by replacing
xu with xu+1 in (13). Since the differential equations have constant right hand
sides and the invariants describe polyhedra in Rn, the above conditions ensure

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · S. Mitra, D. Liberzon and N. Lynch

that all the intermediate states in the trajectory satisfy the mode invariant. Equa-
tion (14) ensures that, for each even u, xu evolves to xu+1 in tu time according to
the differential equation d(x) = c[j].

Some of these constrains involve nonlinear terms. Using the “big M” method [Williams
1990] we can linearize these equation and inequalities. For example, mujxu in (13)
is the product of real variable xu and boolean variable muj . We linearize it by
replacing mujxu with yu, and adding the following linear inequalities: yu ≥ mujδ,
yu ≤ muj∆, yu ≤ xu − (1−muj)δ, and yu ≥ xu − (1−muj)∆, where δ and ∆ are
the lower and upper bounds on the values of xu.

4.5 Thermostat

We use the MILP technique together with switching simulation relations to ver-
ify the ADT of a thermostat with nondeterministic switches. The model of the
thermostat is the Thermostat SHA (see Figure 9 Left). It has two modes l0, l1,
two continuous variables x and z, and real parameters h, K, θ1, θ2, θ3, θ4, where
0 < θ1 < θ2 < θ3 < θ4 < h. In l0 mode the heater is off and the temperature x de-
creases according to the differential equation d(x) = −Kx. While the temperature
x is between θ2 and θ1, the on action must occur. As an effect of the on action, the
mode changes to l1. In mode l1, the heater is on and the x rises according to the
d(x) = K(h− x), and while x is between θ3 and θ4, the off action must occur. The
continuous variable z measures the total time spent in mode l1.

SHA Thermostat is neither initialized nor rectangular; however, there is a rect-
angular initialized SHA Approx, such that Thermostat ≥ADT Approx. Con-
sider the SHA Approx of Figure 9 (Right) with parameters L0 and L1. Automaton
Approx has a clock t and two modes l0 and l1, in each of which t increases at a
unit rate. When t reaches Li in mode li, a switch to the other mode may occur
and if it does then t is set to zero. We define a relation R on the state spaces of
Thermostat and Approx such that with appropriately chosen values of L0 and
L1, Approx captures the fastest switching behavior of Thermostat.

Definition 4.7. For any x ∈ QThermostat and y ∈ QApprox, x R y if and only if:
(1) x d mode = y d mode, and

(2) if x d mode = l0 then y d t ≥ 1
k

ln θ3
xdx else y d t ≥ 1

k
ln
“

h−θ2
h−xdx

”
.

Lemma 4.8. If we set L0 = 1
k ln θ3

θ2
and L1 = 1

k ln h−θ2
h−θ3

, then the relation R is a
switching simulation relation from Thermostat to Approx.

The proof of this lemma is like that of Lemma 6.1. We show that every reachable
state of Thermostat is related to some state of Approx and that every action and
trajectory of Thermostat can be emulated by an execution fragment of Approx
with no fewer switches. Lemma 4.8 implies that Thermostat ≥ADT Approx,
that is, for any τa > 0 if τa is an ADT for Approx then τa is also an ADT for
Thermostat. Since Approx is rectangular and initialized, we can use the MILP
technique to check any ADT property of Approx.

We formulated the MOPT(K, τa) for automaton Approx and used the GNU
Linear Programming Kit [GNU ] to solve it. Solving for K = 4, L0 = 40, L1 =
15, and τa = 25, 27, 28, we get optimal costs −0.4,−4.358E−13(≈ 0) and 0.071,
respectively. We conclude that the ADT of Approx is ≥ 25,≥ 27, and < 28. Since
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Thermostat(θ1, θ2, θ3, θ4, C, h) Approx(L0, L1), where l1, l0 ∈ R
where θ1, θ2, θ3, θ4, C, h ∈ R

Variables:
2 mode ∈ {l0, l1}, initially l0

x, z ∈ R, initially x = θ4, z = 0
4

Actions

6 on, off

8 Transitions:

on Precondition
10 mode = l0 ∧ x ≤ θ2

Effect mode ← l1
12

off Precondition

14 mode = l1 ∧ x ≥ θ3

Effect mode ← l0
16

Trajectories:
18 Trajdef l0

Evolve d(x) = -Cx; d(z) = 0

20 Invariant x ≥ θ1 Stop when x = θ1

22 Trajdef l1
Evolve d(x) = C(h-x); d(z) = 1

24 Invariant x ≤ θ4 Stop when x = θ4

Variables:
2mode ∈ {l0, l1}, initially l0

r ∈ R, initially r = L1

4

Actions

6switchtoi, i ∈ {0,1}

8Transitions:

switchto1

10Precondition

mode = l0 ∧ r ≥ L0

12Effect mode ← l1, r ← 0

14switchto0

Precondition
16mode = l1 ∧ r ≥ L1

Effect mode ← l0, r ← 0
18

Trajectories:

20Trajdef always
Evolve d(r) = 1

Fig. 9: Thermostat SHA and its abstraction Approx rectangular initialized SHA.

Approx ≥ADT Thermostat, we conclude that the ADT of the thermostat is no
less than 27.

Remark. For finding counterexample execution fragments for the proposed ADT
properties, the MILP approach can be applied to non-initialized rectangular SHA
as well. In such applications, the necessity part of Theorem 4.4 does not hold and
therefore from the failure to find a counterexample we cannot conclude that the
automaton satisfies the ADT property in question.

5. CONCLUSIONS

In this paper we have presented two methods for proving ADT properties of hybrid
systems. Stability of a hybrid system is guaranteed it its individual modes are
stable and if it has the appropriate ADT property.

The first method transforms the given automaton by adding history variables,
such that the transformed automaton satisfies an invariant property if and only if
the original automaton has the ADT property. To prove the resulting invariant
properties, we appeal to the large body of tools available for proving invariants
for hybrid systems. This method for proving ADT properties is applicable to any
hybrid system; however, automatic verification is only possible for the class of
systems for which model checking is decidable. For hybrid systems outside this
class, semi-automatic proofs can be carried out with the aid of theorem provers.

The second method relies on solving optimization problems. We have shown
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that for the class of rectangular initialized hybrid automata, ADT properties can
be verified or counterexample executions can be found automatically by solving
mixed integer linear programs. For non-initialized hybrid automata, the solution of
the optimization problem can give executions that serve as counterexamples to the
ADT property in question, but for this class the method is not complete. The two
methods can be combined to find the ADT of a given rectangular hybrid automaton.

We have defined equivalence of hybrid automata with respect to switching speed.
We proposed a new kind of simulation relation, namely switching simulation, which
gives a sufficient condition for establishing that two hybrid automata are equivalent
with respect to ADT.

In the future we want to explore other properties of hybrid automata that can
be formulated as search problems over the space of executions and can be solved
using optimization. In this paper we examined internal stability only; however, us-
ing the explicit external variables of the HIOA framework, we would like to study
input-output properties of hybrid systems as well. Another direction of future re-
search is to extend these techniques to stochastic hybrid systems, by combining the
probabilistic I/O automaton models of [Canetti et al. 2006; Mitra and Lynch 2006]
with stability results for stochastic switched systems from [Chatterjee and Liberzon
2004].
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6. APPENDIX A

Lemma 6.1. R is a switching simulation relation from A to B.

Proof. We first show that R is a switching simulation relation from A to B. At
a given state x of A, we define i ∈ {1, . . . ,m} to be the unique minimum at x, if
minj{x d µj} is unique and µi = arg minj{x d µj}. A has a unique start state and
it is easy to see that it is related to all the start states of B. Next we show by cases
that given any state x ∈ QA,y ∈ QB, x R y, and an execution fragment α of A
starting from x and consisting of either a single action or a single trajectory, there
exists a corresponding execution fragment β of B, starting from y that satisfies the
conditions required for R to be a switching simulation relation.

(1) α is a (x, switch(i, j),x′) transition of A and i is not the unique minimum at x
and j is not unique minimum at x′ .
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined
by the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = e[2][k] = xdµk
xdµmin

(15)

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = e′[2][k] = x′dµk
x′dµmin

(16)

We have to show that switch(e, e′) is enabled at y; this involves showing that
the three conjuncts in the precondition of the switch action of B are satisfied
at y. First of all, since x R y we know that ζ(y d mode) = x d mode = i.
Further, i is not a unique minimum at x, so from the definition of the edges of
G it follows that:

(y d mode)[1][i] = 1, (y d mode)[2][i] = i + h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[2][k] = xdµk
xdµmin

(17)

Comparing Equations (17) and (23) we conclude that y d mode = e.
Secondly, using the definitions of e, e′ and R it follows that:

e[2][i] = 1 + h =
x d µi

x d µmin
=

x′ d µi

x′ d µmin
= e′[1][i] (18)

The second equality holds because switch(i, j) is enabled at x. The third equal-
ity follows from the fact that the switch(i, j) transition of A does not alter the
value of the µk’s. Likewise, we have:
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e[2][j] =
x d µj

x d µmin
=

x′ d µj

x′ d µmin
= 1 = e′[1][j] (19)

∀k, k 6= j, k 6= i, e[2][k] =
x d µk

x d µmin
=

x′ d µk

x′ d µmin
= e′[1][k] (20)

Combining Equations (18),(18) and (20) it follows that e[2] = e′[1].
Finally, from the switching simulation relation R, we know that y d x =
1
ci

ln xdµi

xdµmin
= 1

ci
ln(1+h). And since ζ(e) = i and i is not the unique minimum

at x, from the definition of the edge costs of G it follows that y d x = w(e).
Thus, we have shown that switch(e, e′) is indeed enabled at y.
Next, we have to show that x′ R y′. First of all, x′ d mode = j and y′ d mode =
e′ from the effect parts of the switch(i, j) and switch(e, e′) actions, respectively.
Also, ζ(e′) = j from Equation (23). It follows that x′ d mode = ζ(y′ d mode).
Secondly, x′dµj

x′dµmin
= xdµj

xdµmin
= 1, from the precondition of switch(i, j). Since

y′ d x = 0 it follows that xdµj

xdµmin
= ecjy

′dx. Finally, for all k 6= j, again from

Equation (23) it follows that x′dµk

x′dµmin
= e′[1][k] = e′[2][k].

(2) α is a (x, switch(i, j),x′) transition of A and i is the unique minimum at x and
j is not unique minimum at x′ .
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined
by the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = (1 + h), e[2][k] = 1 (21)

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = e′[2][k] = x′dµk
x′dµmin

(22)

The rest of the proof is similar to that of case 1.
(3) α is a (x, switch(i, j),x′) transition of A and i is not the unique minimum at x

and j is the unique minimum at x′ .
We choose β to be (y, switch(e, e′),y′) action of B, where e and e′ are determined
by the following rules:

e[1][i] = 1, e[2][i] = 1 + h,∀k, k 6= i, e[1][k] = e[2][k] = xdµk
xdµmin

e′[1][j] = 1, e′[2][j] = 1 + h,∀k, k 6= j, e′[1][k] = (1 + h), e′[2][k] = 1

The rest of the proof is similar to that of case 1.
(4) α is a closed trajectory τ of A with (τ ↓ mode)(0) = i for some i ∈ P, such

that i is not unique minimum at τ.fstate.
We choose β to be the trajectory τ ′ of B with τ ′.dom = τ.dom determined
by the following rules. Let x = τ.fstate,x′ = τ.lstate,y = τ ′.fstate and
y′ = τ ′.lstate.

(y d mode)[1][i] = 1, (y d mode)[2][i] = 1 + h,

∀k, k 6= i, (y d mode)[1][k] = (y d mode)[1][k] = xdµi
xdµmin

,

∀ t ∈ τ ′.dom, (τ ′ ↓ x)(t) = 1
ci

ln xdµi
xdµmin

+ t (23)

We first show that τ ′ is a valid trajectory of B. First of all, it is easy to check
that τ ′ satisfies the constant differential equation d(x) = 1 and that the mode
of B remains constant. Next, we show that τ ′ satisfies the stopping condition
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“x = w(mode)”. Suppose there exists t ∈ τ ′.dom such that (τ d x)(t) = w(x d
mode), then t = w(x d mode)− (y d x). Then,

x′ d µi = x d µie
cit

1

ci
ln

x′ d µi

x d µi
= w(x d mode)− (y d x)

=
1

ci
ln(1 + h)− (y d x) [by replacing w(x d mode)]

=
1

ci

»
ln(1 + h)− ln

x d µi

x d µmin

–
[from (24)]

x′ d µi = (1 + h)(x d µmin)

= (1 + h)(x′ d µmin) [i not unique min ⇒ µmin constant over τ ′.]

Last equation implies that x′ satisfies the stopping condition for trajdef mode(i)
for automaton A. Therefore, t = τ.ltime = τ ′.ltime. Thus we have shown that
τ ′ is a valid trajectory of automaton B.
We show that x′ R y′. First, x′ d mode = ζ(y′ d mode) because x′ d mode =
x d mode = ζ(y d mode) = ζ(y′ d mode). Secondly, for all k, k 6= i, x d
µi = x′ d µi and (y d mode)[1][k] = (y′ d mode)[1][k]. Finally, we show that
x′ d µi = (x′ d µmin)eci(y

′dx) by reasoning as follows:

x′ d µi = (x d µi)e
ciτ.ltime

= (x d µmin)eci(ydx+τ.ltime)

= (x′ d µmin)eci(ydx+τ ′.ltime)

(5) α is a closed trajectory τ of A with (τ ↓ mode)(0) = i for some i ∈ P, such
that i is the unique minimum at τ.fstate.
We choose β to be the trajectory τ ′ of B with τ ′.dom = τ.dom determined by
the following rules. Let x = τ.fstate and y = τ ′.fstate.

(y d mode)[1][i] = 1, (y d mode)[2][i] = 1 + h,

∀k, k 6= i, (y d mode)[1][k] = (1 + h), (y d mode)[2][k] = 1

∀ t ∈ τ ′.dom, (τ ′ ↓ x)(t) = 1
ci

ln xdµi
xdµmin

+ t

The rest of the proof for this case is similar to that for case 4.

The proof of the second part, that R is a switching simulation relation from B to
A, follows from the same steps as above.
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