
Strategies 2004 Preliminary Version

PVS Strategies for Proving Abstraction
Properties of Automata

Sayan Mitra 1

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, USA

Myla Archer 2

Code 5546, Naval Research Laboratory,
Washington, DC 20375, USA

Abstract

Abstractions are important in specifying and proving properties of complex systems.
To prove that a given automaton implements an abstract specification automaton,
one must first find the correct abstraction relation between the states of the au-
tomata, and then show that this relation is preserved by all corresponding action
sequences of the two automata. This paper describes tool support based on the
PVS theorem prover that can help users accomplish the second task: proving a
candidate abstraction relation correct. This tool support relies on a clean and
uniform technique for defining abstraction properties relating automata that uses
library theories for defining abstraction relations and templates for specifying au-
tomata and abstraction theorems. The paper then describes how the templates
and theories allow development of generic, high level PVS strategies that aid in the
mechanization of abstraction proofs. These strategies first set up the standard sub-
goals for the abstraction proofs and then execute the standard initial proof steps
for these subgoals, thus making the process of proving abstraction properties in
PVS more automated. With suitable supplementary strategies to implement the
“natural” proof steps needed to complete the proofs of any of the standard sub-
goals remaining to be proved, the abstraction proof strategies can form part of a
set of mechanized proof steps that can be used interactively to translate high level
proof sketches into PVS proofs. Using timed I/O automata examples taken from
the literature, this paper illustrates use of the templates, theories, and strategies
described to specify and prove two types of abstraction property: refinement and
forward simulation.

Key words: Mechanical Theorem Proving, Strategies, I/O
Automata, Abstraction, Refinement, Forward Simulation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mitra and Archer

1 Introduction

Abstractions are essential for applying formal methods to verify certain classes
of properties of complex systems, such as properties of system executions.
Given an automaton C, suppose we wish to verify that every visible behavior—
i.e., trace—of C satisfies some property P . An effective way of doing this is to
model the property P itself as the set of traces of an abstract automaton A, and
then to show that the set of traces of C is a subset of the set of traces of A. This
method generalizes to using not just a single abstraction, as above, but many
levels of abstraction between the concrete, possibly complex implementation
of a system and its abstract specification. A systematic way of showing trace
inclusion—that every trace of automaton C is included in the set of traces
of another automaton A—is to show that there exists an abstraction relation
between the states of the two automata. Thus the creation of a specification
automaton A for the property P can reduce the problem of verifying that P
holds for C to proving an abstraction relation between C and A.

There are several possible abstraction relations between two automata,
homomorphism, refinement, forward simulation, backward simulation, and so
on. Forward-and-backward simulation relations are complete with respect to
trace properties of I/O automata [9], and therefore they are powerful tools for
automata-based verification. In this paper, we present a clean and uniform
way of specifying abstraction properties relating pairs of automata in the PVS
theorem prover [17] and describe how our specifications allow us to provide a
set of generic strategies that aid users in proving abstraction properties while
minimizing the necessary interaction with the prover.

One approach to supporting generic strategies in tactic-based provers such
as PVS is to adhere to specification templates that provide a uniform organi-
zation for specifications and properties upon which strategies can rely. This
approach has been used in the TAME (Timed Automata Modeling Environ-
ment) interface to PVS [2,3]. Until now, TAME proof support has been aimed
at properties of a single automaton—mainly state and transition invariants for
(both timed and untimed) I/O automata, though TAME does include min-
imal strategy support for proofs of properties of execution sequences of I/O
automata. All of TAME’s proof support is aimed at supplying “natural” proof
steps that users can employ in checking high level hand proofs of properties
of automata that are specified following the TAME automaton template.

One longstanding goal for TAME has been to extend its proof support
to include proofs of refinement, simulation, and other abstraction properties
involving two automata. This goal includes the ability to reuse established

1 Email: mitras@theory.csail.mit.edu
2 Email: archer@itd.nrl.navy.gov

2

Mitra and Archer

specifications and invariants of two automata in defining and proving an ab-
straction relation between them. A second part of this goal is that the new
proof support for abstraction properties should be generic in the same way
as TAME support for invariant proofs: that is, there should be a fixed set
of TAME proof steps, supported by PVS strategies, that can be applied to
proofs of abstraction properties without being tailored to a specific pair of
automata. Finally, this goal includes making the new TAME proof steps
“natural”—that is, they should provide a straightforward representation in
PVS of the high level proof steps used in hand proofs of abstraction proper-
ties. The theory interpretation feature [15] in the latest version of PVS (PVS
Version 3), combined with some recent enhancements in PVS 3.2, makes it
possible to accomplish these goals.

In previous work [12], we outlined our plan for taking advantage of these
new PVS features in specifying abstraction properties and developing uniform
PVS strategies for proofs of these properties. In this paper, we describe how
specification and proofs of abstraction relations between two automata can
now in fact be accomplished in TAME, and illustrate these new capabilities
on examples. Section 2 reviews the automata models and TAME’s support
for invariant proofs, it discusses the past problem with designing TAME sup-
port for abstraction proofs, and shows how with PVS 3.2, methods similar to
those used in TAME support for invariant proofs can now be used to provide
TAME support for abstraction proofs. Section 3 describes the strategies we
have developed for proving refinement and illustrates their usage on examples.
Section 4 does the same for forward simulation. Finally, Section 5 discusses
some related work, and Section 6 presents our conclusions and plans for future
work.

2 Background

2.1 I/O Automata model

The formal model underlying TAME is the MMT automaton [11]. A general
theory of Timed Input/Output Automata (TIOA) [8] for systems involving
both discrte and continuous behavior has evolved since the inception of the
MMT automaton. The TIOA model subsumes the I/O automaton model
(used to describe system with only discrete events), the MMT automaton
model, and also the Alur-Dill timed automaton model [1]. Although the model
used for the original development of the TAME was the MMT automaton, it
will be possible to make the TAME templates and strategies work for a large
and useful class of timed I/O automata with minor changes (see [6] for a
report on ongoing work in this direction). Therefore, in this paper, we refer
to MMT timed automata simply as (timed) I/O automata. In the following
paragraph we give a very brief overview of the I/O automaton framework. For
a complete description of the TIOA model and the related results, see [8].

3

Mitra and Archer

The main components of an I/O automaton A are its set of states, deter-
mined by the values of a set of state variables; its set of (usually parameterized)
actions that trigger state transitions; and its set of start states. An execution
of an A is an alternating sequence of states and actions of A in which the first
state is an initial state of A and each action in the sequence transforms its
predecessor state into its successor state. For systems involving continuous
evolution, a special time passage action records the changes in the continu-
ous variables over an interval of time. The set of all possible behavior of A,
then, is the set of all its executions. To define the notion of visible behavior,
the actions of A are partitioned into visible and invisible actions. The trace,
or the externally visible behavior of A, corresponding to a given execution α
is the sequence of visible actions in α. In order to define the parallel com-
position operator on automata in a meaningful way, the visible actions are
further partitioned into input and output actions. In the rest of this paper
we reason about individual automata (simple or explicitly composed) and not
about component automata that are composed using the composition opera-
tor, therefore for simplicity, we do not partition visible actions into input and
output subsets.

2.2 TAME support for invariant proofs

State (or transition) invariants of an I/O automaton are properties that hold
for all of its reachable states (or reachable transitions). To support proofs of
invariants of an I/O automaton, TAME provides a template for specifying a
(timed or untimed) I/O automaton, a set of standard PVS theories, and a set
of strategies that embody the natural high-level steps typically needed in hand
proofs of invariants. The standard PVS theories include generic theories such
as machine that establishes the principle of induction over reachable states,
and special-purpose theories that can be generated from the DATATYPE
declarations in an instantiation of the TAME automaton template. A sample
of typical TAME steps for invariant proofs is shown in Figure 1.

2.3 Previous barriers to TAME support for abstraction proofs

Abstraction properties involve a pair of automata, and hence to express them
generally, one needs a way to represent abstract automaton objects in PVS.
The most convenient way to represent abstract automaton objects would be
to make them instances of a type automaton. But, there are barriers to doing
this in PVS. An I/O automaton in TAME is determined by instantiations
of two types (actions and states), a set of start states, and a transition
relation. Abstractly, these elements can be thought of as fields in a record,
and an abstract automaton object can be thought of as an instance of the
corresponding record type. However, record fields in PVS are not permitted
to have type “type”. An alternative way to express a type of automata is to
use parametric polymorphism to create a type automaton[α, σ], as in [14].

4

Mitra and Archer

� ���
Proof Step TAME Strategy Use���

Get base and induction cases AUTO_INDUCT Start an induction proof
and do standard initial steps���
Appeal to precondition of an APPLY_SPECIFIC_PRECOND Demonstrate need to use
action precondition���
Apply the inductive hypothesis APPLY_IND_HYP Supplement AUTO_INDUCT’s
to non-default argument(s) use of default arguments���
Apply an auxiliary invariant APPLY_INV_LEMMA Needed in proving
lemma “non-inductive” invariants� ���
Break down into cases based SUPPOSE Add proof comments and
on a predicate labels to PVS’ CASE���
Apply “obvious” reasoning, e.g., TRY_SIMP Finish proof branch once
propositional, equational, datatype facts have been introduced���
Use a fact from the mathematical APPLY_LEMMA Perform special
theory for a state variable type mathematical reasoning���
Instantiate embedded quantifier INST_IN Instantiate but don’t split first���
Skolemize embedded quantifier SKOLEM_IN Skolemize but don’t split first� ���
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

Fig. 1. A sample of TAME steps for I/O automata invariant proofs

However, unlike Isabelle/HOL, which was used in [14], PVS does not support
parametric polymorphism.

Because no general automaton type can be defined in PVS, I/O automaton
objects are represented in TAME as theories obtained by instantiating the
TAME automaton template. Invariants for I/O automata are based on the
definitions in these theories.

One can define an abstraction property between two automata defined by
instantiating the TAME template theory by creating a new template that im-
ports the template instantiations (together with their associated invariants),
and then tailoring the details of a definition of the abstraction property to
match the details of the template instantiations. However, this approach is
very awkward for the user, who must tailor fine points of complex definitions
to specific cases and be particularly careful about PVS naming conventions. It
is also awkward for the strategy-writer, whose strategies would need to make
multiple probes in a standard definition structure to find specific names. Fur-
ther, this scheme relies on following a property template to permit a strategy
to be reused in different instantiations of the property.

2.4 A new design for defining and proving abstraction in TAME

With the theory instantiation feature of PVS, together with other new PVS
features, we have been able to design support for defining abstraction relations
between two I/O automata that is both straightforward for a TAME user and
clean from the point of view of the strategy developer. This support relies
on (1) a new TAME supporting theory automaton, (2) a library of property
theories, and (3) new TAME templates for stating abstraction properties as
theorems.

Figure 2 shows the theory automaton, which is an abstract declaration of
the components that specify an automaton. The concrete definitions for the

5

Mitra and Archer

���	��

������
����������������
� �	����
�"!���#�
��%$&�'����("�)+*
$������",�$&�'����(���)+*
$�����-��/.�$&��$������",�$"01��2�
�
�3&*
4�#"$�#52�36,+.��+�7�"!���#�
��8$"01�92�
�
�3:*
,6�%��2�36,�;/.��+�7�"!���#�
��8$1<=$:��$������",�$	01�>2�
�
�3&*
��-����%$1.��:�7�	!���#�
��%$1<=$&��$����6�",�$"01��$������",�$1*

-",��"!5?���2�36,/.�$&��$������	,�$"01�92�
�
"3
#5�	4�#�$�#52�36,�@"$�,�A�@���-����%$1.�$	BC<D$�E:��$������",�$"01�92�
�
�3:*
��#
�%,	@"$�,�A�@6��-����%$1.�$�BC<�$�E:��$������",�$&<F�G��-",	��3	01��2�
�
�3&*

�� �HI���"��

�C����
��

Fig. 2. The new TAME supporting theory automaton

first six of these components are written by the user in an automaton decla-
ration theory. The remaining three components are the same for all timed-
automata and are defined in the time machine theory which is a part of the
TAME library. Therefore, the user does not have to redefine them for specific
automata, but simply import the time machine theory into the automaton
declaration. The states and actions are declared as non-empty types. The
visible and start predicates define the set of externally visible actions and
the set of start states respectively. The enabled(a,s) function returns true
if action a is enabled in state s; it returns false otherwise. The transition
function trans(a,s) gives the post-state that results from applying action
a on state s. The reachable predicate recursively defines the set of reach-
able states of the automaton. The predicate invisible seq trans(s1,s2) is
true if and only if there exists a sequence of invisible actions that takes state
s1 to s2. And time seq trans(s1,s2,t) is true if and only if there exists a
sequence of invisible and time passage actions that takes s1 to s2 with a total
time passage of t units.

The automaton declaration theory instantiates the automaton theory. A
new PVS feature allows the use of syntax matching to automatically extract
the concrete definitions, thus simplifying the instantiation of automaton from
a TAME automaton specification. Because states and actions are both
declared as TYPE+, i.e., nonempty types, instantiating automaton results in
two TCCs (type correctness conditions) requiring these types to be nonempty.

Examples of property theories for weak refinement and forward simulation
are shown in Figures 3 and 4. We are building a library of property theories
which include other commonly used abstraction relations such as refinement,
backward simulation, etc.

A particular instance of the TAME template for stating the abstraction
properties as theorems is shown in Figure 5. This theory instantiates two
copies—one for each of the abstract and the concrete automata—of the au-

tomaton theory, defines the action and state mappings between the two au-

6

Mitra and Archer

J"K�LNM�O�P�K6Q	RNS"KNT�K�S�UWV>X+Y[Z]_^6`�a�b5c6deL5f�U	ghT8L5U	g5S/Y
L�i5UNT8L5jW\kV9Z+lmL�i5U�R6g5S�npo�q=X+lmL�i5U�R6gNS�n5r+Y
P/\sV9Z:l7n5U	L�U�K"nso6q=X/l7n5U	L5U�K	n5rsrt\u^6`6a�b5c�d

v a"w	xNy
z J"K"LNM�O5P�K6Q�RNS"K
T�K�S�U	O5{�L�n�K+\'{�g�g6|~}
� � b5c�X6�6�/��n6O�Z+\9Z+l7n5U	L�U�K	n���\e��Z+lmn5U	L�P�U+�7n6O�Z��~}"q=X/l7n5U"L�P�U+��P+�7n6O�Z��������
� J"K"LNM�O5P�K6Q�RNS"K
T�K�S�U	O�n5U�K�j�\�{�g6g�|D}
� � b5c�X6�6�/��n6O�Z+\9Z+l7n5U	L�U�K	n�Y�L�O�Z+\�Z+lmL�iNU�R6g5S�n��C\
� Z+l9P�K"L�i
��L5{�|�K:�7n6O�Z��DX�y��kZ+l�K�S	L5{�|�K6�+�mL�O�Z:Y�n6O�Z��p}"q
� ��Z+l9��R6n�RN{�|�K:�mL�O�Z��~}"q
� ��X/l9K�S�L5{�|�K��+�7L�i5U5T%L5j/�7L�O�Z	�CY�P+��n6O�Z%�6�kX�y��
� P+��Z+l9U�P	L5S�n��7L�O�Z:Y7n6O�Z����5}eX+l9U�P	L5S�nC�7L�i5U5T8LNj/�7L�O�Z���Y�P+��n6O�Z	�������sX6y��
� �9y�b�^sZ+l���R�n�RN{�|�K:�7L�O�Z��~}"q
z
� ����P:��n6O�Z��=}DP+��Z:l9U�P	L5S�nC�7L�O�Z:Y�n�O�Z������
z6z b5ct�9P+��Z+l9U�P"L5S�n��7L�O�Z:Y�n6O�Z��6�5}eX/l9U�P"L5S�n��7L�iNU5T8L5j/�7L6O�Z��CY�P+��n�O�Z����������
z5� J"K"LNM�O5P�K6Q�RNS"K
T�K�S�U/\>{	g�g�|~}~J"K"L
M�O�P�K6Q�R
S"KNT�K�S�U"O5{�L�n�Kk�DJ"K"LNM�O5P�K6Q�RNS"K
T�K�S�U	O�n5U�K�j/�
a6y��pJ"K"LNM�O5P�K6Q�RNS"K
T�K�S�U

Fig. 3. The new TAME property theory weak refinement

���������������"�� h¡�¢�£���¤� ���¥§¦9¨+©�ª¬«[­�®�¯�°�±�²³¤� h¡%´�������¢"¤��
¡���¤���¥W©
�"µ�¤�¡���¶G«·¦9¨/¸7�"µ�¤� ���¥%�³¹�ºDªW¸7�"µ�¤� ���¥%��»/©
�W«e¦9¨/¸���¤���¤"´��1©'ªW¸���¤���¤"´��³¹�º~¼�����£�»�»½«¾­�®�¯�°�±�²

¿�¯	À�Á5Â
Ã ���"�� h¡�¢�£���¤� ���¥���¼��"��´/«Ä¼�����£pÅpÆ�°�±"ª�Ç�ÇÈ���6¨/«
É Ê ¨/¸���¤�����¤ Ê ���6¨�ËsÅ	ºÌ¯"Í�Á�Î�­�Î Ê ����ª%Ë1«ÏªW¸���¤�����¤ Ê ����ª%ËDª�Â�Ðe� Ê ���6¨+©�����ª%Ë�Ë�Ñ

Ò ���"�� h¡�¢�£���¤� ���¥����"µ�¤� ���¥G«Ä¼�����£pÅÓÆ�°�±"ª�Ç�ÇÈ���6¨+©�� Ã �6¨+©�����ª/©����6¨/«
Ô Ê ¨/¸��"´	�"µ5Õ���¼�£6´ Ê ���6¨�Ësª�Â�Ð³�"´	�"µ5Õ���¼�£6´ Ê ����ª%Ësª�Â�Ðk� Ê ���6¨+©�����ª%Ëpª�Â�Ð
Ö ¨/¸�´6¥���¼�£6´�� Ê ���6¨+©����6¨�Ëkª�Â�ÐI� Ã �6¨³Ås¨/¸�¤�����¥%� Ê ���6¨+©����6¨�Ë�ËkÅ	º
× Ê ¨/¸�Ø� ��� 5¼�£6´ Ê ���6¨�Ëpª�Â�Ð Ê Â�°�­³¨/¸9¥�¢�Ù Ê ���6¨�Ë�ËsÅ	º
Ú ¯"Í�Á�Î�­�Î Ê � Ã ��ª/©�� É ��ª/©�� Ò ��ª%Ë1«
Û 5¥"Ø� ��� 5¼�£6´	�"��´�Ü���¤�����¥%� Ê ����ª/©�� Ã ��ª�Ë³ª�Â�Ð
Ý 5¥"Ø� ��� 5¼�£6´	�"��´�Ü���¤�����¥%� Ê � É ��ª/©�� Ò ��ª%Ë³ª�Â�Ð
Ã5Þ � Ê � Ã �6¨+©ß� Ò ��ª%Ë=ª�Â�Ð³ªW¸�´6¥���¼�£6´�� Ê �"µ�¤�¡���¶ Ê ���6¨�Ë�©�� Ã ��ª%Ë·ª�Â�Ð
Ã�Ã ªW¸�¤�����¥%� Ê �"µ�¤�¡���¶ Ê ���6¨�Ë�©�� Ã ��ª%Ë·Å·� É ��ª%Ë~ª6Â�Ð
Ã�É Ê ¨/¸9¥�¢�Ù Ê ���6¨�ËpÅ	º
Ã5Ò ¯"Í�Á�Î�­�Î Ê � Ò ��ª%Ë1«
ÃNÔ ªW¸�¤� h¡%´	�"��´�Ü���¤�����¥%� Ê ����ª/©�� Ò ��ª/©�¤� N¡%´	��� Ê ���6¨�Ë"Ëeª�Â�Ð
Ã Ö � Ê � Ã �6¨+©ß� Ò ��ª%Ë�Ë~ª�Â�Ð
Ã5× Ê Â�°�­³¨/¸�Ø� ��� 5¼�£6´ Ê ���6¨�ËsÅ	º
Ã5Ú ¯"Í�Á�Î�­�Î Ê � Ò ��ª%Ë1«
Ã5Û 5¥"Ø� ��� 5¼�£6´	�"��´�Ü���¤�����¥%� Ê ����ª/©D� Ò ��ª%Ë=ª�Â�Ð
Ã5Ý � Ê � Ã �6¨+©ß� Ò ��ª%Ë�Ë�Ñ

É6Þ ���������������"�� h¡�¢�£���¤� ���¥G«Ä¼�����£pÅs���"�� h¡�¢�£���¤� ���¥���¼��"��´áàp���"�� h¡�¢�£���¤� ���¥����"µ�¤� ���¥WÑ

¯�Â�Ð³���������������"�� h¡�¢�£���¤� ���¥

Fig. 4. The new TAME property theory forward simulation

tomata, and imports the relevant property theory with all the above as pa-
rameters.

7

Mitra and Archer

â�ã5ä�å�æ�ç%è�â�é�æ"ê�â�ã�ë�ìGíÄî�ï�ð�ñ�ò�ó
ô ð	õ�ö5÷
ö5ø�ù�ñ�ò"î�ö5÷	õkî�ö5ù�å"ã5ì"ú�æ�é�ã�æ�ì"â�è
ö5ø�ù�ñ�ò"î�ö5÷	õ·û�ù�ð	ü	å"ã5ì"ú�æ�é�ã�æ�ì"â�è
ø	ü í¾î�ï�ð�ñ�ò�óáý³æ�þ"â�ë
ÿ�æ�â�ë�ì í � � î�ö5ù
ø�� í¾î�ï�ð�ñ�ò�óáý³æ�þ"â�ë
ÿ�æ�â�ë�ì í � � û�ù�ð	ü
æ
ÿ�æ�ä���æ�å6ü/í[ø	ü��7æ"ê�â�ã�ë�ì%è�	1í'ø����7æ"ê�â�ã�ë�ì%è ý

ü
��û�ð�û³æ�å6üeñ��
ì�þ���â
	1í>ì�þ���â
	��
æ�����å"ê��%ã
��������	1íÏì�ë�ë�ä��
ê��%ã
����é��6ì�å��"ì�ë���ì���ê�	1í ì�ë�ë�ä��
æ"ê�����æ�	1í>ì�ë�ë�ä��
é���è�ë���ú��	å"ê�ë�ì"â��6ì"â�ã�ë�ì���é
	1í�ì�ë�ë�ä��
é�ë�ë�â���ú
	1í'é�ë�ë�â���ú
	��

ð�÷��	ü
��û�ð�û
é��
����è�å6ü/í[ø	ü���è�â�æ�â���è�	1í'ø�����è�â�æ�â���èsý

�� Dç�æ"è�ã�êtí�ý!�� "��ë�ì��¬í�ýpð�#�ö�û�î�û!��úWí%$���é�â�ã�ê���è�	1íÄé�ë�ë�â���ú���è�å6ü�	& �	��
ì�ë�� í�ýsì�ë�����è�å6ü�	��
��ã�é�è�â½í�ý!�('���ø ô ������æ:í9ø����7æ"ê�â�ã�ë�ì%è�	1í*)���é�ë�	��
��æ"è�â í�ý+�('���ø ô ������æ:í9ø����7æ"ê�â�ã�ë�ì%è�	1í ã5ì���ã5ì%ã�â�,
	" �	

ö5ø�ù�ñ�ò"î�ö5÷	õ"���	æ��%å�é��
��ã5ì��5ÿ
�6ì"â.- ø�����ø	ü/�Äæ
ÿ�æ�ä��>é��
��0
â�ã5ä�å�é��
��ã5ì��5ÿ
�6ì"â�å�â
��ÿ íÄî�ï�ð�ñ�ò�ð�ø1���	æ��%å�é��
��ã5ì��5ÿ
�6ì"â

ð�÷��³â�ã5ä�å�æ�ç%è�â�é�æ"ê�â�ã�ë�ì

Fig. 5. Instantiating the weak refinement template for TIP

3 Strategies for refinement proofs

In this section, we discuss strategies we have developed for proving weak re-
finements for timed and untimed I/O automata. Since having a weak refine-
ment relation between the states of two automata is equivalent to having a
refinement relation between the reachable states of the two automata, we will
simply refer to refinement in what follows. We illustrate the utility of these
strategies by sketching the proof of the correctness of a tree based leader elec-
tion protocol and a failure prone memory in a remote procedure call (RPC)
module.

3.1 Design of the refinement strategy

Our main strategy for proving refinements is called PROVE REFINEMENT

and it is based on the weak refinement property shown in Figure 3. The
generic nature of the definition of the weak refinement property allows us
to define PROVE REFINEMENT in such a way that it can be applied
to an arbitrary refinement proof between any given pair of automata. This
strategy is designed to perform much if not all of the work, for an arbi-
trary instantiation of the weak refinement template, of proving by induc-
tion that the mapping ref from the states of concrete automaton MC to the
states of abstract automaton MA is a refinement. The overall structure of

8

Mitra and Archer

PROVE REFINEMENT in terms of substrategies is shown in Figure 6.
First, PROVE REFINEMENT splits a refinement theorem into its base case
and induction case (corresponding to weak refinement base and weak re-

finement step in Figure 3). The base case is delegated to a substrategy
called SETUP REF BASE, which performs the standard steps needed in the
base case, including skolemizing, applying PVS’s EXPAND to the definitions
of start and ref, and performs some minor simplifications. PROVE RE-

FINE MENT then probes to see if the base case can be discharged trivially.
Next, PROVE REFINE MENT turns over the induction branch to the sub-
strategy SETUP REF INDUCT CASES.

START_ENABLEMENT_PROOF DO_TRANS

APPLY_SPECIFIC_PRECONDAPPLY_GENERAL_PRECOND

DO_TRANS

PROVE_REFINEMENT

SETUP_REF_BASE

START_REF_INDUCTION_BRANCH START_REF_INDUCTION_BRANCH

Branching on actions

SETUP_REF_INDUCT_CASES

Fig. 6. The PROVE REFINEMENT strategy and related substrategies.

The substrategy SETUP REF INDUCT CASES splits up the induction
step into individual subgoals for each of the action types in the actions

datatype, and hands off these individual subgoals to the substrategy
START REF INDUCTION BRANCH, which performs skolemization and
expands the definition of visible. This gives different sets of subgoals for
visible and invisible actions. For each invisible action, a single congruence
subgoal is generated from the condition in lines 10-11 in Figure 3. For each
visible action, two new subgoals: an enablement subgoal and a congruence
subgoal, are generated from lines 7 and 8 in Figure 3, respectively.

Congruence subgoals concern the correspondence of poststates, and
START REF INDUCTION BRANCH applies substrategy DO TRANS to
them; this strategy just expands the transition definition and repeatedly
simplifies. START REF INDUCTION BRANCH handles the first (en-
ablement) subgoal for visible actions by applying the START ENABLE-

MENT PROOF strategy. START ENABLEMENT PROOF splits the en-
ablement goal into subgoals for the general (timeliness) precondition and
the specific precondition of the action, which it respectively handles by AP-

PLY GENERAL PRECOND followed by a probe to see if this subgoal can
be discharged, and APPLY SPECIFIC PRECOND.

PROVE REFINEMENT resolves most of the subgoals for simple base

9

Mitra and Archer

and action cases of refinement proofs. For the subgoals that are not re-
solved, the user must interact with PVS, using steps such as TAME’s AP-

PLY INV LEMMA, INST IN, SKOLEM IN, TRY SIMP, and so on. In
the next section we introduce the Tree Identify Protocol (TIP), which will
serve us as a case study for illustrating the operation of the above strategies.

3.2 Refinement for correctness of the TIP algorithm

The TIP algorithm is a part of IEEE 1394 Firewire standard [4] and has been
used as a case study for many different formal verification apporaches. The
TIP leader election protocol is invoked after a bus reset in the network (i.e.
when a node is added to, or removed from, the network). Immediately after a
bus reset all nodes in the network have equal status, and know only to which
nodes they are directly connected. A leader needs to be chosen to act as the
manager of the bus for subsequent operations. The TIP algorithm “grows”
a directed spanning tree by means of parent-request messages sent from
nodes to connected nodes until a root (the leader) of the tree is identified.
Contention may arise when two nodes simultaneously send parent-requests
to each other, and it is broken by nondeterministic back-off and retry. Fol-
lowing the authors of [4], we model the TIP algorithm as an untimed I/O
automaton TIP which performs all the operations of the algorithm (sending
parent-request messages, breaking contention, etc.) through invisible ac-
tions, and triggers its only visible action root only when a leader is identified.

For correctness, the TIP automaton must satisfy two properties: (a) at
any given point in time there is at most one leader, and (b) in any execution
at most one leader is ever elected, i.e., the root action occurs only once.
Property (a) is an invariant of TIP and has been proved both directly in PVS
by the authors of [4] and in TAME [3]. Property (b) is not an invariant, and
it can be captured by the executions of the simple automaton SPEC from [4].
The SPEC automaton has only one action: a visible action called root that is
disabled after its first occurrence. By proving a that there exists a refinement
from TIP to SPEC we establish that all traces of TIP are included in the set
of traces of SPEC, which in turn proves property (b).

Figure 5 shows our refinement template instantiated with the automata
TIP and SPEC. The tip abstraction theory in Figure 5 imports the library
theory weak refinement (Figure 3) with four parameters. The parameters MA
and MC are instantiations of the automaton theory corresponding to the SPEC
and the TIP automata; amap is a map from the actions of TIP to the actions
of SPEC, and ref is the refinement function from the states of TIP to the
states of SPEC. As a result of this importing the weak refinement relation
between TIP and SPEC is defined, and hence the corresponding refinement
theorem tip refinement thm can be stated.

10

Mitra and Archer

3.3 Applying refinement strategies to case studies

For the TIP example, PROVE REFINEMENT divides the proof of tip re-

finement thm into the base case and the induction step. The base case se-
quent, which is handled by SETUP REF BASE, is shown in Figure 7, in

2�2
243�5�6�798
5�6�7:(;
;�;�;�;�;�;
<>=�? @>A�B�C
D�DFE 6
GIH�JLK�M�N�G�O�7>8
P�6RQS6�K�5�K�7>6�TUJE K�M�N�G�O�7>8
P�6RQV6�K>5�W�K E 6IGIH�T1X�Y&K�M�N>G�6�N�7>8
G�O�7>8
P�6RQS6�K>5�W�K E W�7IZ E 6
GIH�T�T�T

Fig. 7. Initial base case sequent for tip abstraction.

which tip decls.start and tip spec decls.start are the start predicates
of TIP and SPEC, respectively. The induction step is split up into six branches
by START ENABLEMENT PROOF, according to the tip decls.actions

type. Corresponding to each visible action, two subgoals, enablement and con-
gruence are generated. Figures 8 and 9 show the two subgoals generated for
the (visible) nu action in TIP.

As seen in the saved proof for the TIP case study (Figure 10) all but
two parts of the inductive goal for the root action —the specific enablement
subgoal and the congruence subgoal—were resolved by this strategy automat-
ically. Proving the root specific enablement goal required using two invariant
properties of TIP (invariants 13 and 15 from [4]), proved earlier with TAME.
(Informally, invariant 13 says that a root node has all its edges connect it
to children, and invariant 15 says that there is at most one node that has
this property.) The root congruence goal required INST IN. Both subgoals
required the TAME “it is now trivial” step TRY SIMP (see Figure 1) to
complete.

In the interaction of PROVE REFINEMENT and its substrategies, sig-
nificant use is made of formula labels, both for deciding which action to take
based on the presence or absence of a formula with a given label, and to focus
computation on formulae with specific labels. The labels are designed to be
informative: for example, the label A.specific-precondition on line 4 of
the proof in Figure 10 belongs to the specific precondition of the root action
of the abstract automaton (in this case, SPEC). This is so that when an unre-
solved subgoal is returned to the user, its content is as informative as possible.
For the same reason, PROVE REFINEMENT and its substrategies attach
comments to any subgoals they create that denote their significance. The com-
ment ;; root(rootV C action) specific enablement that appears on line
2 in Figure 10 indicates that this subgoal is the specific enablement subgoal
for the action root. The argument to root, rootV C action, is a skolem con-
stant (automatically generated by PROVE REFINEMENT) for the formal
parameter rootV of root; its suffix C action indicates that it is generated
from an action of the concrete automaton (in this case, TIP). Thus our new
strategy PROVE REFINEMENT) adheres to the same design principles as
the earlier TAME strategies (see [2]).

11

Mitra and Archer

[]\>^`_�a(b�c�d�e�f�d�g>hIc9i�jlk�b�c>m�n>d�n�c�o�p
b�c�d�e�f�d�g�h�c/aqm�i�r�nIf�c�s�b�c�t�o

[]\�uR_�a]cIv�d�g�hIc
w9i�jVd�e�n�x
s�vyo�p
c�v�d�g�hIc
w�a%v�z�a]n�x{t�c�s�|�i�r�d�e�n�x
s�vyo�_}m�i�r�nIf�c�s�b�c�t`o

~(\�\
\�\�\�\�\
�>^`_�a�c�v�d�g�hIc
w1��jVd�e�n�x
s�vyoI�

n>x�k�r�m�k�c>eIr�w�c>e
h�mUj]cIv�d�g�hIcIw
a(v�z�a]n�x�t
c�s�|�i�r
d�e�n�x
s�vyo`_
a���g�d�m
x�e��]�

a��"w�s�v�c+�]�������I���>��a]������cIb�n�x�e�c>m�o���b>s�s�n�a]��_�m�i�r�nIf�c�s�b�c�t`o"��o�_
v�s����(�&v�s���aqm�i�r�n
f�c�s�b�c�t�o�_
|�x�b>m�nF�]��a(���
���
���FaSd�������jVd�e�n�x
s�v
m�o�����c
b�s�o�_
h�d�m�nF�]��a(���
��������aVd�������jVd�e�n�x
s�v
m�oU��x�v�|>x�v
x�n��
o���o�o

Fig. 8. Initial enablement sequent for the action nu in TIP.

�%�� �¡�¢%£�¤I¥I¦{§�¥©¨�ª�¤&«U¬®­I£�¤
¯©°
¥�°I¤�±�²
£�¤I¥�¦©§�¥©¨�ª�¤�¢]¯�«�³�°�§
¤I´�£I¤�µy±

�%��¶`¡�¢(¤�·�¥�¨
ª�¤�¸&«�¬(¥�¦�°�¹�´�·�±{²
¤�·�¥©¨�ª�¤�¸U¢º·�»U¢%°
¹qµ�¤I´�¼�«I³�¥I¦©°�¹�´�·�±
¡½¯�«�³�°�§
¤�´�£�¤{µy±

¾º�������������
¿� >¡�¢]¦�´©·IÀ�£�»
¤�·�¦�¤�±©Á

¢�¢(Â*¨�¥�¯�¹�¦ÄÃlÅ
¢%ÂÆ¸I´�·I¤UÃlÅ�Ç�È�É�Ê�ËIÊÌ¢lÍRÃÏÎ
¤�£�°
¹�¦�¤
¯I±yÃ

£I´�´�°U¢lÍU¡Ð°�£
¥©·�¯y¢l·�»R¢l°�¹Sµ�¤�´�¼I«�³�¥�¦�°I´�·�±
¡�¯�«I³�°�§
¤�´�£�¤{µ
±�±�Â�±
¡
·�´©ÑÒÃlÅ�·�´©ÑR¢l°�£I¥�·�¯y¢l·�»R¢l°�¹Sµ�¤�´�¼�«I³�¥�¦�°
¹�´©·�±
¡½¯�«I³�°�§I¤I´�£�¤{µ
±�±�¡
¼�¹©£�¯©°ÓÃlÅÄ¢lÔIÕ�Ö�×�ØIÕÙ¢]¥`ÃÚÖ�ÕR¬%¥I¦©°�¹�´�·�¯
±
ÃÜÛI¤�£
´
±
¡
ª�¥�¯�°ÙÃ%ÅÄ¢ºÔIÕ�Ö�×�Ø�ÕÌ¢]¥�ÃÏÖ�ÕR¬%¥I¦�°
¹�´©·�¯I±yÃ�¹©·I¼
¹©·�¹�°�Ý�±*Â�±�Å

°
¹©­
³I¯©­I¤
¦�³�¸�¤
¦�ªI¯Þ¬l°�£I¥�·�¯Þ¢º·�»U¢%°
¹qµ�¤I´�¼I«I³�¥I¦�°
¹�´©·�±
¡
¢(Â�¨
¥I¯�¹�¦ÄÃ%Å
¢%ÂÆ¸I´�·I¤UÃlÅÆÇ�È�É�Ê�Ë
Êß¢lÍRÃÏÎ
¤�£�°
¹�¦�¤
¯I±yÃ

£I´�´�°U¢lÍU¡4¯�«I³�°�§I¤I´�£I¤�µy±�Â�±
¡
·�´©ÑÒÃlÅ*·�´�ÑU¢�¯�«I³�°�§I¤I´�£I¤�µy±
¡
¼�¹©£�¯©°ÓÃlÅÌ¢ºÔIÕ�Ö�×�ØIÕÙ¢]¥`ÃÚÖ�ÕR¬%¥I¦©°�¹�´�·�¯
±yÃÐÛI¤�£
´
±
¡
ª�¥�¯�°ÙÃ%ÅÄ¢lÔ�Õ�Ö�×�Ø�ÕÓ¢(¥�ÃÏÖIÕU¬(¥�¦�°
¹�´©·�¯I±yÃ4¹{·I¼
¹©·�¹�°�Ý�±�Â�±�±�±

Fig. 9. Initial congruence sequent for the action nu in TIP.

Our second case study for refinement proofs concerns the specification and
implementation of the memory component of a remote procedure call (RPC)
module taken from [16]. A failure prone memory component MEM and a
reliable memory component REL MEM are modeled as I/O automata, and
the requirement is to show that every trace of REL MEM is a trace of MEM.
The MEM and REL MEM automata are almost identical, except that the
failure action in MEM is absent in REL MEM. Owing to this similarity,
the refinement function ref is a bijection and the action map amap is an
injection. As noted in [16], once again, a weak refinement from REL MEM to
MEM, suffices to establish trace inclusion, and we state this weak refinement
property in the same way as in the previous example. In this case, all but
the base case and one of the induction brances were resolved automatically by
PROVE REFINEMENT and these remaining goals were easily discharged
with TRY SIMP.

12

Mitra and Archer

à{á�á
àlâ
ã�ä�å
æ
ç�ã
æ�è�é©ê
æ©ë>æ�ê
ì�í
à�à{á�î
áðïIï�ñ
ò�ó�æôã
äIä�ìRà(ã�ä�ä�ì�õ�ç�ñIçIò�ö�ì�é�ä�ê�í÷ó©â
æ�öIé�è�éIöøæ�ê�ò�ù�ú�æ{ë>æ�ê
ì
àSó{û�äIú�æ©ë�ç�é©êÌá�ü�ý�ó©â�æ�öIé©è�éIö�þ�âIã
æ�ö�ä�êIÿ�é�ì�é�ä�ê
áðá�å�ç�î
á�í
à�ò�âIâ�ú���ç�é©ê
å
çIú�æ©ëIë>òÄá�î���á}á�ó�ç�ñ
ç�ì���æ
ä�ãIæ©ë�á�í
ïIï�ü�âIâ�ú���é©ê��&ì���æ&ú�æ©ëIë>ò
ïIï}à
	��
�������Óà(å�� õ�æ�ãIì�é�ö�æ�ó
í��������
ü�����à]æ��Ðì�ä�åRà(å�íIí��Lö��>é�ú�ÿRà]æ���ó�ç�ñ
ç�ì���æ
ä�ã
æ©ëÞíIí���
ïIï àIà!	��"�������Óà(å#� õ�æ�ã�ì�éIö�æ�óIí��$�����
ü����Òà]æ��Ðì�ä�åUà(å>íIí��Lö���é�ú�ÿRà]æ%��ó�ç�ñ
ç�ì��
æ
ä�ã
æ©ëyíIí'&
ïIï à
�����
ü����!à%å��)(*�Úõ�æ�ãIì�éIö�æ�ó
í��
ïIï àIàIà
�����
ü����!à]æ��Ðì�ä�åRà(å�íIí��Lö��>é�ú�ÿRà]æ���ó�ç�ñ
ç�ì���æIä�ã
æ©ëÞíIí+&
ïIï à
�����
ü�����à(æ��Ðì�ä�åRà!(�íIí��Lö���é�ú�ÿRà]æ���ó�ç�ñ
ç�ì��
æ
ä�ã
æ©ëÞí�íIí
ïIï �� øå'�+(�í�íIí
àSé©ê>ó�ì
ç�é©êÄá©ú�æ{ëIë�òIç�î���á"áqã�äIä�ì�õ�ç�ñ
çIò�ö�ì�é�ä�êyá�í
àSé©ê>ó�ì
ç�é©êÄá©ú�æ{ëIë�òIç�î���á"áqå�ç�î
á}á�ã
äIä�ì�õ�ç�ñ
çIò�ö�ì�é�ä�êyá�í
àSó{û�äIú�æ©ë�ç�é©êÌá©ú�æ©ëIë�òIç�î��>á&á{æ
ç�î
á�í
à�ò�âIâ�ú���ç�é©ê
å
çIú�æ©ëIë>òÄá�î�,>á}á�ó�ç�ñ
ç�ì���æ
ä�ãIæ©ë�á÷á�æ
ç�î
á�í
ïIï�ü�âIâ�ú���é©ê��&ì���æ&ú�æ©ëIë>ò
ïIï-�����Iü�����à]æ��.	Iÿ��
æ�ó
í/�Ðã�äIä�ìRà%ì�ò�ã��
æ�ìRà]æ�í0��ó�ç�ñ
ç�ì���æ
ä�ãIæ©ëÞí��� �ö��>é�ú�ÿRà]æ���ó�ç�ñ
ç�ì���æIä�ã
æ©ëÞí
à(ìIã���ç
óIéqë�â�í�í
à{á�1>áðïIï�ñ
ò�ó�æôã
äIä�ìRà(ã�ä�ä�ì�õ�ç�ñIçIò�ö�ì�é�ä�ê�í÷ö�ä�ê��Iã�2�æ�ê�ö�æ
àSé©ê>ó�ìßá�ö�ä�ê��Iã�2�æ�ê>ö�æ�á�á�ã
äIä�ì�õ�ç�ñIçIò�ö�ì�é�ä�êyá�í
à(ìIã���ç
óIéqë�â�í�íIíIí

Fig. 10. TAME refinement proof for TIP/SPEC.

4 Strategies for forward simulation proofs

In this section, we present the strategies we have developed for proving for-
ward simulations. We illustrate the application of these strategies by proving
timebounds for a failure detector, and a two process race system.

4.1 Design of the forward simulation strategies

We have developed two generic strategies for aiding forward simulation proofs,
namely PROVE FWD SIM and FWD SIM ACTION REC. These strate-
gies use new substrategies and also some of the substrategies discussed in
the previous section. PROVE FWD SIM is similar to PROVE REFINE-

MENT in that, it first breaks down a forward simulation theorem (Figure 4)
into its base case and induction step, and then it splits the induction step
into cases for each individual action type of the concrete automaton. The
FWD SIM ACTION REC strategy is meant to be applied to the individ-
ual action branches produced by PROVE FWD SIM; it is used to prove the
A.invisible seq trans or the A.time seq trans predicates (see Section 2.4)
in the individual action branches. This strategy takes an action sequence σ =
a1, a2, . . . , an, a starting state s1, and a known target state s2, and produces
the following set of subgoals:

• s2 = trans(an, trans(an−1, trans(an−2, . . . , trans(a1, s1) . . .))),

• For each action ai in σ, ai is not visible, and

• For each i ∈ 1, . . . , n, ai is enabled in trans(ai−1, trans(ai−2, . . . , s) . . .).

13

Mitra and Archer

The strategy then discharges some of these subgoals by expanding the defini-
tions (for example, visible, enabled, etc.) followed by simplifications. The
remaining non-trivial subgoals are then presented to the user with properly
labeled sequents. To illustrate the details of operation of these strategies, next
we present another case study: a failure detector algorithm.

4.2 Proving time bound of a failure detector

This case study uses a forward simulation relation to prove the time bound of
a failure detector taken from [8]. The failure detector implementation consists
of three components: (1) a sending process P which sends a heartbeat message
every u1 time units as long as it has not failed, (2) a timed channel C which
delivers to T each of the messages sent by P within b time units of its sending,
and (3) a timeout process T which performs a timeout action if it does not
receive any message over a time interval longer than u2 units. The sending
process P fails when an externally controlled fail action occurs and stops
sending the messages. As a result of the timeout action the process T suspects
P to have failed. The implementation is modeled as an automaton called
TIMEOUT with the two visible actions timeout and fail.

Assuming u2 > u1 + b, we are interested in proving two properties: (a)
safety: T suspects P implies that P has really failed, and (b) timeliness: if P
fails then it is suspected by T within b + u2 time units. The safety property
(a) is an invariant of TIMEOUT and is proved using the invariant strategies
of TAME. The timeliness property (b) is modeled as a simple specification
automaton TO SPEC which has just two actions, fail and timeout, in addi-
tion to the time passage action. The automaton TO SPEC simply triggers a
timeout action within u2 +b time units of the occurrence of a fail action. To
show that TIMEOUT implements TO SPEC, we proved that the relation rel

between TIMEOUT and TO SPEC defined in Figure 11 is a forward simula-
tion relation. In this definition, TIMEOUT is represented by MC, TO SPEC
is represented by MA, last timeout is the deadline for the timeout action of
TO SPEC, last deadline is the deadline for the delivery of the last message
in the channel, and t clock is the deadline for timing out when no interim
message is received.

4.3 Applying forward simulation strategies to TIMEOUT

For proving the simulation relation, we applied the PROVE FWD SIM strat-
egy to the forward simulation theorem. This application produces a base case
subgoal and one subgoal for each of the five actions of MC: nu, send, receive,
fail, and timeout. The Base case is handled by SETUP REF BASE. For
each action a of MC, the subgoals produced by PROVE FWD SIM corre-
spond to proving that the relation rel is preserved, that is, (1) there exists
an action sequence of MA starting from s A that leads to the state s3 A, and
(2) given rel(s C, s A), rel(s1 C, s3 A) also holds. The second subgoal is

14

Mitra and Archer

3"465-7
8
9;:�<
=?>A@�B"C;D�E/@�C;D�FG5IH
J'7/K�3
9L:�M;7LN�O"P;Q�R"S
3
TU5-7
8
9;:�<
=?>A@�B"C;D�E/@�C;D�FG5IH
J'7L:
N�V�W
9"4;N�O"P;Q�R"S
X P"R�YZS�N�465.3"46[\S�C;@�C;P;S�]$S�N�TU5�3
TU[\S�C;@�C;P;S;^�5
_;D
D"R`>
a"@cb�R�P�O*YdS�N�40^e>Aa"@cb�R�P�O*YZS�N�T/^fT
g
h
S�B0S�iLP;Q�C"P�O*YZS�N�40^f>jS�B0S�iLP;Q�C;P�O*YZS�N�T/^kT
g
h
FLD�l6YZS�N�4c^`>mFLD�l6YZS�N�T/^nT
g
h
K�opYqFLD�CAa"@cb�R�P�O*YZS�N�T/^
^
7
8
9
grb�F;a�C/bZE/P"s�YdR�@;S�CLN�C0bZE0P
D�B
CtY\S�N�T/^
^
9"u"V�9rK�ovFLD�FLP�ELi"C
w"x�B;P�BLP"s�YIx�B;P�B"P#YdS�N�4c^
^
7
8
9
gjR�@;S�CLN�C/bZE/P
D�B"CtYdS�N�T/^eJ�>yR�@;S�CLN�O"P
@�O;R;b�FLP#YZS�N�40^kzvBcN�{
9"u"V�9jR�@;S�CLN�C/bZE/P
D�B"CtYdS�N�T/^eJ�>vCLN"Q�R�D;Q�|tYZS�N�40^

9
g
h/K�o
9
g
h/K�o

Fig. 11. The simulation relation for the failure detector.

common to all actions, but the subgoals produced for proving (1) depend on
the type of the action a. For example, the time passage action nu produces a
time seq trans subgoal (see Figure 12), the invisible action send produces an
invisible seq trans subgoal, and the visible action timeout produces two
invisible seq trans subgoals and two additional subgoals to show that the
timeout action of MA takes s1 A to s2 A.

For each action, showing that the post-states are related means that we
have to show that the four conjuncts in rel are satisfied. This leads to four
subgoals in each action branch. Some of these subgoals are trivial; others
require the application of some previously proved invariants. The last subgoal
requires us to prove inequalities involving real expressions; for this, we have
found the Field [13] and the Manip [5] strategy packages to be useful.

4.4 Proving time bounds for two process race

The second case study in which we applied our strategies to prove time bounds
through a forward simulation relation is the two process race system described
in [10]. The automaton RACE models two processes running in parallel. The
process main updates the counter or produces a report action within every
time interval [a1, a2]. The second process produces a set action within the
time interval [b1, b2]. The counter is initially set to zero, and it is incremented
by main until the occurrence of the set action, from which point onward, the
counter is decremented. Once the main process counts down to zero a report

action is triggered.

The property of interest here is the upper and lower time bounds on the
occurrence of the report action. The upper bound is given by b2+a2+b2a2/a1

and the intuition behind it as follows: in order to maximize the value of
the counter until the set action occurs the main process should increment
counter every a1 time. Thus, the value of counter when the set action occurs
is b2/a1. Then onwards, the maximum time taken to decrement counter down
to zero is a2b2/a1. The latest time when the set action occurs is b2, and
therefore the upper time bound for report is a2 + b2 + a2b2/a1. Reasoning

15

Mitra and Archer

}L~��c�"���
};�����L�
��~��;�L�
��}L~����L��}������I���
���
�k� �
���v���t��}c�
���L��� �q�L~��
���c��}c���

� � ���
�"�
���L�� L���#�d��� � �
��� � � �q�L~��
���c��}c���

�
¡ ���
�"�
���L�� L���#�d��� ¡ �
����¢#� �q�L~��
���c��}c���

�
���*�d��� � � ��� ¡ �
����£*� �q�L~��
���c��}c���

� � �q���L�� L�����*�����t�q}c� � ��� � �
���
¤�� �q�L~��
���c��}c���

� � � �A¥ � � ��}��L���c�������t��}c� � ��� � �
¦������������
�

�;�%� �q�L~��
���0��}c���
§
¨c©�ª�«;ª �d� ¢ � ¡ � �
¡ �d��};��}
�;�
��� �
¡ ��}L~��0�"�
����¬;��}
�;���c���d��� ¡ � � ¢ � ¡ � ���
�*�q}0���

­ �
���*�d� � � � � � ¢ � ¡ �

}L~��c�"���
};�����L�
��~��;�L�
��}L~����L��}������ ¢ �
���
�k� �
���®�����"�*�¯�%�
���
�
����£*� �q�L~��
���c��}c���

� � �q���L�� L�����*�d�����
�*�!�%� � ��� � �
���
¤�� �q�L~��
���c��}c���

� � � �A¥ � � ��}��L���c���d�����"�*�¯�%� � ��� � �
¦������������
�

�;�%� �q�L~��
���0��}c���
§
¨c©�ª�«;ª �d� ¢ � ¡ � �
¡ �d��};��}
�;�
���
�
¡ �\~��"°L~���~� L���;�
����¬;��}��L���c���d��� ¡ � � ¢ � ¡ � ­ �
���*�d� � � � � � ¢ � ¡ �

}L~��c�"���
};�����L�
��~��;�L�
��}L~����L��}������ ¤ �
���
�k� �
���?}L~��0�"���
}
���
�
����£*� �q�L~��
���c��}c���

� � �q���L�� L�����*�q}L~��c�"���
} � ��� � �
���
¤�� �q�L~��
���c��}c���

� � � �A¥ � � ��}��L���c���q}L~��0�"���
} � � � � � �
¦������������
�

�;�%� �q�L~��
���0��}c���
§
¨c©�ª�«;ª �d� � � ¡ � ����� ¡ � � ¢ � ¡ � �
¡ �\��};��}
�;�
���
�
¡ �\~��"°L~���~� L���;�
����¬;��}��L���c���d��� ¡ � � � � ¡ �
­ �
¡ �d~��
°L~���~� c���"�
����¬;��}��;���c���d����� ¡ � � ¢ � ¡ � ­ �
���*�d� � � � � � ¢ � ¡ �
­ �
¡ �����L�� L�����t�q}L~��c�"���"} � � � � ¡ � ­ �
¡ ��}��L���c���q}L~��0�"���
} � � � � ¡ � ¥ ���
� ¡

Fig. 12. Sequents produced by PROVE FWD SIM for the time passage action
nu, invisible action send, and visible action timeout.

similarly one can show that the lower bound for the report action is b1 +
(b1 − a2)a1/a2 if a2 < b1, and a1 otherwise. These time bounds on report

are specified, as a simple abstract automaton RACE SPEC which triggers a
report action within the above time bounds.

The forward simulation relation rel used to prove that RACE implements
RACE SPEC is shown in Figure 13. In the definition of rel, first action
and last action denote the lower and the upper bounds on the time of occur-
rence of action, respectively. This simulation relation is more complex than

16

Mitra and Archer

±L²U³µ´
¶"·0¸�¹"º¼»¼½�¾;¿cÀ�Á%½�¿cÀ�ÂÃ³\Ä"ÅA¹;Æ;²�·;Ç;ÈcÉ
Ê;Ë
±;ÆÌ³µ´
¶"·0¸�¹"º¼»¼½�¾;¿cÀ�Á%½�¿cÀ�ÂÃ³\Ä"ÅA¹;Æ;²�·0Í"Î�Ï"·L²LÍ�Ç;ÈcÉ
Ê;Ë
Ð ÈLÊ*ÑZË
Í�²U³µ±L²UÒdË�¿c½�¿;ÈcË#Ó'Ë
Í�ÆÌ³k±;ÆÌÒdË�¿c½�¿;ÈcË;Ô#³�Õ0À"À"Ê¼»
Â0À�ÖÌÑZË
Í�Æ/Ôy»jÂ0À�ÖÌÑZË
Í�²0Ô Æ
×"Ø
Ð È�Ù0À Ð ¿;È
ÇUÑdË
Í�Æ/Ô®» Ð È�Ù0À Ð ¿;È
ÇUÑZË
Í�²0ÔjÆ
×"Ø
×0¸�´ÛÚcÊ"½�ÜUÑZË
Í�²0ÔAÆ
×"ØÝÊ"½;Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô¼ßAÚ0Þ Ð Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô
à�±"Ï"á/à�·0ÎyÚ0Þ Ð Ë�¿cÍ Ð È�Ù0À Ð ¿UÑZË
Í�Æ/Ôâß�» Ú0Þ Ð Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0ÔÛã
ÑZÉ
À�¾"Â;¿UÑZË
Í�²0Ô®ãäÑ�Ú0Þ Ð Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô¼Ä®Ê"½;Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô"Ô�å"½"æLÔ
ç
½0è Æ
×"Ø

ÚcÊ"½�ÜUÑZË
Í�²0Ô®À Ð Ê"½;Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0ÔéÅ�»jÚ0Þ Ð Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô
à�±"Ï"á/à�·0ÎyÚ0Þ Ð Ë�¿cÍ Ð È�Ù0À Ð ¿UÑZË
Í�Æ/Ôâß�»jÚ0Þ Ð Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0ÔÛã¼É
À�¾"Â;¿UÑZË
Í�²0Ô
ç
½0è Æ
×"Ø

×0¸�´ÛÚcÊ"½�ÜUÑZË
Í�²0ÔAÆ
×"Ø¼Ú0Þ Ð Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô¼ß�»¼Ê"½;Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô
à�±"Ï"á/à�·0ÎÛÊ"½;Ë�¿cÍ Ð È�Ù0À Ð ¿UÑZË
Í�Æ/Ô¼Å�»éÊ"½;Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô®ã
ÑZÉ
À�¾"Â;¿UÑZË
Í�²0Ô®ãræjãäÑdÊ"½;Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô¼ÄAÚ0Þ Ð Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô"Ô�å"½0è�Ô
ç
½"æ Æ
×"Ø

×0¸�´ Ð È�Ù0À Ð ¿;È
ÇUÑZË
Í�²0ÔjÆ
×"ØêÑ�ÚcÊ"½�ÜUÑZË
Í�²0Ôr¸�¹ÛÚ0Þ Ð Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô¼Å®Ê"½;Ë�¿cÍ;Ë�È
¿UÑZË
Í�²0Ô"Ô
à�±"Ï"á/à�·0ÎÛÊ"½;Ë�¿cÍ Ð È�Ù0À Ð ¿UÑZË
Í�Æ/Ô¼Å�»éÊ"½;Ë�¿cÍ�Á%½;Þ�ÂÌÑZË
Í�²0Ô®ãéÉ
À�¾"Â;¿UÑZË
Í�²0Ô
ç
½"æ

Fig. 13. Simulation relation for RACE and RACE SPEC.

that for the TIMEOUT example because (a) it captures both the upper and
the lower time bounds, and (b) the relation between the states differs depend-
ing on whether or not flag has been set by the set action. The structure
of the proof is similar to that of the previous example, and so our high level
PROVE FWD SIM strategy successfully breaks up the simulation proof into
subgoals for the individual actions. Applying FWD SIM ACTION REC

with the proper arguments instantiates and simplifies the action branches.
Generally, each action branch leads to six subgoals corresponding to the six
high level conjuncts in the simulation relation, but the trivial subgoals (e.g.,
first two subgoals) are discharged automatically by the strategy. The re-
maining subgoals required the application of previously proved invariants and
reasoning about inequalities involving real expressions, in which, we found the
Field and the Manip strategies to be useful.

5 Related work

A metatheory for I/O automata, based on which generic definitions of invari-
ant and abstraction properties are possible, has been developed in Isabelle by
Müller [14], who also developed an associated verification framework. Exam-
ple proofs of forward simulation have been done for at least simple examples
using this framework; it is not clear to what extent uniform Isabelle tactics are
employed. PVS has been used by others to do abstraction proofs, and in fact
a refinement proof for TIP and SPEC was mechanized by Devillers et al. [4].
However, to our knowledge, no one has developed “generic” PVS strategies to
support proving abstraction properties with PVS.

Our work is related to the tools being developed for the TIOA project [7,6].
The TIOA to PVS translator, which is currently under development, produces

17

Mitra and Archer

PVS specifications of timed (or untimed) I/O automata in the style described
in this paper. The translator and our strategies are designed to mask the
details of the PVS theorem prover, so that the user can specify a TIOA and
prove its properties in PVS without learning the details of the PVS language
and prover.

6 Conclusions and future work

We have developed supporting PVS theories and templates for abstraction
proof strategies, and added them to TAME. The supporting theories include
a set of abstraction property theories that are being collected into a library,
and generic automaton theories that serve as theory types for theory parame-
ters to our property theories. For each abstraction property theory, there is a
template to allow the abstraction property to be instantiated as a (proposed)
theorem that relates two particular automata. Building on this structure,
we have added both a reusable PVS weak refinement strategy and a reusable
forward simulation strategy to TAME, and have applied these strategies to ex-
amples. In the example weak refinement proofs we have done so far, previously
existing TAME strategies provide sufficient proof steps for interactively com-
pleting the refinement proofs. While previously existing TAME proof steps
were useful in completing the forward simulation proofs, the TAME steps had
to be supplemented, for example with proof steps from the Field [13] and
Manip [5] strategy packages.

Our approach to developing strategies for abstraction proofs is geared to-
wards theorem provers that support tactic-style interactive proving. In theo-
rem proving systems that allow a definition of an automaton type, an approach
to developing such strategies that is not based on templates may be possible.
Because we cannot expect to develop strategies that will do arbitrary abstrac-
tion proofs fully automatically, a major goal for us is to design our strategies
to support user-friendly interactive proving. A PVS feature that facilitates
making both interaction with the prover and understanding the significance
of saved proofs easier is support for comments and formula labels. Thus, a
challenge for other theorem proving systems is to find ways to support ease
of understanding during and after the proof process equivalent to what we
provide using PVS.

Like any other development project our strategies require more testing,
tuning, and optimizations after this initial conceptual phase of development.
Much of this is currently being undertaken within the TIOA project. We also
plan to add proof support for other abstraction properties and add strategies
for (interactively) completing proofs of action cases.

Acknowledgements

We thank Sam Owre and Natarajan Shankar of SRI International for adding
the features to PVS that have made our work possible. We also thank Nancy

18

Mitra and Archer

Lynch and Dilsun Kaynar for useful discussions on the case studies. Finally,
we thank the anonymous reviewers for many helpful suggestions on improving
this paper.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[2] Myla Archer. TAME: Using PVS strategies for special-purpose theorem
proving. Annals of Math. and Artif. Intel., 29(1-4):139–181, 2000.

[3] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants
of I/O automata with TAME. Automated Software Engineering, 9(3):201–232,
2002.

[4] M. Devillers, D. Griffioen, J. Romijn, and F. Vaandrager. Verification of a leader
election protocol—formal methods applied to IEEE 1394. Formal Methods in
System Design, 16(3):307–320, June 2000.

[5] B. Di Vito. A PVS prover strategy package for common manipulations.
Technical Memorandum NASA/TM-2002-211647, NASA Langley Research
Center, Hampton, VA, April 2002.

[6] Dilsun Kaynar, Nancy Lynch, and Sayan Mitra. Specifying and proving timing
properties with TIOA tools. In Work in progress session of the 25th IEEE
International Real-Time Systems Symposium (RTSS-WIP), Lisbon, Portugal,
December 2004.

[7] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager.
The theory of timed I/O automata. Technical Report MIT/LCS/TR-
917a, MIT Laboratory for Computer Science, 2004. Available at
http://theory.lcs.mit.edu/tds/reflist.html.

[8] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed
I/O automata: A mathematical framework for modeling and analyzing real-
time systems. In RTSS 2003: The 24th IEEE International Real-Time Systems
Symposium, Cancun,Mexico, December 2003.

[9] N. Lynch and F. Vaandrager. Forward and backward simulations – Part II:
Timing-based systems. Information and Computation, 128(1):1–25, July 1996.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
1996.

[11] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained automata. In
J. C. M. Baeten and J. F. Goote, eds., CONCUR’91: 2nd Intern. Conference
on Concurrency Theory, vol. 527 of Lect. Notes in Comp. Sci. Springer-Verlag,
1991.

19

http://theory.lcs.mit.edu/tds/reflist.html

Mitra and Archer

[12] Sayan Mitra and Myla Archer. Developing strategies for specialized
theorem proving about untimed, timed, and hybrid I/O automata. In
Proceedings of the First International Workshop on Design and Application of
Strategies/Tactics in Higher Order Logics (STRATA 2003), Rome, Italy, Sept.
8 2003. NASA Proceedings NASA/CP-2003-212448; also, NRL Memorandum
Report NRL/MR/5540–0308722.

[13] C. Muñoz and M. Mayero. Real automation in the field. Technical Report
Interim ICASE Report No. 39, NASA/CR-2001-211271, ICASE, Mail Stop
132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA,
December 2001.

[14] Olaf Müller. A Verification Environment for I/O Automata Based on
Formalized Meta-Theory. PhD thesis, Technische Universität München, Sept.
1998.

[15] S. Owre and N. Shankar. Theory Interpretations in PVS. Technical report,
Computer Science Lab., SRI Intl., Menlo Park, CA, April 2001. Draft.

[16] J. Romijn. Tackling the RPC-Memory Specification Problem with I/O
automata. In Formal Systems Specification — The RPC-Memory Specification
Case, volume 1169 of Lect. Notes in Comp. Sci., pages 437–476. Springer-Verlag,
1996.

[17] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide, Version 2.4. Technical report, Computer Science Lab., SRI Intl., Menlo
Park, CA, November 2001.

20

	Introduction
	Background
	I/O Automata model
	TAME support for invariant proofs
	Previous barriers to TAME support for abstraction proofs
	A new design for defining and proving abstraction in TAME

	Strategies for refinement proofs
	Design of the refinement strategy
	Refinement for correctness of the TIP algorithm
	Applying refinement strategies to case studies

	Strategies for forward simulation proofs
	Design of the forward simulation strategies
	Proving time bound of a failure detector
	Applying forward simulation strategies to TIMEOUT
	Proving time bounds for two process race

	Related work
	Conclusions and future work
	References

