
Approximate Simulations for Task-Structured
Probabilistic I/O Automata

Sayan Mitra 1 Nancy Lynch 2

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, USA

Abstract
A Probabilistic I/O Automaton (PIOA) is a countable-state automaton model that allows
nondeterministic and probabilistic choices in state transitions. A task-PIOA adds a task
structure on the locally controlled actions of a PIOA as a means for restricting the nonde-
terminism in the model. The task-PIOA framework defines exact implementation relations
based on inclusion of sets of trace distributions. In this paper we develop the theory of
approximate implementations and equivalences for task-PIOAs. We propose a new kind
of approximate simulation between task-PIOAs and prove that it is sound with respect to
approximate implementations. Our notion of similarity of traces is based on a metric on
trace distributions and therefore, we do not require the state spaces nor the space of exter-
nal actions (output alphabet) of the underlying automata to be metric spaces. We discuss
applications of approximate implementations to probabilistic safety verification.

Key words: Approximate equivalence, Approximate simulation,
Abstraction, Probabilistic I/O Automata.

1 Introduction

An automaton A is said to implement a second automaton B if every observ-
able behavior or trace of A is also a trace of B. A and B are said to be equiva-
lent if they implement each other. Implementation and equivalence relations,
also sometimes called simulation and bisimulation, play fundamental roles in
the study of complex interacting systems. Many different kinds of implemen-
tation relations and their corresponding proof methods have been developed
for timed [1], hybrid [14,22,21] and probabilistic automata [15,16,4,3,20,2]. All
the above notions of implementation rely on exact equality of traces. It is well
known from [12,6,11] that such strict equality based implementation relations
are not robust. The problem is particularly acute where the traces contain
information about real valued variables and probabilities. For example, con-
sider the probabilistic automata in Figure 1. Clearly, B ought to be closer to

1 Email: mitras@theory.csail.mit.edu
2 Email: lynch@theory.csail.mit.edu

Preprint submitted to Elsevier Preprint 22 December 2006

A than C is to A. With exact notions of equivalence, all one could say is that
no two of A,B and C are equivalent.

y0 y0x0

A B C

r

a
1− r

a
r + ε

a
1− r − ε

a
r + 2ε

a
1− r − 2ε

a

A2A1A2A2 A1A1

Fig. 1. Inequivalent automata with similar transition probabilities (adapted from [11]).

One way to fix this problem is to relax the notion of equivalence (or im-
plementation) by taking into consideration the “similarity” of traces that are
not exactly identical. Based on this idea there is a growing body of work
on developing robust notions of “approximate” equivalences. In [12], “sim-
ilarity” of traces is formalized using a metric and the corresponding notion
of approximate equivalence is developed for probabilistic automata. More re-
cently, approximate bisimilarity of hybrid systems [10,9], labelled Markov pro-
cesses [7,23,24], generalized semi-Markov processes [11], and linear stochastic
hybrid automata [13] have been studied.

In this paper we develop the theory of approximate implementations and
equivalences for task-structured Probabilistic I/O Automata (PIOA). A task-
PIOA is a nondeterministic automaton with a countable set of states. Transi-
tions are labelled by actions . Many transitions may be possible from a given
state; each transition gives a discrete probability distribution over the state
space. In [4] a task structure—an equivalence relation on the set of locally
controlled actions—is used as a means for restricting the nondeterminism in
the model. In order to obtain a probability distribution over the executions
of a task-PIOA, the automaton is combined with a “scheduler” for resolving
nondeterminism. Visible behavior of a task-PIOA combined with a scheduler
is a trace distribution which is a probability distribution over its set of traces.
Exact implementation relations and compositionality results for task-PIOAs
are presented in [4]. A special kind of approximate implementation relation
that tolerates small differences in the probability of occurrence of a particular
action is used in [5] to verify a security protocol. In contrast, the notion of
approximation introduced here is based on the differences in the probabilities
of all the possible traces of the automata in question.

This work differs from all the approximate simulation related studies cited
above in at least one of the following ways. (i) The implementation relation in
the task-PIOA framework is based on trace distributions and not bisimilarity
of states. Approximate implementation is derived from a metric over trace
distributions. That is, we do not require the state spaces of the underlying
automata nor the common space of external actions (output alphabet) to be
metric spaces. (ii) The task-PIOA model allows both nondeterministic and
probabilistic choices. In this setting, the external behavior of an automaton is
the set of all possible trace distributions that may arise from combining the au-

tomaton with any scheduler. Thus, approximate simulations prove “nearness”
of sets of trace distributions.

Our notion of approximate simulation is a natural extension of (exact)
simulation relation for task-PIOAs. Let µ1 and µ2 be probability distributions
over executions of task-PIOAsA and B. An approximate simulation fromA to
B is a function φ mapping each µ1, µ2 pair to a nonnegative real. The number
φ(µ1, µ2), is a measure of how similar µ1 and µ2 are in terms of producing
similar trace distributions. Informally, if φ(µ1, µ2) ≤ ε, for some ε ≥ 0, then
it is possible to closely (with respect to the metric on trace distributions)
simulate from µ2 anything that can happen from µ1, and further, the resulting
distributions, say µ′1 and µ′2, are also close in the following sense. There exists
a joint distribution ψ supported on the set {(η1, η2) | φ(η1, η2) ≤ ε} such that
the marginals of ψ have means µ′1 and µ′2, respectively.

In the next Section, we give a condensed overview of the task-PIOA frame-
work. In Section 3 we propose approximate implementations for closed task-
PIOAs. We introduce approximate simulations and show that they are sound
for proving approximate implementations. In Section 4, we discuss applica-
tions of approximate simulations to probabilistic safety verification and briefly
outline how the results of Section 3 extend to general (not necessarily closed)
task-PIOAs. In Section 5 we remark on some directions for future research.
Proofs of auxiliary lemmas and formal statements of some relevant results
from [4] appear in the Appendices.

2 Task-PIOA Framework
Given a set X, we denote a σ-algebra over X by FX , the set of discrete
(sub-)probability measures on X by Disc(X) (resp. SubDisc(X)). If µ is a
discrete (sub-)probability measure on X, the support of µ, written as supp(µ),
is the set of elements of X that have non-zero measure. The task-PIOA model
used in this paper is slightly more general than the one in [4]; here we allow
the starting configuration of an automaton to be any distribution over states
and not just a Dirac mass.

Definition 2.1. A task-structured probabilistic I/O automaton A is a tuple
(Q, ν̄, I, O,H,D,R) where: (i) Q is a countable set of states; (ii) ν̄ ∈ Disc(Q)
is the starting distribution on states; (iii) I, O and H are countable and
pairwise disjoint sets of actions, referred to as input, output and internal
actions, respectively. The set A := I ∪O ∪H is called the action alphabet of
P. If I = Ø, then A is closed. The set of external actions of A is I∪O and the
set of locally controlled actions is O∪H. (iv) D ⊆ (Q×(I∪O∪H)×Disc(Q))
is a transition relation. An action a is enabled in a state q if (q, a, µ) ∈ D
for some µ. (v) R is an equivalence relation on the locally controlled actions.
The equivalence classes of R are called tasks. A task T is enabled in a state
q if some action a ∈ T is enabled in q. In addition, A satisfies:

• Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.

• Transition determinism: For every q ∈ Q and a ∈ A, there is at most one
µ ∈ Disc(Q) such that (q, a, µ) ∈ D.

• Action determinism: For every q ∈ Q and T ∈ R, at most one a ∈ T is
enabled in q.

An execution fragment of P is a finite or infinite sequence α = q0a1q1a2 . . .
of alternating states and actions, such that (i) if α is finite, then it ends with
a state; and (ii) for every non-final i, there is a transition (qi, ai+1, µ) ∈ D
with qi+1 ∈ supp(µ). We write α.fstate for q0, and, if α is finite, we write
α.lstate for its last state. We use FragsA (resp., Frags∗A) to denote the set of all
(resp., all finite) execution fragments of A. An execution of A is an execution
fragment beginning from some state in supp(ν̄). ExecsA (resp., Execs∗A) denotes
the set of all (resp., finite) executions of A. The trace of an execution fragment
α, written trace(α), is the restriction of α to the set of external actions of A.
We say that β is a trace of A if there is an execution α of A with trace(α) = β.
TracesA (resp., Traces∗A) denotes the set of all (resp., finite) traces of A.

Nondeterministic choices in A are resolved using a scheduler, which is a
function σ : Frags∗A −→ SubDisc(D) such that (q, a, µ) ∈ supp(σ(α)) implies
q = α.lstate. Thus, σ decides (probabilistically) which transition (if any) to
take after each finite execution fragment α. Since this decision is a discrete
sub-probability measure, it may be the case that σ chooses to halt after α with
non-zero probability: 1 − σ(α)(D) > 0. A scheduler σ and a finite execution
fragment α generate a measure µσ,α on the σ-field FExecsA generated by cones
of execution fragments, where each cone Cα′ is the set of execution fragments
that have α′ as a prefix. The theory of probabilistic executions of task-PIOAs
with a general class of history dependent schedulers has been developed in [4].

In this paper we restrict our attention to static (or oblivious), schedulers
that do not depend on dynamic information generated during execution. Al-
though restrictive this class of schedulers arise naturally in many applications,
including in analysis of security protocols [5]. A task schedule for A is any
finite or infinite sequence σ = T1T2 . . . of tasks in R. A task schedule can be
used to generate a unique probabilistic execution of the task-PIOA A. One
can do this by repeatedly scheduling tasks, each of which determines at most
one transition of A. Formally, we define an operation that “applies” a task
schedule to a task-PIOA:

Definition 2.2. Let A be an action-deterministic task-PIOA. Given µ ∈
Disc(Frags∗A) and a task schedule σ, apply(µ, σ) is the probability measure on
FragsA defined recursively by:

(i) apply(µ, λ) := µ. (λ denotes the empty sequence.)

(ii) For T ∈ R, apply(µ, T) is defined as follows. For every α ∈ Frags∗A,
apply(µ, T)(α) := p1 + p2, where:

• p1 = µ(α′)η(q) if α is of the form α′aq, where a ∈ T and (α′.lstate, a, η) ∈
D; p1 = 0 otherwise.

• p2 = µ(α) if T is not enabled in α.lstate; p2 = 0 otherwise.

(iii) For σ of the form σ′ T , T ∈ R, apply(µ, σ) := apply(apply(µ, σ′), T).

(iv) For σ infinite, apply(µ, σ) := limi→∞(apply(µ, σi)), where σi denotes the
length-i prefix of σ.

In Case (ii) above, p1 represents the probability that α is executed when
applying task T at the end of α′. Because of transition-determinism and
action-determinism, the transition (α′.lstate, a, η) is unique, and so p1 is well-
defined. The term p2 represents the original probability µ(α), which is relevant
if T is not enabled after α. It is routine to check that the limit in Case (iv) is
well-defined. The other two cases are straightforward. Several useful proper-
ties of the apply(,) function relating sequences of probability distributions on
executions and traces are given in Appendix A.

We note that the trace function is a measurable function from FExecsA to
the σ-field generated by cones of traces. Thus, given a probability measure
µ on FExecsA we define the trace distribution of µ, denoted tdist(µ), to be the
image measure of µ under the trace function. We extend the tdist() notation
to arbitrary measures on execution fragments of A. We write tdist(µ, σ) as
shorthand for tdist(apply(µ, σ)), the trace distribution obtained by applying
task schedule σ starting from the measure µ on execution fragments. We write
tdist(σ) for tdist(apply(ν̄, σ)). A trace distribution of A is any tdist(σ). We use
tdists(A) to denote the set {tdist(σ) : σ is a task schedule forA}.

2.1 Exact implementations and Simulations

Two task-PIOAs A1 and A2 are comparable if they have the same set of
external actions. Given comparable closed task-PIOAs A1 and A2, A1 is said
to implement A2 if tdists(A1) ⊆ tdists(A2). If A1 and A2 implement each
other then they are said to be equivalent . In [4] a simulation relation for
closed, task-PIOAs is defined and it is shown to be sound for proving the
above implementation relation. This definition is based on three operations
involving probability measures: flattening, lifting, and expansion.

Let X and Y be a sets. If η ∈ Disc(Disc(X)), then the flattening of η,
denoted by flatten(η) ∈ Disc(X), is defined by flatten(η) =

∑
µ∈Disc(X) η(µ)µ.

The lifting operation takes a relation R⊆ X × Y and “lifts” it to a relation
L(R)⊆ Disc(X)× Disc(Y) defined by: µ1 L(R) µ2 iff there exists a weighting
function w : X × Y → R≥0 such that: (i) for each x ∈ X and y ∈ Y ,
w(x, y) > 0 implies x R y, (ii) for each x ∈ X,

∑
y w(x, y) = µ1(x), and (ii) for

each y ∈ Y ,
∑

xw(x, y) = µ2(y). Finally, the expansion operation takes a R⊆
Disc(X)×Disc(Y), and returns a relation E(R)⊆ Disc(X)×Disc(Y) such that
µ1 E(R) µ2 whenever they can be decomposed into two L(R)-related measures.

Formally, E(R), is defined by: µ1 E(R) µ2 iff there exist two discrete measures
η1 and η2 on Disc(X) and Disc(Y), respectively, such that µ1 = flatten(η1),
µ2 = flatten(η2), and η1 L(R) η2.

The next definition expresses consistency between a probability measure
over finite executions and a task schedule. This condition is used to avoid
useless proof obligations in the definition of both exact and approximate sim-
ulations.

Definition 2.3. Suppose A is a closed, task-PIOA and σ is a finite task sched-
ule for T . µ ∈ Disc(Frags∗A) is consistent with σ if supp(µ) ⊆ supp(apply(ν̄, σ)).

Suppose we have a mapping c that, given a finite task schedule σ and a task
T of a task-PIOA A1, yields a task schedule of another task-PIOA A2. The
idea is that c(σ, T) describes how A2 matches task T , given that it has already
matched the task schedule σ. Using c, we define a new function full(c) that,
given a task schedule σ, iterates c on all the elements of σ, thus producing a
“full” task schedule of A2 that matches all of σ.

Definition 2.4. Let A1,A2 be task-PIOAs, and let c : (R1
∗ × R1) → R2

∗ be
a function that assigns a finite task schedule of A2 to each finite task schedule
of A1 and task of A1. The function full(c) : R1

∗ → R2
∗ is recursively defined

as: full(c)(λ) := λ, and full(c)(σT) := full(c)(σ) _ c(σ, T) (the concatenation
of full(c)(σ) and c(σ, T)).

Now we give the definition of exact simulation relation for task-PIOAs.
Note that the simulation relations do not just relate states to states, but
rather, probability measures on executions to probability measures on execu-
tions. The use of measures on executions here rather than just executions is
motivated by certain cases that arise in proofs where related random choices
are made at different points in the low-level and high-level models (see, e.g.,
proof of OT protocol in [5]).

Definition 2.5. Let A1 and A2 be two comparable closed task-PIOAs. Let R
be a relation from Disc(Execs∗(A1)) to Disc(Execs∗(A2)), such that, if µ1 R µ2,
then tdist(µ1) = tdist(µ2). Then R is a simulation from A1 to A2 if there
exists c : (R1

∗ ×R1) → R2
∗ such that following properties hold:

(i) Start condition: ν̄1 R ν̄2.

(ii) Step condition: If µ1 R µ2, σ1 ∈ R1
∗, µ1 is consistent with σ1, µ2 is

consistent with full(c)(σ1), and T ∈ R1, then µ′1 E(R) µ′2 where µ′1 =
apply(µ1, T) and µ′2 = apply(µ2, c(σ1, T)).

We close this section with the statement of the soundness theorem for the
above simulation relation which has been proved in [4].

Theorem 2.6. Let A1 and A2 be comparable closed action-deterministic task-
PIOAs. If there exists a simulation relation from A1 to A2, then tdists(A1) ⊆
tdists(A2).

3 Approximate Implementations and Simulations

In this section we develop the theory of approximate implementations and
equivalences for task-PIOAs. We define approximate implementation relations
for closed task-PIOAs and propose a new kind of approximate simulation.
In the next Section we discuss how these results carry over to general (not
necessarily closed) task-PIOAs.

Informally, a task-PIOA A1 approximately implements a task-PIOA A2,
if every trace distribution of A1 is “close” to some trace distribution of A2,
where “closeness” is defined by some metric on trace distributions. Metrics for
probability distributions have been a subject of intense research in probability
theory (see, for example, the books [18] and [8]). There are different choices
of metrics over trace distributions. It turns out that our definition of approxi-
mate simulations and the proof of its soundness weakly relies on the choice of
this metric. In fact, any metric satisfying Proposition 3.2 is suitable for our
purpose and in practice this choice would be guided by the automata under
consideration. In this paper we work with the following (uniform) metric.

Definition 3.1. Let A be a closed task-PIOA. The uniform metric (pseudo-
metric) over trace distributions of A is the function du : Disc(TracesA) ×
Disc(TracesA) → R≥0 ∪ {∞} defined by:

du(µ1, µ2) := sup
C∈FTracesA

|µ1(C)− µ2(C)| .

In general, the above definition makes du a pseudo-metric over trace distri-
butions, however, this distinction is not significant in our discourse and with
some abuse of terminology we will refer to du as a metric.

Proposition 3.2. Suppose A1 and A2 are closed task-PIOAs. For i ∈ {1, 2},
let {µij}j∈J be a chain of discrete probability distributions on the traces of Ai

and let limj→∞ µij = µi. Then limj→∞ du(µ1j, µ2j) = du(µ1, µ2).

Approximate implementation for task-PIOAs is defined based on the met-
ric du on trace distributions.

Definition 3.3. Suppose A1 and A2 are comparable, closed task-PIOAs. For
δ > 0, A1 is said to δ-implement A2, written as A1 ≤δ A2, if for every
µ1 ∈ tdists(A1) there exists µ2 ∈ tdists(A2) such that du(µ1, µ2) ≤ δ. Closed
task-PIOAs A1 and A2 are said to be δ-equivalent, written as A1

∼=δ A2, if
A1 ≤δ A2 and A2 ≤δ A1.

Thus, A1 δ-implementsA2 if the one-sided Hausdorff distance from tdists(A1)
to tdists(A2) is less than or equal to δ.

3.1 Definition of Approximate Simulation

In this section we define approximate simulations for task-PIOAs and we prove
its soundness with respect to δ-implementations.

Definition 3.4. Let x be an element of the set X and {λi}i∈I be a countable
sequence of numbers such that

∑
i∈I λi = 1. If there exists a sequence {xi} in

X such that x =
∑

i∈I λixi, then x is a convex combination of the {xi}′s. A
function φ : X → R≥0 ∪ {∞} is convex if for every x =

∑
i∈I λixi, φ(x) ≤∑

i∈I λiφ(xi). If equality holds then the function is said to be distributive.

Analogous to expansion of relations as defined in Section 2.1, our defini-
tion of approximate simulation uses on the following notion of expansion of a
function.

Definition 3.5. Given a function φ : X×Y → R≥0∪{∞}, the expansion of φ,

written as φ̂, is a function φ̂ : X ×Y → R≥0 ∪{∞} defined as: for any ε ≥ 0,

φ̂(x1, y1) = ε if and only if there exists a joint distribution ψ ∈ Disc(X × Y)
such that:

(i) ψ minimizes maxx,y∈supp(ψ) φ(x, y) and maxx,y∈supp(ψ) φ(x, y) = ε,

(ii) x1 =
∑

x,y∈supp(ψ) ψ(x, y)x, and

(iii) y1 =
∑

x,y∈supp(ψ) ψ(x, y)y.

The consistency requirements (ii) and (iii) constrain the choice of ψ to
those joint distributions over X ×Y , for which the expected values of x and y
coincide with x1 and y1. Given φ, we say that joint distribution ψ is a feasible
for x1 and y1 if it satisfies (ii) and (iii). If ψ is feasible for x1, y1 and it satisfies
(i) with maxx,y∈supp(ψ) φ(x, y) = ε, then we say that ψ is an optimal distribution

for φ̂(x1, y1) = ε. The next proposition is a straightforward consequence of
Definition 3.5.

Proposition 3.6. For any φ : X ×Y → R≥0∪{∞} and ε > 0, if φ(x1, y1) ≤ ε

for some x1 ∈ X , y1 ∈ Y, then φ̂(x1, y1) ≤ ε.

Proof. Suppose φ(x1, y1) = ε1 for some 0 < ε1 ≤ ε. The joint distribution δx1,y1

is a feasible distribution for x1 and y1. Since φ(x1, y1) = ε1 ≤ ε, φ̂(x1, y1) ≤ ε.

Figure 2 shows a point (x1, y1) outside the set {(x, y) | φ(x, y) ≤ ε}, where
φ̂(x1, y1) = ε. The marginal distributions for the optimal joint distribution ψ
are shown on the x and the y axes.

Our new notion of approximate simulation for task-PIOAs is a function
φ : Disc(Frags∗A1

)×Disc(Frags∗A2
) → R≥0∪{∞} and the expansion of this func-

tion plays a key role in the definition of simulation. Informally, the simulation
function φ gives a measure of similarity between two distributions over the
execution fragments of two automata. If φ(µ1, µ2) ≤ ε, then, first of all, it is
possible to closely simulate from µ2 anything that can happen from µ1. Here
closeness of simulation is measured with the du metric on the trace distribu-
tions. Secondly, if µ′1 and µ′2 are the distributions obtained by taking a step
from µ1 and µ2, then µ′1 and µ′2 are also close in the sense that φ̂(µ′1, µ

′
2) ≤ ε.

x1

y1

x

ψ
(x
,y

)

0

φ(x, y) ≤ ε

Z1

y

Z2

φ̂(x1, y1) = ε

Fig. 2. Marginal distributions of the optimal joint distribution ψ for φ̂(x1, y1) = ε.
Support of ψ is contained within the elliptical region. In particular, ψ is concen-
trated in the regions Z1 and Z2 each carrying half of the total mass.

Definition 3.7. Suppose A1 and A2 are two comparable closed task-PIOAs, ε
is a nonnegative constant, and φ is a function Disc(Frags∗A1

)×Disc(Frags∗A2
) →

R≥0 ∪ {∞}. Suppose further, that there exists δ > 0 such that if φ(µ1, µ2) ≤ ε
then du(tdist(µ1), tdist(µ2)) ≤ δ. The function φ is an (ε, δ)-approximate sim-
ulation from A1 to A2 if it satisfies the following conditions:

(i) Start condition: φ(ν̄1, ν̄2) ≤ ε.

(ii) Step condition: There exists a function c : R∗1 ×R1 → R∗2 such that, if
φ(µ1, µ2) ≤ ε, T1 ∈ R1, σ1 ∈ R∗1 and µ1 is consistent with σ1, and µ2 is
consistent with full(c)(σ1), then φ̂(apply(µ1, T), apply(µ1, c(σ, T))) ≤ ε.

The above definition of (ε, δ)-approximate simulation generalizes 3 (exact)
simulation relation of Section 2.1.

3.2 Soundness of Approximate Simulation

In this section we prove Theorem 3.10 which is the main result of this paper
and it states that (ε, δ)- approximate simulations are sound with respect to
δ-approximate implementations. First we prove two key lemmas used in the
proof of the theorem.

Lemma 3.8. Suppose φ is a (ε, δ)-approximate simulation from A1 to A2.
For any µ1 ∈ Disc(Frags∗A1

) and µ2 ∈ Disc(Frags∗A2
), if φ̂(µ1, µ2) ≤ ε then

du(tdist(µ1), tdist(µ2)) ≤ δ.

Proof. Since φ̂(µ1, µ2) ≤ ε we know that there exists a joint distribution ψ

3 We claim that the following relation between approximate simulations and exact simu-
lation relations exists. Let φ be an (ε, 0)-approximate simulation from A1 to A2. Let us
define R:= {(µ1, µ2) | φ(µ1, µ2) ≤ ε}. R is a simulation relation from A1 to A2. A proof of
this claim will be given in the full version of the paper.

which is feasible for µ1, µ2, and for every η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε. So,
for i ∈ {1, 2}, µi =

∑
η1,η2∈supp(ψ) ψ(η1, η2)ηi and it follows that tdist(µi) =∑

η1,η2∈supp(ψ) ψ(η1, η2) tdist(ηi). du(tdist(µ1), tdist(µ2)) = supC∈FTraces∗A
| tdist(µ1)(C)−

tdist(µ2)(C)|

= sup
C∈FTraces∗A

|
∑
η1,η2

ψ(η1, η2) tdist(η1)(C)−
∑
η1,η2

ψ(η1, η2) tdist(η2)(C)|

≤ sup
C∈FTraces∗A

∑
η1,η2

ψ(η1, η2)|(tdist(η1)(C)− tdist(η2)(C))|.

For any η1, η2 ∈ supp(ψ), φ(η1, η2) ≤ ε and since φ is an (ε, δ)-approximate
simulation, du(tdist(η1), tdist(η2)) ≤ δ. From Definition 3.1, it follows that
| tdist(η1)(C)− tdist(η2)(C)| ≤ δ. Therefore, we have du(tdist(µ1), tdist(µ2)) ≤∑

η1,η2
ψ(η1, η2)δ ≤ δ.

Lemma 3.9. Suppose φ : Disc(X1) × Disc(X2) → R≥0 ∪ {∞} is a function,

µi ∈ Disc(Xi) for i ∈ {1, 2}, φ̂(µ1, µ2) ≤ ε with optimal distribution ψ. Let
fi : Disc(Xi) → Disc(Xi) be distributive functions, for i ∈ {1, 2}. If for each
ρ1, ρ2 ∈ supp(ψ), φ̂(f1(ρ1), f2(ρ2)) ≤ ε, then φ̂(f1(µ1), f2(µ2)) ≤ ε.

Proof: For each ρ1, ρ2 ∈ supp(ψ), let ψρ1ρ2 be the optimal distribution for

φ̂(f1(ρ1), f2(ρ2)) = ε. We define a joint distribution ψ′ on Disc(X1)×Disc(X2)
as follows:

ψ′ :=
∑

(ρ1,ρ2)∈supp(ψ)

ψ(ρ1, ρ2)ψρ1,ρ2 (1)

and show that ψ′ is a feasible distribution for f1(µ1) and f2(µ2) and for any
η1, η2 ∈ supp(ψ′), φ(η1, η2) ≤ ε.

(i) For feasibility of ψ′ we have to show that for i ∈ {1, 2}, fi(µi) equals:∑
η1∈Disc(X1),η2∈Disc(X2)

ψ′(η1, η2)ηi

=
∑
η1∈Disc(X1),η2∈Disc(X2)

[∑
(ρ1,ρ2)∈supp(ψ) ψ(ρ1, ρ2)ψρ1,ρ2(η1, η2)

]
ηi

=
∑

(ρ1,ρ2)∈supp(ψ) ψ(ρ1, ρ2)
[∑

η1∈Disc(X1),η2∈Disc(X2)
ψρ1,ρ2(η1, η2)ηi

]
=

∑
(ρ1,ρ2)∈supp(ψ) ψ(ρ1, ρ2)fi(ρi) [from feasibility of ψρ1,ρ2]

= fi

(∑
(ρ1,ρ2)∈supp(ψ) ψ(ρ1, ρ2)ρi

)
[from distributivity of fi]

= fi(µi) [from feasibility of ψ].

(ii) For optimality of ψ′ it suffices to show that for all η1, η2 ∈ supp(ψ′),
φ(η1, η2) ≤ ε. If ψ′(η1, η2) > 0 then from Equation (1) it follows that
there exists ρ1, ρ2 ∈ supp(ψ) such that ψρ1,ρ2(η1, η2) > 0. Since ψρ1,ρ2
is a optimal distribution for φ̂(f1(ρ1), f2(ρ2)) = ε, from its optimality
we know that for any ν1, ν2 ∈ supp(ψρ1,ρ2), φ(ν1, ν2) ≤ ε. In particular,
η1, η2 ∈ supp(ψρ1,ρ2) and so we have φ(η1, η2) ≤ ε.

Theorem 3.10. Let A1 and A2 be two closed comparable task-PIOAs. If there
exists a (ε, δ)-approximate simulation function from A1 to A2 then A1 ≤δ A2.

Proof. Let φ be the assumed (ε, δ)-approximate simulation function from A1

to A2. Let µ1 be the probabilistic execution of A1 generated by the starting
distribution ν̄1 and a (finite or infinite) task schedule T1, T2, For each i > 0,
we define σi to be c(T1 . . . Ti−1, Ti). Let µ2 be the probabilistic execution of
A2 generated by ν̄2 and the concatenation σ1, σ2, It suffices to show that:
du(tdist(µ1), tdist(µ2)) ≤ δ.

For each j ≥ 0, let us define µ1,j := apply(ν̄1, T1, . . . , Tj) and µ2,j :=
apply(ν̄2, σ1, . . . , σj). For i ∈ {1, 2} and for each j ≥ 0, µi,j ≤ µi,j+1 and
limj→∞ µi,j = µi. (the above uses Lemma A.7 of Appendix A). Observe that
for every j ≥ 0, µ1,j+1 = apply(µ1,j, Tj+1) and also that µ2,j+1 = apply(µ2,j, σj+1).

Step 1a. We prove by induction that for all j ≥ 0, φ̂(µ1,j, µ2,j) ≤ ε. For
j = 0, µ1,0 = ν̄1 and µ2,0 = ν̄2. By the start condition of the simulation

function, φ(µ1,0, µ2,0) ≤ ε and therefore by Proposition 3.6 φ̂(µ1,0, µ2,0) ≤ ε.

Step 1b. For the inductive step, we assume that φ̂(µ1,j, µ1,j) ≤ ε and show

that φ̂(µ1,j+1, µ1,j+1) ≤ ε. First of all, note that µ1,j+1 = apply(µ1,j, Tj+1) and
µ2,j+1 = apply(µ2,j, c(σjTj+1)). For i ∈ {1, 2}, let us define fi : Disc(Frags∗Ai

) →
Disc(Frags∗Ai

) as f1(η) := apply(η, Tj+1) and f2(η) := apply(η, c(σjTj+1)). If
we can apply Lemma 3.9, to the functions f1 and f2 then it follows that
φ̂(f1(µ1,j), f2(µ2,j)) ≤ ε as required.

Step 1c. It remains to check that these two functions satisfy all the con-
ditions in the hypothesis of Lemma 3.9. Distributivity of f1 and f2 follow
from Proposition B.2 (see Appendix B). Suppose φ̂(µ1,j, µ1,j) ≤ ε with op-
timal distribution ψ, and suppose η1, η2 ∈ supp(ψ), we have to show that
φ̂(f1(η1), f2(η2)) ≤ ε. Since η1, η2 ∈ supp(ψ), from optimality of ψ, we know
that φ(η1, η2) ≤ ε. Observe that for i ∈ {1, 2}, supp(ηi) ⊆ supp(µi,j), and
thus η1 is consistent with Tj+1 and η2 is consistent with c(σjTj+1). There-

fore, by the step condition on φ, φ̂(apply(η1, Tj+1), apply(η2, c(σjTj+1))) ≤ ε.
Since f1(η1) = apply(η1, Tj+1) and f2(η2) = apply(η2, c(σjTj+1)), we have

φ̂(f1(µ1,j), f2(µ2,j)) ≤ ε, as required in the hypothesis of Lemma 3.9.

Step 2. From Lemma 3.8, for each j ≥ 0, du(tdistµ1,j, tdistµ2,j) ≤ δ. From
Lemma A.5 of Appendix A we know that for i ∈ {1, 2}, limj→∞ tdist(µi,j) =
tdist(µi). From Proposition 3.2 we conclude that du(tdist(µ1), tdist(µ2)) =
limj→∞ du(tdist(µ1,j), tdist(µ2,j)) ≤ δ.

4 Applications of Approximate Implementations

4.1 A Simple Example

As a quick review of all the concepts introduced in this paper we return to a
simple version of the example of Section 1. We assume that: A1 is replaced
by single states x1 and y1 in the automata A and B, and likewise A2 is re-
placed by x2 and y2. Of course, for this simple example we can directly prove

exact equivalence of A and B. As an exercise, we will show that A is indeed
approximately equivalent to B. Formally, we will first present a simple (ε, 2ε)-
approximate simulation from A to B, which would imply, by Theorem 3.10,
that A ≤2ε B. Likewise, we can show that B ≤2ε A, from which it follows that
A ∼=2ε B.

The set of execution fragments 4 of A is Frags∗A = {x0, x0ax1, x0ax2}. Like-
wise, Frags∗B = {y0, y0ay1, y0ay2}. A distribution µ over Frags∗A (resp. Frags∗B)
is a triple in which the ith term µ[i] gives the probability of the ith fragment
in the set Frags∗A (resp. Frags∗B). Let the starting distribution ν̄1 of A be
defined by ν̄1(xi) = pi, where

∑2
i=0 pi = 1. Let the starting distribution ν̄2

of B be defined by ν̄2(y0) = pi + ε1, ν̄2(y1) = p1, and ν̄2(y2) = p2 − ε1, where
0 ≤ ε1 ≤ ε

2
. Our choice of the approximate simulation function φ is the L1

distance between distributions, that is, φ(µ1, µ2) :=
∑2

i=0 |µ1[i]−µ2[i]|, where
µ1 ∈ Disc(Frags∗A) and µ2 ∈ Disc(Frags∗B).

Claim. If ε and r satisfy Equations (B.1)-(B.4), then φ is an (ε, 2ε)-approximate
simulation from A to B.

Proof. Let µ1 ∈ Disc(Frags∗A) and µ2 ∈ Disc(Frags∗B). It is easy to check that
if φ(µ1, µ2) ≤ ε, then du(tdist(µ1), tdist(µ2)) ≤ 2ε. The function φ satisfies
the start condition by our assumption that ε1 ≤ ε

2
. Now we check the step

condition. Note that the only action forA is a and the corresponding action for
B is also a. Let µ′1 = apply(ν̄1, a) and µ′2 = apply(ν̄2, a). From Definition 2.2,
µ′1 = 〈0, p1r+p2, p1(1−r)+p3〉, and µ′2 = 〈0, (p1 + ε1)(r+ ε)+p2, (p1 + ε1)(1−
r − ε) + (p3 − ε1)〉. To prove that φ̂(µ′1, µ

′
2) ≤ ε, we construct a feasible joint

distribution ψ for µ′1 and µ′2. Our strategy is to equally distribute ε in each of
the dimensions of the domain of the distribution ψ. We define:

ψ(0, µ′1[2]± ε

2
, µ′1[3], 0, µ′2[2], µ′2[3]) = ψ(0, µ′1[2], µ′1[3]± ε

2
, 0, µ′2[2], µ′2[3]) = 1/8

ψ(0, µ′1[2], µ′1[3], 0, µ′2[2]± ε

2
, µ′2[3]) = ψ(0, µ′1[2], µ′1[3], 0, µ′2[2], µ′2[3]± ε

2
) = 1/8.

It can be checked easily that for any two points η1, η2 in the support of ψ,
φ(η1, η2) ≤ ε. The feasibility of ψ follows from Equations (B.1)-(B.4).

4.2 Probabilistic Safety

Given two δ-equivalent closed task-PIOAs A1 and A2, if we know that A1 vio-
lates some safety S property with probability at most p then we can conclude
that A2 violates S with probability at most p+δ. We first prove the following
more general result.

As the two automata are comparable their trace spaces are identical. Let
(Traces,FTraces) be the measurable space of traces for both A1 and A2. Let

4 The execution fragments x1 and x2 are not included because they play no role in the
analysis.

(X,FX) be another measurable space. A random variable is a measurable
function X : (Traces,FTraces) → (X,FX). We use the standard notation µ[X =
x] := µ({β ∈ Traces | X(β) = x}, for x ∈ X.

Proposition 4.1. Let X be random variable on (Traces,FTraces). Suppose
A1

∼=δ A1 and there exists 0 ≤ p ≤ 1 such that for all µ1 ∈ tdists(A1),
µ1([X = x]) ≤ p. Then, for all µ2 ∈ tdist(A2), µ2[X = x] ≤ δ + p.

Proof. Fix µ2 ∈ tdistsA2. SinceA1
∼=δ A2 from Definition 3.3 there exists µ1 ∈

tdists(A1), such that du(µ1, µ2) ≤ δ. We know that supC |µ2(C)−µ1(C)| ≤ δ.
In particular, |µ2([X = x])− µ1([X = x])| ≤ δ. As µ1([X = x]) ≤ p, we have
µ2([X = x]) ≤ p+ δ as required.

We denote the common set of external variables of A1 and A2 by E. Let us
assume that violation of some safety property S is indicated by the occurrence
of one of the external actions from the set U ⊆ E. We define the function
XU : Traces → {0, 1} as XU(β) := 1 if some action from U occurs in the trace
β, otherwise XU(β) := 0. It can be easily checked that XU is a measurable
function and therefore is a boolean valued random variable. Then, the event
[XU = 1] corresponds to the set of traces in which S is violated. Now, if we
know that in any trace distribution of A1 the probability of any U occurring
is at most p and that A1

∼=δ A2, then from Proposition 4.1 we can conclude
that in any trace distribution of A2 the probability of occurrence of U is at
most δ + p.

4.3 Approximations for Task-PIOAs

We briefly discuss how the results presented in this paper can be extended to
general (not necessarily closed) task-PIOAs. The basic idea is to define a new
notion of implementation following the approach of [4].

An “environment” for task-PIOA A is a task-PIOA E such that the compo-
sition 5 of A and E is closed. The external behavior of a task-PIOA A, written
as extbehA, is a function that maps each environment task-PIOA E for A to
the set of trace distributions of the composition of A and E . Approximate
implementation for general task-PIOAs can then be defined as follows:

Definition 4.2. If A1 and A2 are comparable then A1 is said to δ-implement
A2, for some δ ≥ 0, if for every environment task-PIOA E for both A1 and
A2, for every µ1 ∈ extbehA1(E) there exists µ2 ∈ extbehA2(E) such that
du(µ1, µ) ≤ δ.

Based on this modified definition of approximate implementation the sound-
ness of approximate simulations for general task-PIOAs follow as a Corollary

5 The composition operation for task-PIOAs is formally defined in [4]. Informally, the
composition of A and E is another task-PIOA that combines the transitions corresponding
to the common external actions of A and E in a consistent manner.

to Theorem 3.10.

Corollary 4.3. Let A1 and A2 be two comparable task-PIOAs. Suppose that
for every environment E for both A1 and A2, there exists a (εE , δ)-approximate
simulation function from the composition of A1 and E to the composition of
A2 and E. Then A1 ≤δ A2.

5 Conclusions

In this paper we have proposed approximate simulations for task-structured
probabilistic I/O automata and we have proved that approximate simulations
are sound for proving approximate implementation relations. Approximate
implementation relations are defined based on a metric over trace distribu-
tions. As a result, we do not require the underlying state spaces of the au-
tomata or the space of external actions of the automata to be metric spaces.

In the future, we want to extend the notion of approximate simulations
to the task-PIOA model with continuous state spaces [17]. We also want
to extend simulations to be defined as functions of distributions over states
as opposed to distributions over execution fragments. In our formulation of
approximate simulations, a simulation proof boils down to finding an opti-
mal joint distribution satisfying certain constrains. For well-behaved classes
of simulation functions this opens up the possibility of proving approximate
simulations by solving optimization problems.

Acknowledgments
We thank Dilsun Kaynar for taking the time to explain some of the results in [4] and for
commenting on the results in this paper.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[2] M. L. Bujorianu, J. Lygeros, and M. C. Bujorianu. Bisimulation for general stochastic
hybrid systems. In HSCC 2005, pages 198–214, volume 3414 of LNCS, Springer-Verlag,
2005.

[3] C. Baier. Polynomial-time algorithms for testing probabilistic bisimulation and
simulation. In R. Alur and T. A. Henzinger, editors, CAV’96, volume 1102, pages
50–61, New Brunswick, NJ, USA, / 1996. Springer Verlag.

[4] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Task-structured probabilistic I/O automata. Tech Report MIT-CSAIL-TR-2006-023,
MIT, Cambridge, MA, March 2006.

[5] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Using task-structured probabilistic I/O automata to analyze an oblivious transfer
protocol. Tech Report MIT-CSAIL-TR-2006-019, MIT, Cambridge, MA, March 2006.

[6] J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue
of weak bisimulation for probabilistic processes. In LICS 2002, pages 413–422. IEEE
Computer Society, 2002.

[7] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

[8] R. M. Dudley. Probabilities and Metrics:Convergence of laws on metric spaces, with
a view to statistical testing. Number 45 in Lecture Notes Series. Aarhus Universitet,
June 1976.

[9] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations for hybrid
systems. In IFAC Analysis and Design of Hybrid Systems, Alghero, Italy, June 2006.

[10] A. Girard and G. J. Pappas. Approximation metrics for discrete and continuous
systems. In IEEE Transactions on Automatic Control, 2005.

[11] V. Gupta, R. Jagadeesan, and P. Panangaden. Approximate reasoning for real-time
probabilistic processes. The Quantitative Evaluation of Systems, First International
Conference on (QEST’04), 00:304–313, 2004.

[12] C.-C. Jou and S. A. Smolka. Equivalences, congruences and complete axiomatizations
for probabilistic processes. In CONCUR 90, volume 458 in LNCS. Springer-Verlag,
1990.

[13] A. A. Julius. Approximate abstraction of stochastic hybrid automata. In João P.
Hespanha and Ashish Tiwari, editors, HSCC06, pages 318–332, volume 3927 of LNCS,
Springer-Verlag, 2006.

[14] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science. Morgan Claypool, November 2005.

[15] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
Computation, 94(1):1–28, 1991.

[16] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time
framework for protocol analysis. In CCS ’98: Proceedings of the 5th ACM conference
on Computer and communications security, pages 112–121, New York, NY, USA, 1998.
ACM Press.

[17] S. Mitra and N. Lynch. Probabilistic timed I/O automata with continuous state
spaces, April 2006. Submitted for review. Available from http://theory.lcs.mit.
edu/∼mitras/research/CONCUR06 06.pdf.

[18] S. T. Rachev. Probability metrics and the stability of stochastic models. John Wiley &
Sons, 1991.

[19] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Laboratory for Computer Science, MIT, June 1995.

[20] S. Strubbe and A. J. van der Schaft. Bisimulation for communicating piecewise
deterministic markov processes (cpdps). In HSCC 2005, pages 623–639, volume 3414
of LNCS, Springer-Verlag, 2005.

[21] P. Tabuada, G. J. Pappas, and P. U. Lima. Composing abstractions of hybrid systems.
In HSCC 2002, volume 2289 of LNCS, pages 436–450, Springer-Verlag.

[22] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In HSCC 2002,
volume 2289 LNCS, pages 465–478, Springer-Verlag.

[23] F. van Breugel, M. Mislove, J. Ouaknine, and J. B. Worrell. An intrinsic
characterization of approximate probabilistic bisimilarity. In FOSSACS 03, LNCS.
Springer, 2003.

[24] F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic
transition systems. In ICALP ’01, pages 421–432, London, UK, 2001. Springer-Verlag.

http://theory.lcs.mit.edu/~mitras/research/CONCUR06_06.pdf
http://theory.lcs.mit.edu/~mitras/research/CONCUR06_06.pdf

A Appendix: Limits of Chains of Distributions

All the definitions and lemmas in this Appendix are from [4]. In this Appendix A will be a
task-PIOA. Given a finite execution fragment α of A, the cone of executions generated by
this fragment Cα is the set of all execution fragments that extend α. Given a finite trace β
of A, Cα is the set of all traces that extend β.

Definition A.1. If µ1, µ2 ∈ Disc(FragsA), such that for every α ∈ Frags∗A, µ1(Cα) ≤
µ2(Cα), then we write µ1 ≤ µ2.

Definition A.2. A chain of probability measures on execution fragments of A is an infinite
sequence µ1, µ2, . . . of probability measures on execution fragments of A such that µ1 ≤
µ2 Given a chain, the limit of the chain is defined as a function µ on the σ-algebra
generated by the cones of execution fragments of A, as follows: for each α ∈ Frags∗A,
µ(Cα) := limi→∞ µi(Cα).

Standard measure theoretic arguments guarantee that µ can be extended uniquely to a
probability measure on the σ-field generated by the cones of finite execution fragments.

Definition A.3. If µ1, µ2 are probability measures on traces of A, such that for every finite
trace β of A µ1(Cβ) ≤ µ2(Cβ), then we write µ1 ≤ µ2.

Definition A.4. A chain of probability measures on traces of A is an infinite sequence
µ1, µ2, . . . of probability measures on traces of A such that µ1 ≤ µ2 Given a chain
of probability measure on traces, the limit of the chain is defined as a function µ on the
σ-algebra generated by the cones of traces of A, as follows: for each finite trace β of A,
µ(Cβ) := limi→∞ µi(Cβ).

Again, µ can be extended uniquely to a probability measure on the σ-field generated
by the cones of finite traces.

Lemma A.5 (4 of [4]). Let µ1, µ2, . . . be a chain of measures on FragsA and let µ =
limi→∞ µi, then limi→∞ tdist(µi) = tdist(µ).

Lemma A.6 (11 of [4]). Let µ ∈ Disc(Frags∗A) and σ be a finite task schedule for A. Then
apply(µ, σ) ∈ Disc(Frags∗A).

Lemma A.7 (20 of [4]). Let µ ∈ Disc(Frags∗A) and σ1, σ2, . . . be a finite or infinite sequence
of task schedulers for A. For each i > 0 let ηi = apply(µ, σ1σ2 . . . σi). Let σ = σ1σ2 . . . be
the concatenation of the all the task schedulers, and let η = apply(µ, σ). Then the ηi’s form
a chain and η = limi→∞ ηi.

B Appendix: Lemmas for Approximate Simulations

This Appendix provides proofs of several propositions stated in the paper and also some
auxiliary lemmas used for proving the soundness theorem.

The following is a proof of Proposition 3.2.

Proof. We have to show that for every ε > 0, there exists N ∈ N, such that for all k > N ,
du(µ1k, µ2k)−du(µ1, µ2) < ε. From triangle inequality, we get that for any k, du(µ1k, µ2k) ≤
du(µ1k, µ1) + du(µ1, µ2) + du(µ2, µ2k). Therefore, it suffices to show that exists N ∈ N,
such that for all k > N , du(µ1k, µ1) + du(µ2, µ2k) ≤ ε. Now since limj→∞ µ1j = µ1,
limj→∞ µ2j = µ2, we know that there exists N ′ ∈ N, such that for all k > N ′, for every
C ∈ FTracesAi

, |µij(C) − µi(C)| ≤ ε
2 . If we choose N = N ′, we have for all k > N ,

du(µ1k, µ1) + du(µ2, µ2k) ≤ ε, are required.

Lemma B.1. Let {µi}i∈I be a countable family of discrete probability measures µi ∈
Disc(Frags∗A) and let µ =

∑
i∈I λiµi be a convex combination of {µi}, where

∑
i∈I λi = 1.

Let T be task of A. Then apply(µ, T) =
∑
i∈I λi apply(µi, T).

Proof. Suppose p1 and p2 are the functions used in the definition of apply(µ, T), and suppose
for each i ∈ I, pi1 and pi2 be the functions used in the definition of apply(µi, T). Fix a finite ex-
ecution fragment α. We show that p1(α) =

∑
i λip

i
1(α) and p2(α) =

∑
i λip

i
2(α), from which

it follows that apply(µ, T)(α) = p1(α) + p2(α) =
∑
i λi(p

i
1(α) + pi3(α)) =

∑
i λi apply(µi, T).

To prove that p1(α) =
∑
i λip

i
1(α), we consider two cases. If α = α′aq where α′ ∈

supp(µ), a ∈ T , and (α′.lstate, a, η) ∈ D, then, by Definition 2.2 p1(α) = µ(α′)η(q) and
for each i ∈ I, pi1(α) = µi(α′)η(q). Thus, p1(α) =

∑
i λip

i
1(α). Otherwise, again by

Definition 2.2 p1(α) = 0 and for each i ∈ I, pi1(α) = 0, and the result holds trivially.
To prove that p2(α) =

∑
i λip

i
2(α), we consider two cases. If T is not enabled in

α.lstate then, by Definition 2.2, p2(α) = µ(α), and for each i ∈ I, pi2(α) = µi(α). Thus,
p2(α) =

∑
i λip

i
2(α). Otherwise, again by Definition 2.2 p2(α) = 0 and for each i ∈ I,

pi2(α) = 0, and the result holds trivially.

Proposition B.2. Let {µi}i∈I be a countable family of discrete probability measures µi ∈
Disc(Frags∗A) and let µ =

∑
i∈I λiµi be a convex combination of {µi}, where

∑
i∈I λi = 1.

Let σ be a finite sequence of tasks. Then apply(µ, σ) =
∑
i∈I λi apply(µi, σ).

Proof. The proof is by induction on the length of σ. If σ is the empty sequence, then for any
η ∈ Disc(Frags∗A), apply(η, σ) = η and it follows that µ =

∑
i∈I λiµi =

∑
i∈I λi apply(µi, σ).

For the induction step, let σ = σ′T . By Definition 2.2, apply(µ, σ′T) = apply(apply(µ, σ′), T).
By the induction hypothesis, apply(µ, σ′) =

∑
i λi apply(µi, σ′) and thus, apply(µ, σ′T) =

apply(
∑
i λi apply(µi, σ′), T). For each i ∈ I, apply(µi, σ′) is a discrete probability measure in

Disc(Frags∗A). By Lemma B.1, apply(
∑
i λi apply(µi, σ′), T) =

∑
i λi apply(apply(µi, σ′), T).

Using Definition 2.2 it follows that apply(µ, σ′T) =
∑
i λi apply(µi, σ′T) as required.

B.1 Simple Example of Section 4.1

The following conditions are used in the hypothesis of the Claim in Section 4.1.

1
p1

[ε1
2
− p2

]
≤ r ≤ 1

p1

[
1− ε1

2
− p2

]
(B.1)

1
p1

[ε1
2
− p3

]
≤ 1− r ≤ 1

p1

[
1− ε1

2
− p3

]
(B.2)

1
p1 + ε1

[ε1
2
− p2

]
≤ r + ε ≤ 1

p1 + ε1

[
1− ε

2
− p2

]
(B.3)

1
p1 + ε1

[
3ε1
2
− p3

]
≤ 1− (r + ε)≤ 1

p1 + ε1

[
1 + ε

2
− p3

]
(B.4)

	Introduction
	Task-PIOA Framework
	Exact implementations and Simulations

	Approximate Implementations and Simulations
	Definition of Approximate Simulation
	Soundness of Approximate Simulation

	Applications of Approximate Implementations
	A Simple Example
	Probabilistic Safety
	Approximations for Task-PIOAs

	Conclusions
	References
	Appendix: Limits of Chains of Distributions
	Appendix: Lemmas for Approximate Simulations
	Simple Example of Section 4.1

