
Trace-based Semantics for Probabilistic Timed
I/O Automata?

Sayan Mitra and Nancy Lynch

Computer Science and AI Laboratory,
Massachusetts Inst. of Technology,

32 Vassar Street, Cambridge, MA 02139
{lynch, mitras}@csail.mit.edu

Abstract. We propose the Probabilistic Timed I/O Automaton (PTIOA)
framework for modelling and analyzing discretely communicating prob-
abilistic hybrid systems. State transition of a PTIOA can be nondeter-
ministic or probabilistic. Probabilistic choices can be based on continuous
distributions. Continuous evolution of a PTIOA is purely nondetermin-
istic. PTIOAs can communicate through shared actions. By supporting
external nondeterminism, the framework allows us to model arbitrary
interleaving of concurrently executing automata. The framework gener-
alizes several previously studied automata models of its class. We develop
the trace-based semantics for PTIOAs which involves measure theoretic
constructions on the space of executions of the automata. We introduce a
new notion of external behavior for PTIOAs and show that PTIOAs have
simple compositionality properties with respect this external behavior.

1 Introduction

Probabilistic automata with continuous state spaces provide a mathematical
framework for modeling and verifying computing systems that interact with un-
certain environments. Particularly in cases where uncertainties, such as proces-
sor failures and message delays, find accurate description in terms of stochastic
events. In systems that are also distributed, pure nondeterminism is necessary
for allowing construction of implementation free abstract models through under-
specification, and arbitrary interleaving of concurrently executing processes. For
a detailed discussion on the need for nondeterminism in probabilistic automata
we refer the reader to Chapter 4 of [17] and the introduction of [11]. There-
fore, in order to verify systems, such as Sensor Networks and Mobile-robots,
that have traits of both hybrid and distributed systems we need a framework
supporting continuous dynamics, probabilistic transitions and nondeterminism.
The interplay between probability and nondeterminism makes the development
of semantics such frameworks challenging [26,23,8,4]. Introduction of continuous
state spaces and distributions adds another layer of complexity to the prob-
lem [6,28,9].
? Supported by the MURI project:DARPA/AFOSR MURI F49620-02-1-0325 grant,

NSF Awards CNS-0614414 and CCR-0121277 USAF,AFRL Award FA9550-04-1-
0121.

2

Several continuous state probabilistic automaton models have been proposed.
In Labelled Markov Processes (see e.g., [9,28]) state transitions can give rise
to continuous probability distributions. Stochastic Hybrid Systems [18,3] have
transitions triggered by discrete or continuous time Markov chains, and trajec-
tories described by stochastic differential equations. In Piecewise Deterministic
Markov Processes [10] discrete transitions are probabilistic and the continuous
evolution of state in between those transitions is deterministic. These models
do not permit internal nondeterminism. That is, choice of an action uniquely
determines a transition, which in turn gives a probability distribution over the
states. Modeling frameworks that support composition of automata have to re-
solve external nondeterminism, that is, the choice of which automaton gets to
make the next move. This nondeterminism can be replaced by a race between
the automata [14,27], else it can be explicitly resolved by a scheduler [6,8,4].
Nondeterminism can also be allowed by treating the probabilistic and nonde-
terministic transitions as separate kinds of objects [17]. Our Probabilistic Timed
Input/Output Automata (PTIOA) framework shares certain features with the
Stochastic Transition Systems (STS) of [6]. Both frameworks allow continuous
state spaces and nondeterminism. However, a STS does not have notions of time
or trajectories. This leads to very different semantics for the two frameworks and
also important technical differences in the underlying construction of probability
spaces. We discuss these issues in Remark 1.

The PTIOA framework proposed in this paper supports continuous evolu-
tion, nondeterminism, probabilistic transitions, and discrete communication be-
tween components. A PTIOA can capture continuous evolution of state through
trajectories. Discrete state transition of a PTIOA can be nondeterministic or
probabilistic. Probabilistic choices can be based on continuous distributions.
Thus, the PTIOA framework generalizes several existing automata models, in-
cluding Timed I/O Automaton [21], Probabilistic I/O Automaton [26,4] and
its timed extension presented in [26], and discrete state Markov Decision Pro-
cesses [11,1,22,19]. We define the parallel composition and hiding operations for
PTIOAs, and show that the class is closed under these operations.

For constructing a probability measure over the executions of a set of commu-
nicating PTIOAs, we have to (a) resolve internal and external nondeterminism,
and (b) ensure that all sets of reasonable executions are measurable. We resolve
internal nondeterminism with local schedulers. For external nondeterminism, we
equip PTIOAs with a partition over actions called the task structure and then use
an oblivious task scheduler [5,4]. To ensure condition (b) we impose the follow-
ing measurability conditions on a PTIOA that has a measurable space (X,FX)
as its state space: (1) for any action, the set of states in which the action is
enabled is a measurable set, and (2) for measurable subsets R ⊆ R≥0, Y ⊆ X,
the set of states from which there exits a maximal trajectory with length in R
and final state in Y , is a measurable set. With these structures in place, each
scheduler defines a probability measure over the space of executions of a PTIOA.
We call such a measure a probabilistic execution. A probabilistic execution de-
fines a unique probability measure on the space of traces, that is a unique trace
distribution, provided the trace function is measurable. We show that this is
indeed the case. We use a simple, but intuitive notion of external behavior for
PTIOAs: for a given automaton A, its external behavior is a function that maps

3

each closing environment E of A to the set of all possible trace distributions
of the composition of A and E . We show that the implementation relation de-
fined in terms of the above notion of external behavior is compositional. Indeed,
considering closed automata and using this functional definition of external be-
havior lets us circumvent some of the difficulties that underlie compositionality
in the probabilistic setting. However, viewing external behavior as a mapping
from environments as opposed to a set of trace distributions is natural in many
applications, including analysis of security protocols [5]. Our longer term goal
is to develop a suite of analysis techniques for PTIOAs for proving probabilistic
safety, stability [7] and approximate implementation relations [25].

The paper is self-contained and we give the necessary mathematical back-
ground in Section 2. For the purpose of clear exposition, in Section 3 we first
introduce a restricted type of PTIOA that limits nondeterministic choices to
the choices over tasks. We define parallel composition and hiding operations
for this restricted class of PTIOAs, and present the construction of measures
over executions and traces in Section 4. We illustrate important definitions with
an example—a randomized consensus protocol adapted from [2] with stochastic
message delays. Finally, in Section 5 we show how the results for this restricted
class of PTIOAs carry over to general PTIOAs by adding local schedulers. Fur-
ther examples and proofs of the results appear in the full version of the paper
which is available as [24].

2 Preliminaries

The complement of a set A is denoted by Ac. The union of a collection {Ai}i∈I

of pairwise disjoint sets indexed by a set I is written as
⊎

i∈I Ai. The domain of
a function f by f.dom. For a set S ⊆ f.dom, we write f d S for the restriction of
f to S. If f is a function whose range is a set of functions, each having domain
Y and S ⊆ Y , then we write f ↓ S for the function g with g.dom = f.dom such
that g(c) := f(c) d S, for every c ∈ g.dom.

Time and Trajectories. We define T = R≥0 ∪ {∞} to be the time axis. A
trajectory in X is a Let X be the set of states. function τ : J → X, where J is
a left closed interval in T with left endpoint 0. A trajectory τ with τ.dom = {0}
, and τ(0) = x, is called the point trajectory at x and is written as ℘(x). A
trajectory τ is finite if τ.dom has finite length. It is closed if it is finite and
τ.dom is right closed. The first state of τ , τ.fstate is τ(0) and the limit time
of τ , τ.ltime, is sup{τ.dom}. If τ is closed then the limit state of τ , τ.lstate, is
τ(τ.ltime). Given a trajectory τ and t ∈ T, the time shifted function (τ + t) :
(τ.dom + t) → X is defined as (τ + t)(t′) := τ(t′ − t), for each t′ ∈ {u + t | u ∈
τ.dom}. Given two trajectories τ1 and τ2, τ1 is a prefix of τ2, written as τ1 ≤ τ2,
if τ1 = τ2 d τ1.dom. Also, τ1 is a suffix of τ2 if τ1 = (τ2 d [t,∞])− t, for some t ∈
τ2.dom. If τ1 is a closed trajectory with τ1.ltime = t and τ2.fstate = τ1.lstate,
then the function τ1

_ τ2 : τ1.dom∪ (τ2.dom+ t) → X is defined as τ1(t) if t ≤ u
and τ2(t − u) otherwise. Given a set of trajectories T , we denote the subset
of trajectories starting from x by T (x). T is deterministic if for all x ∈ X,
τ1, τ2 ∈ T (x), either τ1 ≤ τ2 or τ2 ≤ τ1.

Let T be a set of deterministic trajectories for X; (T (x),≤) is a total or-
der. A trajectory τ in T is said to be maximal if it is the supremal element

4

of T (τ.fstate). If a maximal τ ∈ T (x) exists then it is unique. We define
maxtimeT : X → T as maxtimeT (x) := τ.ltime if there exists a closed maximal
τ ∈ T (x), otherwise maxtimeT (x) : ∞. Similarly, we define maxstateT : X → X
as maxstateT (x) := τ.lstate if there exists a closed maximal τ ∈ T (x), otherwise
maxstateT (x) : x.

Measurability and measures. We follow the standard notations as found in
any text book on measure theory, as for instance [13]. A measurable space is
denoted by (X,FX), where X is a set and FX is a σ-algebra over X. Whenever
the sets R, R≥0 and T are viewed as measurable spaces, it is assumed that they
are equipped with their usual Borel σ-algebras. The set of probability measures
over (X,FX) is denoted by P(X,FX). A function f : (X,FX) → (Y,FY) is said
to be measurable if f−1(E) ∈ FX for every E ∈ FY . If f : (X,FX) → (Y,FY) is
a measurable function, and µ is a measure on X, then the image measure of µ
under f is a measure ϕ on Y defined as ϕ(E) = µ(f−1(E)), for each E ∈ FY .

A collection C of subsets of X, is a semi-ring if X, ∅ ∈ C , and for any
A,B ∈ C A ∩ B ∈ C , and that there exists a finite collection of disjoint sets
{C}n

i=1 in C such that A \ B =
⊎n

i=1 Ci. It is well known (see, e.g. [13]) that a
measure µ defined over a semi-ring C can be uniquely extended to a measure
over the σ-algebra generated by C by defining µ(∪n

i=1Ci) =
∑n

i=1 µ(Ci).
In constructing measures over the space of executions of a PTIOA, we have

to integrate over the space of probability distributions over the state space X,
therefore we need to define a σ-algebra over P(X,FX). For this, we use the
following construction due to Giry [15]: for each A ∈ FX , let the function pA :
P(X,FX) → [0, 1] be defined as pA(µ) = µ(A). The σ-algebra on P(X,FX),
then is the smallest σ-algebra such that all pA’s are measurable.

3 Probabilistic Timed I/O Automata

Definition 1. A pre-PTIOA is a 6-tuple A = ((X,FX), x̄, A,R,D, T) where:
(1) (X,FX) is a measurable space called the state space. (2) x̄ ∈ X is the start
state. (3) A is a countable set of actions, partitioned into internal H, input I
and output O actions. L = O∪H is the set of local actions and E = O∪I is the
set of external actions. (4) R is an equivalence relation on L; the equivalence
classes of R are called tasks. A task T is called an output task if T ⊆ O. (5)
D ⊆ X ×A×P(X,FX) is the set of transitions. (6) T is a set of deterministic
trajectories for X that is closed under prefix, suffix, concatenation and contains
℘(x) for every x ∈ X.

The determinism assumption on T is relaxed in Section 5 to include nonde-
terministic trajectories, however, trajectories where stochastic choices are made
continuously over a an interval of time are currently excluded from the PTIOA
framework. This will be investigated in the future.

A pre-PTIOA is closed if its set of input actions is empty. If (x, a, µ) is an
element of D, we write x

a→ µ and action a is said to be enabled at x. The set of
states in which at least one action from the set B ⊆ A is enabled is denoted by
EB and the set of actions enabled at x is denoted by enabled(x). If a single action
a is enabled at x and x

a→ µ, then this µ is denoted by µx. For R ⊆ R≥0 and
Y ⊆ X, we define ER,Y = {x ∈ X | maxtimeT (x) ∈ R ∧ maxstateT (x) ∈ Y }.

5

Definition 2. A PTIOA A is a pre-PTIOA that satisfies the following axioms:

M0 (Measurability) For all B ⊆ A, EB is measurable. For measurable
sets R ⊆ R≥0, Y ∈ FX , ER,Y is measurable.

D0 (Input action enabling) Input actions are enabled in all states.
D1 (Time-action determinism) For any state x at most one of the follow-

ing may exist: (1) a local action a such that x ∈ Ea (2) a non-point
trajectory τ ∈ T (x).

D2 (Task determinism) For any state x, if there are actions a, b in the
same task T and x

a→ µ1 and x
b→ µ2 then a = b and µ1 = µ2.

At this point some explanation of the of the axioms may be in order. The M0
axiom was described in the introduction; it is necessary to ensure measurability
of reasonable sets of executions. D0 is a non-blocking axiom standard in I/O
automata literature. Axiom D1 allows resolution of nondeterminism in a struc-
tured manner; as we show in Section 5, by adding local schedulers, this axiom
can be removed. According to D1, from any state x, either a local action is
enabled or some non-zero amount of time can elapse. It prevents an action to
remain enabled while time elapses and is similar to the maximal progress as-
sumption found in real-time process algebras, e.g. [16]. If the time can elapse
from x, then the state evolves according to the1 maximal trajectory τ in T (x).
If local actions are enabled at x then time cannot elapse and the automaton
nondeterministically chooses one action a from the set of enabled actions. This
nondeterministic choice is resolved by a task scheduler , which we shall define
shortly. If a task T is specified then D2 implies that at x there can be at most
one enabled action in T , and at most one probabilistic transition corresponding
to that action.

Theorem 1. Suppose A = ((X,FX), x̄, A,R,D, T) is a pre-PTIOA satisfying
D0 and D1 such that for every transition x

a→ µ, µ is a Dirac measure. Then
(X, (EL ∪ ER≥0,X), {x̄}, I, O, H,D, T) is a timed I/O automaton.

Example. (Randomized Consensus) The Ben-Or consensus protocol [2] is a
randomized algorithm for n fault-prone processors to agree on a valid value by
communicating over an asynchronous network. The algorithm proceeds in a se-
quence of stages in each of which nonfaulty processes send and receive messages
based on coin-flips and comparison of values. With probability 1

2n , a stage ends
successfully and all nonfaulty processes agree on a value, and after one com-
munication round of a successful stage the consensus value is disseminated. An
unsuccessful stage is followed by the beginning of the next stage.

The Consensus PTIOA of Figure 1 specifies the termination behavior of the
Ben-Or protocol in a language that is a simple extension of the TIOA Lan-
guage [20]. The stage variable represents the current stage of the protocol. The
phase variable is 0 at the beginning of a stage, 1 when a stage completes suc-
cessfully, and 2 when the protocol terminates at all nonfaulty processes. The try

1 There exists a unique maximal trajectory because the set of trajectories is determin-
istic.

6

action models the computation and communication within a stage. With proba-
bility 1− 1

2n it leads to the next stage and with probability 1
2n it leads to phase

1 of the current stage. The decide action marks the termination of the protocol.
The Trajectories section specifies that along any trajectory, timer increases at
the same rate as real time, and that all other variables remain constant. In gen-
eral, more complicated differential and algebraic equations can be used to specify
the trajectories of a PTIOA. The amount of time that elapses in phase 0 owing
to message delays is modeled by an exponential distribution with parameter λ0.
Specifically, the delay variable is assigned a value chosen from this distribution
and stop when condition together with the precondition of try forces the action
to occur when timer equals delay. Likewise, the amount of time that elapses in
phase 1 is modeled by an exponential distribution with parameter λ1. The choice
of exponential distributions here is somewhat arbitrary; other, more appropriate
distributions can be used as well. The final section of the code specifies the two
tasks of the automaton.

Consensus(n ∈ N, λ0, λ1, p : R)
where λ0, λ1 > 0, 0 < p < 1

Variables:
stage : N initially 1
phase : {0, 1, 2} initially 0
timer : R≥0 initially 0
delay : R≥0 ∪ {∞} initially t0

Actions:
output try, decide

Transitions:
output decide
pre timer = delay ∧ phase = 1
eff timer := 0

phase:= 2
delay:= ∞

output try
pre timer = delay ∧ phase = 0
eff timer := 0

phase:= choose {1,0} with prob { 1
2n , 1− 1

2n }
if phase = 0
then stage:= stage + 1;

delay:= choose Exp(λ0)
else delay:= choose Exp(λ1) fi

Trajectories:
Trajdef normal
stop when timer = delay
evolve d(timer) = 1

Tasks: {try}{decide}

Fig. 1. Randomized consensus with exponential message delays.

Executions and traces. An execution fragment of an PTIOA A is an alter-
nating sequence of actions and trajectories α = τ0a1τ1a2 . . ., where each τi ∈ T ,
ai ∈ A and ai is enabled at τi−1.lstate. The first state of an execution frag-
ment α, α.fstate, is τ0.fstate. An execution fragment α is an execution of A
if α.fstate = x̄. The length of a finite execution fragment α is the number of
actions in α. An execution fragment is closed if it is a finite sequence and the
last trajectory is closed. Given a closed execution fragment α = τ0a1 . . . τn, its
limit state, α.lstate, is τn.lstate and its limit time is defined to be

∑n
i τi.ltime.

Proposition 1 follows from axiom D1.

Proposition 1. In any execution fragment of a closed PTIOA all trajectories,
except possibly the last trajectory (of a finite fragment) are maximal.

The trace of an execution α represents its externally visible part, namely the
external actions and time passage. It is obtained by removing internal actions,
concatenating consecutive trajectories, and replacing all the trajectories with

7

their limit times.
trace(α) = τ.ltime if α = τ,

trace(αaτ) =

trace(α)a τ.ltime if a ∈ E,
trace(α′) (τ ′ _ τ).ltime where α = α′τ ′, otherwise.

Remark 1. Concatenating consecutive trajectories hides information about the
time of occurrence of internal actions in the trace of a PTIOA. In STS [6] there
is no notion of time or trajectories and a trace is obtained by simply removing
the internal (invisible) actions and states from an execution. Hence our notion of
trace differs significantly that in STS. One obvious approach for modeling time
passage in STS, is to treat a transition labeled by a real number r as a time
passage action of duration r. The traces of STS that one would obtain using this
approach would contain information about the point of occurrence of internal
actions over an interval of time. Consequently, proving that the trace function
is measurable for PTIOAs requires more work compared to the corresponding
proof in the STS setting.

Having defined traces and executions, we state the final axiom for PTIOAs. This
axiom is used to prove the measurability of the trace function. Henceforth, we
assume that a PTIOA satisfies D3.

D3 A fragment α with α.ltime < ∞ has finite internal actions occur in α.

We denote the set of execution fragments, the set of executions, and the set of
traces of PTIOA A by FragsA, ExecsA and TracesA. The set of finite fragments,
finite executions and finite traces are denoted by Frags∗A, Execs∗A and Traces∗A.

Composition and Hiding. The composition operation allows a PTIOA repre-
senting a complex system to be constructed by composing PTIOAs representing
smaller subsystems. PTIOA components can communicate discretely through
shared actions. In the future we will extend the framework to support communi-
cation through shared variables. The hiding operation “hides” a set of external
actions by reclassifying them as internal. Thus prevents these actions from being
used for further communication.

Definition 3. Two PTIOAs A1 and A2 are said to be compatible if H1 ∩A2 =
H2 ∩A2 = O1 ∩O2 = ∅.
Definition 4. The composition of two compatible PTIOAs A1 and A2, denoted
by A1||A2, is the tuple A = ((X,FX), x̄, A,R,D, T), where: (1) (X,FX) =
(X1 ×X2,FX1 ⊗FX2), (2) x̄ = (x1, x2), (3) A = A1 ∪A2, I = (I1 ∪ I2) \ (O1 ∪
O2), O = O1∪O2, and H = H1∪H2, (4) R = R1∪R2, (5) D ⊆ X×A×P(X,FX)
is the set of triples ((x1, x2), a, µ1 ⊗ µ2) such that for i ∈ {1, 2} if a ∈ Ai then
(xi, a, µi) ∈ Di, otherwise µi = δxi . (6) T = {τ ∈ trajs(X) | τ ↓ Xi ∈ Ti, i ∈
{1, 2}}.
Proposition 2. Suppose A = A1||A2. For i ∈ {1, 2}, and measurable sets
R ⊆ R≥0, Y ⊆ X, let Ei

R,Y be the subset of Xi such that for each x ∈ Ei
R,Y ,

maxtimeTi
(x) ∈ R and maxstateTi

(x) ∈ Y d Yi. Then,

ER,Y = (E1
R,Y dY1

× Y2)
⋃

(Y1 × E2
R,Y dY2

).

8

Theorem 2. If A1,A2 are compatible PTIOAs then A = A1||A2 is a PTIOA.

The proof of this theorem has several parts and it appears in [24]. Here we check
that A satisfies the axiom M0 in two parts. We require to show that ER,Y

is a FX1 ⊗ FX2-measurable set for any R ⊆ R≥0, Y ⊆ X. This follows from
Proposition 2. Next, we check that for any action a ∈ A, the set of states Ea

where a is enabled in A is FX1 ⊗ FX2-measurable. Suppose a is a local action
of A1, and let E1

a ⊆ X1 be the set of states of A1 where a is enabled. The set
of states of A where a is enabled is Ea = E1

a × X2. A1 satisfies M0, therefore
E1

a ∈ FX1 and Ea = E1
a × X2 ∈ FX1 ⊗ FX2 . For any B ⊆ A, we get EB by

taking countable union of Ea’s over actions in B.

Definition 5. Let A be a PTIOA and O be a set of output tasks of A. Let S =
∪T∈OT , that is, S is the set of all actions in the tasks in O. Then, ActHide(A, S)
is defined as PTIOA B that is identical to A except that OB = OA \ S and
HB = HA ∪ S.

Theorem 3. If A be a PTIOA, O a set of output tasks of A and S = ∪T∈OT .
Then, B = ActHide(A, S) is also a PTIOA.

Theorem 4 states the standard projection property.

Theorem 4. Suppose A = A1||A2. If α is an execution of A1||A2, then for
i ∈ {1, 2}, the restriction of α to states and actions of Ai is an execution for Ai.

4 Probability Measure Over Executions and Traces

In order to construct a probability measure over the set of executions of a given
PTIOA A, we have to first define the measurable sets in ExecsA. The standard
approach for probabilistic automata with discrete state spaces [26,5,4,22] is to de-
fine the σ-algebra as the collection of sets of the form Cα := {α′ | α is a prefix of α′}.
One then defines the probability of each Cα as the product of the probabilities
of the transition sequence in α. It is well known (see, e.g., generalization of
Markov processes in [12]) that this approach does not work when the transitions
give continuous probability distributions because the probability of occurrence
of any particular finite sequence of transitions is typically 0. Instead of consider-
ing a set of executions that extend a single prefix, we consider a set containing
executions that extend an any prefix from a “cylinder” or base of prefixes.

Definition 6. A base is a finite sequence of the form Λ = X0R0X1A1R1 X2A2R2

. . . XmAmRmXm+1, where for every i ∈ {0, . . . ,m + 1}, Xi ∈ FX , Ri is a mea-
surable set in R≥0 and for every i ∈ {1, . . . ,m}, Ai ⊆ A. The length of a base
is the number of sets of actions in the sequence. The basic set corresponding to
a base Λ is a set of execution fragments of A,

CΛ = { τ0a1τ1 . . . τmα ∈ FragsA | τ0.fstate ∈ X0, ∀i ∈ {0, . . . , m} τi.ltime ∈ Ri,

τi.lstate ∈ Xi+1, ∀i ∈ {1, . . . , m}, ai ∈ Ai}. (1)

With some abuse of notation we will abbreviate a base Λ = X0R0X1 . . . Xm

AmRmXm+1, as Λ1Xm+1 or as Λ2AmRmXm+1, where Λ1 and Λ2 are the ap-
propriate prefixes of Λ.

9

Lemma 1. The collection C of all basic sets of A is a semi-ring.

The σ-algebra generated by C is denoted by FFragsA . The collection of sets
obtained by taking the intersection of each element in C with ExecsA is a semi-
ring in ExecsA. We denote the σ-algebra generated by this semi-ring by FExecsA .
We define the measurable space of executions of A to be (ExecsA,FExecsA). Like-
wise, we can define finite basic sets, a σ-algebra on Frags∗A, and a measurable
space (Execs∗A,FExecs∗A

) of finite executions.

Definition 7. A trace base is a finite sequence of the form Λ = R0E1 . . . En

where ∀i ∈ {0, . . . , n−1}, Ri is a measurable set in R≥0 and and ∀j ∈ {1, . . . , n},
Ej ⊆ E. The length of a trace base is the number of sets of actions in the
sequence. The trace basic set corresponding to the base Λ is a set of traces of A
defined as: CΛ = {r0a1r1 . . . anβ ∈ TracesA | ∀i ∈ {0, . . . , n} ri ∈ Ri, ai ∈ Ei} .

The collection D of all trace basic sets of A is a semi-ring. The σ-algebra
FTraces on the set of traces of A is defined as the σ-algebra generated by the
collection of trace basic sets; the measurable space of traces is denoted by
(TracesA,FTracesA).

A Probability Measure Over Executions. In order to obtain a probability
distribution over the set of executions of A, we have to combine A with a sched-
uler that resolves nondeterministic choice over enabled actions. Various types
of schedulers are possible. A scheduler may be oblivious, Markovian, or depen-
dent complete history. Further, a scheduler may choose the an action, from the
set of enabled action, either deterministically or according to some porbability
distribution. In this paper use the task mechanism and an oblivious task sched-
uler [5,4]. An Oblivious scheduler chooses the next action deterministically and
independent of the information produced during an execution.

Definition 8. A task schedule for a closed PTIOA A = ((X,FX), x̄, A,R,D, T)
is a finite or infinite sequence ρ = T1T2 . . . of tasks in R.

A task schedule resolves nondeterministic choices by repeatedly scheduling tasks,
each of which determines at most one transition for the PTIOA. A task schedule
for A determines a probability measure over (ExecsA,FExecsA). We define an
operation that “applies” a task schedule to a PTIOA. Given any task schedule
ρ the corresponding probability distribution apply(δx̄, ρ) over ExecA, is called a
probabilistic execution of A.

For each basic set Λ and each B ⊆ A, we define gΛ,B : Execs∗A → {0, 1} as:

gΛ,B =
{

1 if α.lstate ∈ EB and α ∈ CΛ

0 otherwise,
(2)

Observe that gB,Λ is a measurable function. There are three cases to consider:
if Λ = Y , for some Y ∈ FX , then g−1

B,Λ(1) = CY ∩EB
, if Λ = Y ′RY , for some

Y ′, Y ∈ FX , R ∈ FR≥0 , then g−1
B,Λ(1) = CY ′R(Y ∩EB), and finally if Λ = Λ′CRY ,

for some C ⊆ A, S ∈ FR≥0 , Y ∈ FX , then g−1
B,Λ(1) = CΛ′CR(Y ∩EB).

10

Definition 9. Let A = ((X,FX), x̄, A,R,D, T) be a PTIOA. Given a task
schedule ρ for A and a probability measure µ ∈ P(Execs∗A,FExecs∗A

), µ′ = apply(µ, ρ)
is a probability measure in P(ExecsA,FExecsA), defined recursively as follows:

1. apply(µ, λ) := µ, where λ denotes the empty sequence of tasks.
2. apply(µ, T) := µ′, where T is a task in R and µ′ is defined as follows:

µ′(CY) =
{

1 if x̄ ∈ Y
0 otherwise,

(3)

µ′(CY ′RY) =
{

1 if x̄ ∈ Y ′,maxtime(x) ∈ R,maxstate(x̄) ∈ Y
0 otherwise,

(4)

µ′(CΛBRY) =
∫

α∈Λ

gΛ,B∩T (α)µα.lstate(ER,Y)µ(dα) + µ(CΛBR(Y ∩Ec
T))(5)

3. apply(µ, ρ) := apply(apply(µ, ρ′), T), if ρ is finite and of the form ρ′T .
4. apply(µ, ρ) := limi→∞(µi), where ρ is infinite ρi is the length-i prefix of ρ,

and µi = apply(µ, ρi).

For any task schedule any basic set of the form CY or CY ′RY have measure 0
or 1 depending on the conditions in (3-4). This is a because the initial condition
of a PTIOA is a Dirac distribution at x̄. The probability measure of an arbitrary
basic set CΛBRY can be written as the the sum of probabilities of CΛBR(Y ∩ET)

and CΛBR(Y ∩Ec
T). The former can be further broken down as the “sum” over

all executions α ∈ Λ, of the probability that an action a ∈ B ∩ T can occur at
α.lstate leading to a state in ER,Y . In (5) this sum becomes an integral. The
integral is well defined because the integrand is a product of two measurable
functions g and µα.lstate. Measurability of µα.lstate in Equation (5) follows from
D2, the Giry construction described in 2 and the fact that ER,Y is in FX .

Proposition 3. Let µ be a probability measure on (Execs∗A,FExecs∗A
) and ρ be a

task schedule for A. Then apply(µ, ρ) is a probability measure on (ExecsA,FExecsA).

Example. (continued) A typical execution of Consensus is a sequence α = τ0 try
τ1 try τ2 decide τ3, were each τi, i ∈ {0, . . . , 3}, is a trajectory over which timer increases
monotonically at the same rate as real time and all other variables remain constant.
The corresponding trace is (τ0.ltime)try(τ1.ltime) try (τ2.ltime) decide (τ3.ltime).

Let us examine how Definition 9 assigns probability measures to the cones generated
by the Consensus automaton. A state of Consensus is an ordered 4-tuple specifying the
values of the 4 variables in the order in which they appear in Figure 1. So, x̄ =
(1, 0, 0, t0) and we define x̄′ = maxstate(x̄) = (1, 0, t0, t0). Given a state x, we refer to
the value of variable var at x by x.var.

Suppose µ1 = apply(δx̄, λ), where λ is the empty task schedule, Λ1 = {x̄}R0{x̄′},
X0 ∈ FX , such that x̄ ∈ X0. Then, µ1(C{X0) = 1 and µ1(CΛ1) = 1. For any base
Λ1A1R1X2 that extends Λ1, µ1(CΛ1A1R1X2) = 0.

Next, suppose µ2 = apply(µ1, {try}). Let Λ2 = Λ1{try}R1X2, Λ′2 = Λ1{try}R1X
′
2,

where R1 = [0, r1] for some r1 ∈ R≥0, X2 = {x | x.stage = 2, x.phase = 0, x.timer =
x.delay}, and X ′

2 = {x | x.stage = 0, x.phase = 1, x.timer = x.delay}. Then,

µ2(CΛ2) =

Z
s∈G

µs(ER1,X2)µ1(dα) =
1

2n
(1− eλ0r1),

11

And likewise µ2(CΛ2) is
`
1− 1

2n

´
(1−eλ0r1). The integrals are over G := {x | gΛ1,{a}(x)}.

Since µ1(α) = 1 for a single execution which is a trajectory starting from x̄ and ending
at x̄′, in this case the integrals reduce to µx̄′(ER1,X2) and µx̄′(ER1,X′

2
) , respectively.

From the above we can deduce that µ2(CΛ1) = 1.
Consider another step. Suppose µ3 = apply(µ2, {decide}) and R2 = [0, r2], and

X3 = {x | x.stage = 0, x.phase = 2, x.timer = x.delay}, where r2 ∈ R≥0. From the
first part of (5) we can calculate µ3(CΛ′2{decide}R2X3) =

`
1− 1

2n

´
(1− eλ0r1)(1− eλ1r2),

and from the second part of (5) µ3(CΛ2) = µ2(CΛ2) = 1
2n (1− eλar1).

Trace Distributions. For any probabilistic execution µ of a PTIOA, we want there to
be a unique corresponding measure on the space of traces. Formally, the image measure
of µ with respect to the trace function should be well defined. Therefore we require
the function trace : (Execs,FExecs) → (Traces,FTraces) to be measurable. Consider a
simple trace base [0, r]{a}, where r is a positive real and a is an external action. Then,
E = trace−1(C[0,r]{a}) is the set of all finite executions of the form τ1h1τ2h2 . . . hn−1τna,
such that all the hi’s are internal actions and

Pn
i=1 τi.ltime ≤ r. For the trace function

to be measurable E must be in FExecs, that is, E should be expressible as a countable
union of basic sets. Showing this requires some work because the condition on the sum
of the τi’s makes them interdependent. In what follows, we state and explain the key
lemmas that go into proving this fact.

A trace base Γ of the form [0, b0)E1[0, b1)E2 . . . En, where each bi ∈ R≥0 and each
Ei ⊆ E, is said to be a canonical trace base. Lemma 2 states that for proving measur-
ability of trace, it suffices to show that for any canonical trace base Γ , trace−1(CΓ) is
in the σ-algebra of executions.

Lemma 2. Consider a function f : (Execs,FExecs) → (Traces,FTraces). If f−1(CΓ) ∈
FExecs for every canonical trace base Γ then f is measurable.

The main construction in the proof, as provided by the next definition, is to express E
as the countable union of a disjoint basic sets that partition [0, r] into several intervals
with dyadic rational endpoints. A base is then constructed by inserting internal actions
in between the successive sub-intervals.

Definition 10. Let Γ = [0, 1)E1 be a canonical trace base of unit length and n, k ∈ N,
such that 2k > n. For a set of indices j1, . . . , jn ∈ N, satisfying j1 ≤ 2k − n − 1, and

for each i = 2 . . . n, ji ≤ 2k −
“
1 + n +

Pi−1
s=1 js

”
, we define:

∆k
j1,...,jn

:= X[
j1
2k

,
j1 + 1

2k
)XH[

j2
2k

,
j2 + 1

2k
)X . . . H[

jn

2k
,
jn + 1

2k
)X

H[0, 1−
n +

Pn
s=1 js

2k
)XE1[0,∞)X.

The rational n-partition of Γ , denoted by Qn, is defined as follows:

Qn := lim
k→∞

[
j1

[
j2

. . .
[
jn

C∆k
j1,...,jn

Qn is a union over all possible choices of n dyadic rationals in [0, 1), and therefore
is a countable union. Geometrically, the (n + 1) real intervals in each basic set of
Qn, define a rectangle in Rn+1; the rectangles corresponding to distinct basic sets are
disjoint and their union is an approximation of the unit simplex in Rn+1. Using this
construction we are able to prove the next Lemma.

12

Lemma 3. If Γ is a canonical trace base then trace−1(CΓ) =
S∞

n=1 Qn.

From Lemmas 3 and 2, the next lemma follows immediately, and the measurability of
the trace function is a corollary of this lemma.

Lemma 4. trace−1(Γ) for a trace base Γ is a countable union of disjoint basic sets.

The trace distribution corresponding to a probabilistic execution µρ given by a task
schedule ρ, is written as tdist(ρ), and it defined as the image measure of µρ under the
trace function. More formally, tdist(ρ) : TracesA → [0, 1], is defined as tdist(ρ)(E) =
µρ(trace−1(E)), for any measurable set E ∈ FTracesA . Note that trace−1(E) ∈ FExecsA

because trace is a measurable function. The set of trace distributions of A, tdists(A)
is the set of tdist(ρ)’s for any task schedule ρ of A.

We define a notion of external behavior for PTIOAs based on trace distributions,
and show that the implementation relation based on this external behavior is com-
positional. We formulate the external behavior of a A as a mapping from possible
“environments” for A to sets of trace distributions that can arise when A is composed
with the given environment. Theorem thm:compositionality states that PTIOAs are
compositional with respect to external behavior.

Definition 11. An environment for PTIOA A is a PTIOA E such that A and E are
compatible and their composition A||E is closed. The external behavior of a PTIOA A,
written as extbehA, is defined as a function that maps each environment PTIOA E for
A to the set of trace distributions tdists(A||E).

Definition 12. Two PTIOAs A1 and A2 are comparable if E1 = E2. If A1 and A2

are comparable then A1 is said to implement A2, written as A1 ≤ A2 if, for every
environment PTIOA E for both A1 and A2, extbehA1(E) ⊆ extbehA2(E).

Theorem 5. Suppose A1, A2 and B are PTIOAs, where A1 and A2 are comparable
and A1 ≤ A2. If B is compatible with A1 and A2 then A1||B ≤ A2||B.

5 Generalized PTIOAs and Local Schedulers

So far, we have restricted PTIOAs to have deterministic trajectories, and we have not
allowed choice between enabled actions and non-trivial trajectories (axiom D1). In this
section, relax these assumptions by adding local schedulers.

Definition 13. A Generalized PTIOA is a tuple A = ((X,FX), x̄, A,R,D, T), where
the first five components are the same as in Definition 2. The set T is not necessarily
deterministic and A does not necessarily satisfy D1.

Thus, from a given state x ∈ X of a generalized PTIOA, A there may be nonde-
terministic choice of actions that could be performed and also choice of distinct tra-
jectories starting from x. A local scheduler for generalized PTIOA A, is a PTIOA
S = ((X,FX), x̄, A,R,D′, T ′) that is identical to A except that D′ ⊆ D and T ′ ⊆ T .
A local scheduler S satisfies D1 and has deterministic trajectories.

A probabilistic system captures the notion of possible ways of resolving the non-
determinism in a generalized PTIOA. Formally, a probabilistic-system is a pair M =
(A,S), where A is a generalized PTIOA and S is a set of local schedulers for A. An en-
vironment for M is any PTIOA E such that A||E is closed. The notions of probabilistic

13

execution and trace distribution defined earlier for PTIOAs, carry over naturally to
generalized PTIOAs. A probabilistic execution for M is defined to be any probabilistic
execution of S, for any S ∈ S. For probabilistic system M = (A,S), we define the
external behavior of M to be the total function extbehM that maps each environment
PTIOA E for M to the set ∪S′∈Stdists(S′||E). Thus for each environment, we consider
the set of trace distributions that arise from the choices of the local scheduler of M and
the task scheduler ρ. This leads to a notion of implementation of probabilistic systems,
similar to that of PTIOAs.

Definition 14. Let M1 = (A1,S1) and M2 = (A2,S2) be probabilistic systems such
that A1 and A2 are comparable generalized PTIOAs. Then, M1 is said to implement
M2 if for every environment E of M1 and M2, extbehM1(E) ⊆ extbehM2(E).

Two probabilistic systems M1 = (A1,S1) and M2 = (A2,S2) are compatible if A1

and A2 are compatible, and their compositionM1||M2 is defined as (A1||A2,S), where
S is the set of local schedulers {S1||S2 | S1 ∈ S1 and S2 ∈ S2 }. Theorem 6 gives the
following sufficient condition for implementation of probabilistic systems: each local
schedular for the concrete probabilistic system must always correspond to the same
local scheduler for the abstract.

Theorem 6. If M1 = (A1,S1), M2 = (A2,S2) are comparable and there exists f :
S1 → S2, such that for all S1 ∈ S1, S1 implements f(S1), then M1 implements M2.

Conclusions. In this paper, we have introduced PTIOA—a compositional framework
for modelling and verifying discretely communicating probabilistic hybrid systems.
PTIOAs support continuous distributions, nondeterminism, and probabilistic tran-
sitions. Using local and task schedulers and two key measurability assumptions we
have constructed the probability measures over the space of executions and traces of
PTIOAs. We have defined external behavior of a PTIOA as a mapping from closing
environment PTIOAs to trace distributions. We have shown that this notion of exter-
nal behavior is compositional. In the future we will extend PTIOAs to support shared
variables and develop new proof techniques for verification of quantitative properties
such as, probabilistic safety, and approximate implementations.

Acknowledgments We have immensely benefited from discussing this work with San-
joy Mitter. We also thank the anonymous referees for their valuable comments on a
previous version of this paper.

References

1. C. Baier, F. Ciesinski, and M. Grer. ProbMela and model checking markov de-
cision processes. In ACM Performance Evaluation Review on Performance and
Verification, 2006. to appear.

2. M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols. In PODC‘83, pages 27–30, 1983.

3. M. Bujorianu and J. Lygeros. General stochastic hybrid systems: Modelling and
optimal control. In IEEE Conference on Decision and Control, December 2004.

4. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Task-structured probabilistic I/O automata. Tech. Report MIT-CSAIL-TR-2006-
060, MIT, Cambridge, 2006.

5. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Time-bounded task-PIOAs: a framework for analyzing security protocols. In DISC
’06, 2006.

14

6. S. Cattani, R. Segala, M. Z. Kwiatkowska, and G. Norman. Stochastic transition
systems for continuous state spaces and non-determinism. In FoSSaCS, pages
125–139, 2005.

7. D. Chatterjee and D. Liberzon. Stability analysis of deterministic and stochas-
tic switched systems via a comparison principle and multiple lyapunov functions.
SIAM Journal on Control and Optimization, 2005.

8. L. Cheung. Reconciling nondeterministic and probabilistic choices. PhD thesis,
ICIS, Radboud University Nijmegen, The Netherlands, 2006.

9. V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and
cocongruence for probabilistic systems. Information and Computation, Special
issue for selected papers from CMCS04, 2005.

10. M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.
11. L. de Alfero. Formal Verification of Probabilistic Systems. PhD thesis, Stanford

University, CA, 1997. Technical Report STAN-CS-TR-98-1601.
12. J. L. Doob. Stochastic Processes. John Wiley & Sons, Inc., New York, 1953.
13. R. M. Dudley. Real Analysis and Probability. Wadsworth, Belmont, Calif, 1989.
14. S. Smolka E. Stark, R. Cleaveland. A process-algebraic language for probabilistic

I/O automata. In Proc. CONCUR 03, LNCS 2761:189–203, 2003.
15. M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,

Categorical Aspects ofTopology and Analysis, LNM 915:68–85, 1981.
16. M. Hennessy and T. Regan. A process algebra for timed systems. Information and

Computation, 117:221–239, 1995.
17. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality.

Springer, 2002.
18. J. P. Hespanha. Stochastic hybrid systems: Application to communication net-

works. In HSCC 2004, LNCS 2993:387 – 401, 2004.
19. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for

automatic verification of probabilistic systems. In TACAS’06, LNCS 3920, 2006.
20. D. Kaynar, N. Lynch, S. Mitra, and S. Garland. TIOA Language. MIT Computer

Science and Artificial Intelligence Laboratory, Cambridge, MA, 2005.
21. D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O

Automata. Synthesis Lectures on Computer Science. Morgan Claypool, 2005.
22. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking

for probabilistic timed automata. In FORMATS’04, LNCS 3253:293–308. 2004.
23. M. W. Mislove, J. Ouaknine, and J. Worrell. Axioms for probability and nonde-

terminism. ENTCS 96(9):7–28, 2004.
24. S. Mitra and N. Lynch. Trace-based Semantics for Probabilistic Timed I/O Au-

tomata Submitted for review. Full version http://theory.lcs.mit.edu/∼mitras/

research/PTIOA06-full.pdf

25. S. Mitra and N. Lynch Approximate simulations for task-structured probabilistic
I/O automata. In LICS Workshop on Probabilistic Automata and Logics, 2006.

26. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, MIT, 1995.

27. E. Stark. On behavior equivalence for probabilistic I/O automata and its relation-
ship to probabilistic bisimulation. Journal of Automata, Languages, and Combi-
natorics, 8(2):361–395, 2003.

28. F. van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain theory, testing
and simulation for labelled markov processes. Theoretical Computer Science, 2005.

http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf
http://theory.lcs.mit.edu/~mitras/research/PTIOA06-full.pdf

	Trace-based Semantics for Probabilistic Timed I/O Automata
	Sayan Mitra and Nancy Lynch
	1 Introduction
	2 Preliminaries
	3 Probabilistic Timed I/O Automata
	4 Probability Measure Over Executions and Traces
	5 Generalized PTIOAs and Local Schedulers

