
Probabilistic Timed I/O Automata with
Continuous State Spaces?

Sayan Mitra and Nancy Lynch

Computer Science and AI Laboratory,
Massachusetts Inst. of Technology,

32 Vassar Street, Cambridge, MA 02139
{lynch, mitras}@csail.mit.edu

Abstract. We present Piecewise Deterministic Timed I/O Automata
(PDTIOA): a new continuous state automaton model that allows both
nondeterministic and probabilistic discrete transitions, along with con-
tinuous deterministic trajectories. We use a partition of actions, called
tasks and a task scheduler to resolve nondeterministic choice over actions.
We define a topology on the set of trajectories and make a key continuity
assumption about maximal length of trajectories. Together, these struc-
tures enable us to construct a natural probability measure over the space
of executions and the space of traces. The resulting PDTIOA framework
yields simple notions of external behavior and implementation, and has
simple compositionality properties. By introducing local schedulers, we
generalize PDTIOAs to allow nondeterministic trajectories and stopping
times.

1 Introduction

Probabilistic state machine models provide a mathematical framework for ana-
lyzing computing systems that rely on randomization and those that have to con-
tend with uncertainties. Frameworks supporting models with continuous state
spaces and continuous probability distributions are necessary to capture inter-
action of software components with physical processes. For example, a real-time
protocol communicating over a channel that delays messages according to a
Gaussian distribution or a mobile network routing algorithm that relies on inac-
curate position information of participating nodes. Further, in order to abstractly
specify concurrent systems, such a modelling framework should allow both non-
deterministic and stochastic behavior. For a discussion on the importance of
allowing nondeterminism in modelling, we refer the reader to Chapter 4 of [11].

Several continuous state probabilistic models have been proposed in the liter-
ature. For instance, Labelled Markov Processes [5] extend traditional transition
systems to continuous state spaces and transitions with continuous distributions.
In Stochastic Hybrid Systems [12,1] transitions are brought about by discrete or
continuous time Markov chains, and the trajectories are described by stochastic

? Supported by the MURI project:DARPA/AFOSR MURI F49620-02-1-0325 grant.

differential equations. In Piecewise Deterministic Markov Processes [6] the time
of occurrence and the target states of discrete state transitions are chosen prob-
abilistically; the state evolves deterministically in the intervening time between
transitions. The above models do not allow internal nondeterminism, that is,
choice of an action uniquely determines a transition which gives a probability
distribution over the state space. Modeling frameworks that support composition
of automata have to resolve external nondeterminism: the choice over enabled
actions of automata running in parallel. This nondeterminism can be replaced
by a race between the automata [8,19], else it can be explicitly resolved by a
scheduler [3]. Nondeterminism can also be allowed by treating the probabilistic
and nondeterministic transitions as separate kinds of objects [11].

Our goal is to develop a modelling framework that allows probabilistic and
nondeterministic behavior over continuous state spaces, and to devise a set of
proof techniques for analysis of such models. Of particular interest are the tech-
niques, for establishing safety with high probability, almost sure stability [4,14]
invariant distributions, and abstraction relationships through probabilistic simu-
lations. Towards this broader goal, in this paper we first develop the basic theory
of the Piecewise Deterministic Timed I/O Automaton (PDTIOA). PDTIOA is
an interactive state machine model with continuous state space, in which the
probabilistic and nondeterministic choices are restricted to the discrete tran-
sitions and the trajectories are deterministic. Thus, PDTIOA generalizes the
Probabilistic I/O Automaton model (PIOA) of [18,17] by allowing continuous
state spaces and distributions. It also generalizes the class Timed I/O Automata
(TIOA) [13] with deterministic trajectories, by adding probabilistic transitions.
It is worth emphasizing that apart from determinism, we impose only mild con-
tinuity restrictions on continuous dynamics of PDTIOAs. In a later section we
relax the deterministic trajectories requirement and show how nondeterministic
trajectories and stopping times can be included in this modelling framework.

The first step in our development is to define a natural probability measure
over the space of executions of a PDTIOA. We use a partition over actions, called
tasks, and an oblivious task scheduler (as in [2]) to resolve the nondeterministic
choice over actions. A PDTIOA combined with a task scheduler is an entity
that has purely probabilistic behavior, that is, it has no nondeterminism. Thus,
we can assign probability measures to its executions. As we are dealing with
continuous distributions and state spaces, measurability of sets of executions
plays an important role. We cover the essential mathematical groundwork in
Section 2 and define a topology on the set of trajectories of a PDTIOA. In
Section 3 we introduce the PDTIOA model and construct a σ-algebra on the
set of executions and a probability measure on this space. The construction of
this measure relies on integrating a certain function over the space of executions.
In order for this integral to be well defined, the function must be measurable
and this leads us to the key maximal continuity assumption about the set of
trajectories of a PDTIOA. The assumption roughly states that if τ is the longest
trajectory starting from some state x, then the longest trajectories starting from
states near x are near τ ; here nearness means containment in the open sets

of the respective topologies. A probability measure on the space of executions
defines a probability measure on the space of traces, provided that the trace
function is measurable. We show that this is indeed the case; we call a probability
distribution over traces a trace distribution.

We define parallel composition and hiding operations for PDTIOAs in Sec-
tion 4, and show that the class of PDTIOA is closed under these operations. We
use a simple, but intuitive notion of external behavior for PDTIOAs: for a given
automaton A, its external behavior is a function that maps each closing envi-
ronment E of A to the set of all possible trace distributions of the composition
of A and E . We show that the implementation relation defined in terms of the
above notion of external behavior is compositional. Indeed, considering closed
automata and using this functional definition of external behavior lets us circum-
vent some of the difficulties that underlie compositionality in the probabilistic
setting. However, viewing external behavior as a mapping from environments as
opposed to a set of trace distributions is natural in many applications, includ-
ing analysis of security protocols [2]. Finally, in Section 5 we obtain the Gen-
eralized PDTIOA model by relaxing some of the determinism requirements of
PDTIOA. This model is capable of capturing nondeterministic trajectories and
stopping times using local schedulers for automata components. We illustrate
the PDTIOA modelling framework with a simple leaky bucket example taken
from [11]. We give proof sketches for most of the important results; complete
proofs appear in Appendix A.

PDTIOAs are similar to the Stochastic Transition Systems (STS) of [3]; the
following are important factors distinguishing the two frameworks: (a) general
history-dependent, randomized schedulers are used for resolution of nondeter-
minism in STS1. In contrast, in this paper we focus our attention on a simple
class of oblivious schedulers for PDTIOAs. (b) In STS there is no notion of time
or trajectories, instead state changes through labelled transitions. One obvious
approach for modeling a time passage, is to treat it as a transition labeled by
the appropriate duration. (c) The above approach, however, leads to a situation
where from the trace of any execution one can determine the exact points in
time where internal actions occur. In PDTIOA, traces hide information about
the time of occurrence of internal actions in an interval, because trajectories
separated by an internal action (in an execution) are concatenated in the cor-
responding trace. Consequently, proving that the trace function is measurable
turns out to be more involved for PDTIOAs compared to the corresponding
proof in the STS setting.

2 Mathematical preliminaries

In this section, we define several operations on trajectories, a topology on a set
of trajectories that has desirable properties, and we the review basic concepts
from measure theory. We refer the reader to the standard textbooks, e.g. [16,7],
1 Indeed, all such schedulers are not well behaved and the authors of [3] characterize

the subclass that does produce measurable probabilistic executions.

for a comprehensive treatment of the subject; [15] gives a carefully tailored in-
troduction for applications in concurrency theory.

Trajectories. We denote the domain of a function f by f.dom. For a set S ⊆
f.dom, we write f d S for the restriction of f to S. If f is a function whose
range is a set containing Y , then we write f ↓ Y for the function g : f.dom → Y
defined as g(c) := f(c) d Y , for every c ∈ g.dom.

Let (X, T) be a Hausdorff space. Throughout this paper, we will refer to X
as the state space and elements of X as states. We define T = R≥0 ∪ {∞} to be
the time axis and define a topology on T by declaring the following sets to be
open: (a, b), [0, a), (a,∞] for any a < b, a, b ∈ T, and any union of segments of
this type. For any J ⊆ T we define J + t = {t′ + t | t′ ∈ J}. A trajectory in X is
a continuous function τ : J → X, where J is a left closed interval in T with left
endpoint 0. A trajectory with the single point 0 as its domain mapping to the
state x, is called the point trajectory at x and is written as ℘(x). A trajectory is
finite and closed if τ.dom is finite and right closed, respectively. The first state
of τ , τ.fstate is τ(0). The limit time of a trajectory τ is sup{τ.dom} and is
written as τ.ltime. If τ is closed and finite then the limit state of τ , τ.lstate, is
τ(τ.ltime).

Given a trajectory τ and t ∈ T, the function (τ + t) : (τ.dom + t) → X is
defined as (τ + t)(t′) := τ(t′− t), for each t′ ∈ (τ.dom+ t). Given two trajectories
τ1 and τ2, τ1 is a prefix of τ2, written as τ1 ≤ τ2, if τ1 = τ2 d τ1.dom. Also, τ1 is a
suffix of τ2 if τ1 = (τ2 d [t,∞])−t, for some t ∈ τ2.dom. If τ1 is a closed trajectory
with τ1.ltime = t and τ2.fstate = τ1.lstate, then the function τ1

_ τ2 : τ1.dom∪
(τ2.dom + t) → X is defined as τ1(t) if t ≤ u and τ2(t − u) otherwise. Given a
set of trajectories T , for any x ∈ X we define T (x) = {τ ∈ T | τ.fstate = x}. A
set of trajectories T is said to be deterministic if for any x ∈ X, if τ1, τ2 ∈ T (x)
then either τ1 ≤ τ2 or τ2 ≤ τ1. Given a set of trajectories T for X, we define a
function maxT : X → 2T as maxT (x) := {τ ∈ T (x) | @τ ′ ∈ T (x), τ < τ ′}. The
next proposition follows immediately from observing that if τ1, τ2 ∈ max(x) and
τ1 6= τ2, then either τ1 < τ2 or τ2 < τ1.

Proposition 1. If T is deterministic, then max(x) is singleton for any x ∈ X.

In this paper, all sets of trajectories are closed under prefix, suffix, concatenation
and except for Section 5, they are also deterministic. For notational convenience
we redefine max : X → T as the function that gives the single maximal tra-
jectory from state x. Given T , we define the set X̄T , such that x ∈ X̄T if
and only if max(x) is finite and closed. We define the functions maxtimeT :
X̄T → R≥0 and maxstateT : X̄T → X as maxtimeT (x) := maxT (x).ltime and
maxstateT (x) := max(x).lstate, respectively. If the set T is clear from context,
we drop the suffix T from max, maxstate and maxtime.

A topology on the set of trajectories. In developing the theory we will need
to impose certain continuity assumptions on the functions defined earlier on the
set of trajectories. Therefore, we have to define a topology on this set. A natural

topology on a given set of trajectories T is generated by the basis elements of
the form Bτ := {τ ′ | τ ≤ τ ′}, for each τ ∈ T . The topology generated by this
basis, however, does not have the desirable Hausdorff property.

We define the a basis element to be a set of trajectories contained within a
finite concatenation of “open cylinders” of rational lengths. Intuitively, a basis
element containing a trajectory τ , over-approximates the states reached by τ . A
finer over-approximation is be obtained by a smaller basis element, one defined
by shorter and smaller open cylinders.

Definition 1. Let (X, T) be a Hausdorff space and T be a set of trajectories for
X. A trajectory base is a finite sequence θ = (q1, U1)(q2, U2) . . . (qm, Um), where
each qi ∈ Q≥0 ∪ {∞}, qi < qi+1 and Ui is an open set in T . A trajectory basis
element Bθ corresponding to the above trajectory base θ is the set of trajectories:

Bθ =

8<:
{τ ∈ T | τ.dom ⊂ [0, q1], ∀t ∈ τ.dom, τ(t) ∈ U1}, if m = 1,

τ ∈ T qm−1 < τ.ltime < qm, ∀ t ∈ [0, q1], τ(t) ∈ U1,
∀i ∈ {1, . . . , m− 1},∀ t ∈ τ.dom ∩ (qi, qi+1], τ(t) ∈ Ui+1

ff
if m > 1.

Any trajectory τ ∈ T is in the basis element B(∞,X). For any τ ∈ Bθ1 ∩Bθ2 ,
we can construct a basis element θ3 by sorting the rationals in θ1 and θ2 and
intersecting the appropriate open sets, such that τ ∈ Bθ3 ⊆ Bθ1 ∩ Bθ2 . Thus
the collection of trajectory bases in Definition 1 defines a basis for a topology
on T . In fact, the generated topological space (T ,T) is a Hausdorff space. A
proof of this fact is given in Appendix A.1. Having defined a topological space
of trajectories, we then state our key continuity assumption.

Theorem 1. The collection B of all trajectory basis elements is a basis for a
topology on T . If the topology generated is T then (T ,T) is a Hausdorff space.

Definition 2. A set of trajectories T is said to be maximally continuous if the
functions max and maxstate are continuous.

Continuity of maxtime follows from continuity of max. Intuitively, maximal
continuity states that the maximal trajectories starting from nearby states are
close, and also that if the maximal trajectories starting from nearby states are
closed and finite then the limiting states of those trajectories are close.

Measurability and measures. We denote a measurable space by (X,FX),
where X is a set and FX is a σ-algebra over X. Given a topological space
(X, T), there exists a smallest σ-algebra containing T and it is called the Borel
σ-algebra. The product of two measurable spaces (X,FX) and (Y,FY) is defined
as the measurable space (X × Y,FX ⊗ FY), where FX ⊗ FY is the smallest
σ-algebra generated by sets of the form A×B = {(x, y) | x ∈ A, y ∈ B}, for all
A ∈ FX , B ∈ FY .

A measure over (X,FX) is a function µ : FX → R≥0, such that µ(Ø) = 0
and for every countable collection of disjoint sets {Ai}i∈I in FX , µ(∪i∈IAi) =∑

i∈I µ(Ai). A probability measure (resp. sub-probability measure) over (X,FX)
is a measure µ such that µ(X) = 1 (µ(X) ≤ 1). The set of probability measures

and the set of sub-probability measures over (X,FX) are denoted by P(X,FX)
and SP (X,FX). A function f : (X,FX) → (Y,FY) is said to be measurable if
f−1(E) ∈ FX for every E ∈ FY . The indicator function of a set A ⊆ X, is
defined as IA(x) = 1 if x ∈ A, and 0 otherwise. If A is a measurable set, then
IA is a measurable function. If f : (X,FX) → (Y,FY) is a measurable function,
and µ is a measure on X, then the image measure of µ under f is a measure ϕ
on Y defined as ϕ(E) = µ(f−1(E)), for each E ∈ FY .

A collection C of subsets of X, is a semi-ring if X, Ø ∈ C , A,B ∈ C implies
that A ∩ B ∈ C , and A,B ∈ C implies that there exists a finite collection of
disjoint sets {C}n

i=1 in C such that A \ B = ∪n
i=1Ci. We will use the following

theorem to constructing measures of the space of executions of an automaton:

Theorem 2. A probability measure defined over a semi-ring C can be uniquely
extended to a probability measure over the σ-algebra generated by C .

In constructing measures over the space of executions of a PDTIOA, we
have to integrate over the space of probability distributions over the state space
X, therefore we need to define a σ-algebra over P(X,FX). For this, we use
the following construction due to Giry [9]: for each A ∈ FX , let the function
pA : P(X,FX) → [0, 1] be defined as pA(µ) = µ(A). The σ-algebra on P(X,FX),
then is the smallest σ-algebra such that all pA’s are measurable.

3 Piecewise Deterministic Timed I/O Automata

In this section we present the basic theory of Piecewise Deterministic Timed I/O
Automaton (PDTIOA).

Definition 3. A Piecewise Deterministic TIOA(PDTIOA) is a tuple
A = ((X,FX), x̄, A,R,D, T) where: (1) (X,FX) is a measurable space; X is
Hausdorff. (2) x̄ ∈ X is the start state. (3) A is a countable set, called the set of
actions. A is partitioned into internal H, input I and output O actions. The set
L = O∪H is called the set of local actions and the set E = O∪I is called the set
of external actions. (4) R is an equivalence relation on L; equivalence classes of
R are called tasks. (5) D ⊆ X × A × P(X,FX) is called the set of transitions
and it satisfies: M1 For all a ∈ A, {x | ∃µ, (x, a, µ) ∈ D} ∈ FX . (6) T is a set
of maximally continuous, deterministic trajectories for X that is closed under
prefix, suffix, concatenation and contains ℘(x) for every x ∈ X. M2 The set T
should be such that X̄T is measurable.

In addition, A satisfies the following axioms:

D0 (Input action enabling) For all x ∈ X, a ∈ I, there exists µ ∈ P(X,FX)
such that (x, a, µ) ∈ D.

D1 (Time-action determinism) For all x ∈ X at most one of the following con-
ditions may hold: (1) there exists a ∈ L that is enabled at x (2) there exists
a non-point trajectory τ ∈ T with τ.fstate = x.

D2 (Task determinism) For all x ∈ X, if a1, a2 ∈ T , for some task T and
µ1, µ2 ∈ P(X,FX), such that (x, a1, µ1) ∈ D and (x, a2, µ2) ∈ D then a1 =
a2 and µ1 = µ2.

D3 Over any finite time interval at most finite internal actions may occur.

An action a is said to be enabled at x if there exists µ ∈ P(X,FX) such
that (x, a, µ) ∈ D. In short, we write this as x

a→ µ. If x
a→ µ, then we write

µa,x in place of µ and if a single action is enabled at x then we write µx in-
stead of µa,x. We define the function enabled : X → 2L as enabled(x) := {a ∈
L | a is enabled at x}, for any x ∈ X. It can be checked easily that enabled is a
measurable function.

Discussion on PDTIOA. D1-2 make A piecewise deterministic. That is, at
any state x either some local action can occur or some non-zero amount of time
can elapse, not both. In the former case, for any given task a unique transition is
enabled. and in the latter case, a trajectory is uniquely determined by the amount
of time that elapses. D1 is similar to the maximal progress assumption found
in real-time process algebras, e.g. [10]. It prevents, for example, an action to
remain enabled while time elapses. In Section 5 we relax this assumption to allow
both nondeterministic trajectories and stopping times. D0 is a non-blocking
assumption standard in I/O automata literature. D3 helps us avoid certain
technical difficulties is constructing the set of traces from a given execution. The
assumption that the set of actions A is countable is a non-essential simplification
with little loss of generality. In PDTIOAs time passage is modeled by trajectories,
so this assumption conforms with the conventional use of labelled transitions.
Wherever necessary, we assume that A is equipped with the discrete topology
and that every subset of A is measurable. The closure assumptions on T hold
trivially for time invariant systems that we are interested in. The determinism
assumption is later relaxed to include nondeterministic trajectories but we still
exclude trajectories where stochastic choices are made continuously over a an
interval of time, e.g., Brownian motion. This will be investigated in the future.

3.1 Executions and traces

An execution fragment of an PDTIOA A is an alternating sequence of actions
and trajectories α = τ0a1τ1a2 . . ., where each τi ∈ T , each ai ∈ A and ai is
enabled at τi−1.lstate. The first state of an execution fragment α, α.fstate, is
τ0.fstate. An execution fragment α is an execution of A if α.fstate = x̄. The
length of a finite execution fragment α is the number of actions in α. An execution
fragment is closed if it is a finite sequence and last trajectory is closed. Given
a closed execution fragment α = τ0a1 . . . τn, its limit state, α.lstate, is τn.lstate
and its limit time is defined as

∑n
i τi.ltime. The next proposition is a direct

consequence of D1.

Proposition 2. Non-final trajectories in an execution are finite, closed and
maximal.

The trace of an execution α is represents its externally visible part, namely
the external actions and time passage; it is inductively defined as:

trace(α) = τ.ltime if α = τ,

trace(αaτ) =

trace(α)a τ.ltime if a ∈ E,
trace(α′) (τ ′ _ τ).ltime where α = α′τ ′, otherwise.

Informally, the trace of α is obtained by removing all internal actions from α,
concatenating the resulting consecutive trajectories in α, and replacing all the
trajectories with their limit times. Concatenating consecutive trajectories hides
information about the point of occurrence of internal actions in the trace of a
PDTIOA. The importance of this will be clear in Section 3.4 where we prove
the measurability of the trace function. Note that this definition for trace differs
significantly from the one used in [3].

We denote the set of execution fragments, the set of executions, and the set of
traces of PDTIOA A by FragsA, ExecsA and TracesA. The set of finite fragments,
finite executions and finite traces are denoted by Frags∗A, Execs∗A and Traces∗A.

Example 1. The leaky bucket access control mechanism is used in ATM networks
to negotiate the data-rate between a sender and the service provider. As data
arrives at the ATM switch they flow into a ’bucket’ which drains at bucket rate.
If the data arrives faster than the bucket is draining eventually the bucket will
overflow. The leaky bucket model of Figure 1 is the PDTIOA version of the
mechanism presented in [11].

Automaton ATM has two queues dataQ and tokenQ, a clock clockA and a
deadline variable delayA. The dataQ buffers bits arriving with the Data action.
Data bits have to wait in the buffer until service is available. Availability of
service is represented by tokens which is obtained through the input action Token.
If dataQ and tokenQ are both nonempty, then one bit of data is ready to be
sent. The service time for sending is exponentially distributed with parameter
λA. This is captured by the ResetA subroutine, which resets clockA and chooses
the next sending delay from an exponential distribution with parameter λA.
Notice that if dataQ (or tokenQ) empties out then delayA is set to ∞ until new
data (resp token) arrives.

The arrival of data bits and tokens through Data and Token actions are
modeled by two separate automata DATASRC and TOKENSRC (see Figure 2 in
Appendix B). Following the model in [11], we assume that data bits and tokens
possess exponentially distributed inter-arrival times, given by rate parameters
λD and λT and that all the clocks are reset after each discrete transition. A
typical execution of ATM is a sequence α = τ0 Data(1) τ1 Token τ2 Token τ3

Send(1) τ4 Data(0) τ5 . . ., were each τi, i ∈ {0, . . . , 5}, is a trajectory over which
clockA increase monotonically at a constant rate of 1 and all other variables
remain constant.

3.2 σ-Algebra of Executions and Traces

In order to construct a probability measure over the set of executions of a
given PDTIOAs A, we have to first define the measurable sets in ExecsA. In

ATM(λA) where λA ∈ R+
Variables:

clockA : R+ initially 0
delayA : R+ initially ∞
dataQ, tokenQ: queue of {0,1} initially ⊥

Actions:
output Send(m) m ∈ {0,1}
input Token, Data(m) m ∈ {0,1}

Transitions:
Send(m)
pre clockA = delayA ∧m = head(dataQ)
eff dequeue(dataQ); dequeue(tokenQ)

if ¬ empty(dataQ) ∧¬ empty(tokenQ)
ResetA

else delayA := ∞; clockA := 0 fi

Data(m)
eff dataQ := append(dataQ, m)

if ¬ empty(tokenQ) ResetA fi

Token
eff tokenQ := append(tokenQ, 1)

if ¬ empty(dataQ) ResetA fi

Trajectories:
Trajdef normal
invariant clockA ≤ delayA

evolve d(clockA) = 1

Tasks: {Send}

Subroutine ResetA:
delayA := choose Exp(λA);
clockA := 0

Fig. 1. Automaton ATM. The ResetA resets clockA and sets delayA according to

exponential distribution with parameter λA.

the case of probabilistic automata with discrete state spaces [18,17,2], the stan-
dard approach is to define the σ-algebra as the collection of sets of the form
Eα := {α′ | α is a prefix of α′}. Then, one can define the probability of the set
Eα as the probability of performing α, which can computed from the probabilis-
tic transitions in α. This approach does not work directly when the transitions
give a continuous probability distribution over the state space because the prob-
ability of occurrence of any particular finite sequence of transitions is typically
0. We follow the approach used in [3]; instead of considering a set of executions
that extend a single prefix, we consider a set containing executions that extend
an any prefix from an uncountable set of prefixes.

Definition 4. A base is a finite sequence of the form Λ = X0R0X1 A1 X2R1X3

A2 . . . X2m−1AmX2m, where for every i ∈ {0, . . . , 2m}, Xi ∈ FX , for every
i ∈ {1, . . . ,m}, Ai ⊆ A and for every i ∈ {0, . . . ,m− 1}, Ri is a measurable set
in R≥0 . The length of a base is the number of sets of actions in the sequence.
The basic set corresponding to a base Λ is a set of execution fragments of A
defined as follows:

CΛ = { τ0a1τ1 . . . amα ∈ FragsA| ∀i ∈ {0, . . . , m− 1} τi.fstate ∈ X2i,

τi.ltime ∈ Ri, τi.lstate ∈ X2i+1, ∀i ∈ {1, . . . , m}, ai ∈ Ai}. (1)

Lemma 1. The collection C of all basic sets of A is a semi-ring.

Appendix A.1 contains a proof of the above lemma. We denote the σ-algebra
generated by C as FExecsA and the measurable space of executions of A by
(ExecsA,FExecsA). Theorem 2 states that a measure defined on a semi-ring uniquely
extends to a measure on the σ-algebra generated by the semi-ring. The above
result will allow us to construct measure on FExecs by defining their value for the
basic sets. Analogous to Definition 4, we define basic sets for traces and show
that the collection of these basic sets is a semi-ring in TracesA.

Definition 5. A trace base is a finite sequence of the form Λ = R0E1 . . . En

where ∀i ∈ {0, . . . , n−1}, Ri is a measurable set in R≥0 and and ∀j ∈ {1, . . . , n},
Ej ⊆ E. The length of a trace base is the number of sets of actions in the
sequence. The trace basic set corresponding to the base Λ is a set of traces of A
defined as: CΛ = {r0a1r1 . . . anβ ∈ TracesA | ∀i ∈ {0, . . . , n} ri ∈ Ri, ai ∈ Ei} .

Lemma 2. The collection D of all trace basic sets of A is a semi-ring.

The σ-algebra FTraces on the set of traces of A is defined as the σ-algebra gen-
erated by the collection of trace basic sets; we denote the measurable space of
traces by (TracesA,FTracesA).

3.3 A probability measure over executions

A PDTIOA A is closed if it has no input actions. A PDTIOA A is a nondeter-
ministic state machine, that is, it is possible for multiple actions to be enabled
at a given state. In order to obtain purely probabilistic executions of closed A
we have to resolve nondeterminism. Our approach is to use the task mecha-
nism and an oblivious scheduler as in [2]. A task schedule for a closed PDTIOA
A = ((X,FX), x̄, A,R,D, T) is simply a finite or infinite sequence ρ = T1T2 . . .
of tasks in R. Given a task schedule ρ = T1T2 . . . for closed PDTIOA A, we
construct a measure ϕρ on (ExecsA,FExecsA) by inductively defining its values
for the basic sets. The induction is on the length of the base Λ.

ϕρ(CX) =

1 if x̄ ∈ X
0 otherwise

ϕρ(CΛRX) =

Z
α∈Λ∩s∈X̄

IR(maxtime(s))IX(maxstate(s))ϕρ(dα), (2)

ϕTρ′(CΛAX) =

 R
α∈Λ

IA∩T (enabled(s))µs(X)ϕρ′(dα), if ρ = Tρ′

0 otherwise.
(3)

Here s = α.lstate.

Note that the integral in Equation (2) is restricted to α.lstate ∈ X̄T and
maxstate is well defined and continuous in this set. Since R and X are measur-
able sets, IR and IX are measurable functions. As maxstate and maxtime are
continuous, the compositions IR ◦ maxtime and IX ◦ maxstate are both mea-
surable and therefore the integral in Equation (2) is well defined. Likewise, the
integral in Equation (3) is well defined because A ∩ T is a measurable set and
enabled◦IA∩T is a measurable function; and measurability of µs(X) follows from
D2 and the Giry construction described in Section 2. Note that, if length of Λ
is l then ϕρ(CΛ) > 0 only if length of ρ ≥ l and the probability ϕ(CΛ) depends
on only on the first l tasks in ρ.

Proposition 3. Given a PDTIOA A and a task schedule ρ for A, ϕρ is a
probability measure on (ExecsA,FExecsA).

Given any task schedule ρ the corresponding measure ϕρ is a probability
distribution over ExecA, and is called a probabilistic execution of A.

3.4 Probability measure on Traces

We will prove that the function trace : Execs → Traces is measurable. This is a
necessary property because it allows us to define a measure on the the space of
traces (Traces,FTraces) corresponding to any measure ϕ on the space of executions
(Execs,FExecs). We need two ingredients for this proof: Lemma 3 establishes that
for any function f : Execs → Traces, to be measurable it is sufficient to show that
f−1(CΓ) ∈ FExecs, for every trace base Γ chosen from a restricted class of bases;
Proposition 4 gives us a procedure to partition an interval in R≥0, arbitrarily
finely, with rational endpoints. This enables us to reconstruct executions from a
given trace by accurately inserting internal actions over an interval of time.

Lemma 3. Consider a function f : (Execs,FExecs) → (Traces,FTraces). If f−1(CΓ) ∈
FExecs for every trace base Γ of the form [0, b0)E1[0, b1)E2 . . . En, where bi ∈ R≥0

and Ei ⊆ E for each i, then f is measurable.

Proof. We define C = {C ⊆ Traces | f−1(C) ∈ FExecs}. First we show that C is
a σ-algebra on Traces.

1. f−1(Traces) = Execs ∈ FExecs , therefore Traces ∈ C .
2. For any C ∈ C , f−1(Traces \ C) = Execs \ f−1(C) ∈ FExecs .
3. For any C1, C2 ∈ C , f−1(C1 ∪ C2) = f−1(C1) ∪ f−1(C2) ∈ FExecs .

Now, consider any trace base Γ̄1 = [0, b)E1 of unit length, where E1 ⊂ E and
b ∈ R≥0. Assume that f−1(CΓ̄1

) ∈ FExecs for every Γ̄1 of the above special form.
Choose a sequence of real numbers {bn}∞n=1 such that bn+1 < bn and bn → b as
n →∞. From the hypothesis we know that for each n, C[0,bn)E1 ∈ C . As

C(b,∞]E1 =
∞⋃

n=1

C[bn,∞]E1 =
∞⋃

n=1

C[0,bn)cE1

and C is a σ-algebra it follows that C(b,∞]E1 ∈ C . The same holds true for basic
sets of the form C(a,b)E1 = C[0,b)E1 ∩ C(a,∞]E1 . Since every measurable set in
R≥0 is a countable union of segments of the types [0, b), (b,∞], and (a, b), we
have proved that for any trace base Γ1 of unit length, CΓ1 ∈ C which implies
that f−1(CΓ1) ∈ FExecs .

Following the same steps of reasoning as above, we show that if f−1(CΓ̄) is
in FExecs for every Γ̄ of the form [0, b0)E1[0, b1)E2 . . . En, then in fact for every
trace base Γ , f−1(CΓ) is in FExecs . Since every set in FTraces can be expressed
as a countable union of the basic sets, the result follows immediately.

Here we informally define the function rcutsk, which takes an interval J in
R≥0 and is well defined for all k ∈ N (see Definition 12 in Appendix A.2). The
rcuts1 function partitions a given interval (a, b) into two pieces at a rational point
q, such that the point q lies somewhere in the middle third of (a, b). Likewise,
rcutsk partitions (a, b) into 2k pieces with rational end points. A k-partition of
(a, b) is obtained by selecting pieces from any rcutj(a, b) such that j ≤ k. Using
the rcutsk function we get the following proposition:

Proposition 4. Given an interval I and a real number r ∈ I, there exists a
k-partition of I with an endpoint that coincides with r, as k →∞.

Lemma 4. For every trace base of the form Γ = [0, b0)E1[0, b1)E2 . . . En, where
bi ∈ R≥0, Ei ⊆ E for each i, trace−1(CΓ) ∈ FExecs .

Proof. Let us consider a trace base Γ1 = [0, b0)E1 of unit length. Let Pk =
([0, qk1], [qk1, qk2], . . . , [qkmk

, b0)) be a particular k-partition of [0, b). We define
a set of base corresponding to Pk as:

Λ(Pk) =
[
j1

[
j2

. . .
[
jmk

X[0, qk1](XHX{0})j1X[qk1, qk2](XHX{0})j2X . . .

. . . (XHX{0})jmk X[qkmk , b)E1

Each sequence on the right hand side is a valid execution base2 and by definition
the corresponding basic sets of executions are in FExecs . The set of k-partitions
Sk([0, b0)) is a finite set, so the set of executions

C =

∞[
k=1

[
Pk∈Sk([0,b0))

[
B∈Λ(Pk)

CB (4)

is a countable union of sets in FExecs and therefore is itself in FExecs . In order
to show that trace−1(CΓ1) ∈ FExecs it suffices to show that trace−1(CΓ1) = C .
It is easy to see that if an execution α ∈ C then trace(α) ∈ CΓ1 . For the reverse
direction, consider an execution with a single internal action α = τ0h1τ1eβ,
where for i ∈ {0, 1}, τ0.ltime = r ≤ τ1.ltime < b0, for some r ∈ R≥0, h1 ∈ H,
e ∈ E, and β is an execution fragment of A. Clearly trace(α) is in CΓ1 ; now we
show that α is also in C . From Proposition 4 we know that as there exists a
sequence of intervals [0, rk] ∈ Sk([0, b0)) such that rk → r as k →∞. Thus, there
exists a base Λ = X[0, r]XHX[r, b0) in

⋃∞
k=1 Λ(Pk) such that α ∈ CΛ ⊆ C .

For an execution α with any finite number of internal actions preceding the
external action e, we show that α ∈ C by induction on the number of internal
actions3.

For an arbitrary length trace base Γ = [0, b0)E1[0, b1)E2 . . . En, the same rea-
soning works. The partitions of the [0, bi) intervals are independent and therefore
we get a countable union of n countable sets, where each set has the same form
as C above.

From Lemmas 3 and 4 we obtain the following important technical lemma, which
states the measurability of the trace function.

Lemma 5. trace : (Execs,FExecs) → (Traces,FTraces) is measurable.

The trace distribution corresponding to a probabilistic execution ϕρ, writ-
ten as tdist(ρ), is the image measure of ϕρ under the trace function. More
formally, tdist(ρ) : (TracesA,FTracesA) → [0, 1], is defined as tdist(ρ)(E) =
ϕρ(trace−1(E)), for any measurable set E ∈ FTracesA . Note that trace−1(E) ∈
FExecsA because trace is a measurable function. The set of trace distributions of
A, tdists(A) is the set of tdist(ρ)’s for any task schedule ρ of A.
2 For ji = 0 the (i− 1)st and the ith intervals are to be concatenated.
3 D3 axiom is required here.

4 Hiding and Composition

In this section we define a hiding and parallel composition operations for PDTIOAs.
We show that the class of PDTIOAs is closed under these operations. Next we
define a simple notion of external behavior for PDTIOAs and show that the
implementation relation based on this external behavior is compositional.

Definition 6. Let A be a PDTIOA and O be a set of output tasks of A. Let S =
∪T∈OT , that is, S is the set of all actions in the tasks in O. Then, ActHide(A, S)
is defined as PDTIOA B that is identical to A except that OB = OA \ S and
HB = HA ∪ S.

Theorem 3. If A be a PDTIOA, O a set of output tasks of A and S = ∪T∈OT .
Then, B = ActHide(A, S) is also a PDTIOA.

Definition 7. Two PDTIOAs A1 and A2 are said to be compatible if H1∩A2 =
H2 ∩A2 = O1 ∩O2 = Ø. The composition of two compatible PDTIOAs A1 and
A2, denoted by A1||A2, is the tuple A = ((X,FX), x̄, A,R,D, T), where: (1)
(X,FX) = (X1 × X2,FX1 ⊗ FX2), (2) x̄ = (x1, x2), (3) A = A1 ∪ A2, I =
(I1 ∪ I2) \ (O1 ∪ O2), O = O1 ∪ O2, and H = H1 ∪ H2. (4) R = R1 ∪ R2.
(5) D ⊆ X × A × P(X,FX) is the set of triples ((x1, x2), a, µ1 ⊗ µ2) such that
for i ∈ {1, 2} if a ∈ Ai then (xi, a, µi) ∈ Di, otherwise µi = δxi

. And (6)
T = {τ ∈ trajs(X) | τ ↓ Xi ∈ Ti, i ∈ {1, 2}}.

Theorem 4. If A1 and A2 are compatible then A = A1||A2 is a PDTIOA.

Proof. We have to verify that A satisfies all the conditions of Definition 3. Here
we present a part of the proof where we show that the set of trajectories T of
A is maximally continuous (see Appendix A.3 for a complete proof).

Let maxT (x) = τ for some x ∈ X, τ ∈ T . Let V be an open neighborhood of
τ , it suffices to show that there exists an open neighborhood U of x such that
max(U) ⊆ V . As πi(V) is an open neighborhood of τ ↓ Xi, and Ti is maximally
continuous, we can find a neighborhood Ui of (τ ↓ Xi).fstate = x d Xi such
that max(Ui) ⊆ πi(V). Now, U = U1×U2 is an open set in X. Clearly, for every
y ∈ U , max(y) ∈ V which is sufficient for proving maxT is continuous for A.

It is easy to see that X̄T = {x ∈ X | x d Xi ∈ X̄iTi
}. We check the continuity

of maxstateT : X̄T → X. Consider any x ∈ X and let maxstateT (x) = x′, for
some x ∈ X. Let V be an open set containing x′. Since maxstateTi is contin-
uous for i ∈ {1, 2}, we can find open sets U1, U2, such that x d Xi ∈ Ui and
maxstateTi

(Ui) ⊆ V d Xi, for i ∈ {1, 2}. Therefore, using the same method as
above, we define U = {x ∈ X | x d Xi ∈ Ui}, and get maxstateT (U) ⊆ V , which
is suffices to establish continuity of maxstateT .

The next theorem states an expected property that a projection of an execution
of A1||A2 onto the actions and trajectories of Ai is an execution of Ai, i ∈ {1, 2}.
The proof of this theory follows immediately from the definition of composition.

Theorem 5. If A1 and A2 are compatible PDTIOAs then α is an execution of
A1||A2, then πi(α) is an execution for Ai, for i ∈ {1, 2}.

Example 2. Let A = ATM|| (DATASRC||TOKENSRC) and X be the state space
of A. Consider the following execution bases of A, Λ1 = X[0, t1]X{Token}X,
Λ2 = Λ1X[0, t2]X{Data}X, and Λ3 = Λ2X[0, t3]X{Data,Token,Send}X, where
1 ≤ t1 < ∞, and t2, t3 > 0.

ϕρ(CΛ2) =

1 if ρ = {Token}{Data} . . . ,
0 otherwise.

ϕρ(CΛ3) =

1− e−(λA+λD+λT)t3 if ρ = {Token}{Data}T . . . ,
0 otherwise.

Let B = ActHide(A, {Token}). The trace distribution values of B for ρ =
{Data}{Send} . . ., at the points Γ1 = [0, t1]{Data} and Γ2 = Γ1[0, t2]{Send}
are as follows: tdist(ρ)(CΓ1) = 1 and tdist(ρ)(CΓ2) = 1− e−λAt2 .

Implementation and compositionality. We formulate the external behavior
of a A as a mapping from possible “environments” for A to sets of trace dis-
tributions that can arise when A is composed with the given environment. The
proof of the compositionality theorem that follows is adapted from [2].

Definition 8. An environment for PDTIOA A is a PDTIOA E such that A
and E are compatible and their composition A||E is closed. The external behavior
of a PDTIOA A, written as extbehA, is defined as a function that maps each
environment PDTIOA E for A to the set of trace distributions tdists(A||E).

Definition 9. Two PDTIOAs A1 and A2 are comparable if E1 = E2. If A1 and
A2 are comparable then A1 is said to implements A2, written as A1 ≤ A2 if, for
every environment PDTIOA E for both A1 and A2, extbehA1(E) ⊆ extbehA2(E).

Theorem 6. Suppose A1, A2 and B are PDTIOAs, where A1 and A2 are com-
parable and A1 ≤ A2. If B is compatible with A1 and A2 then A1||B ≤ A2||B.

5 Generalized PDTIOAs and Local Schedulers

PDTIOAs do not allow nondeterministic trajectories nor do they allow choice
between enabled actions and non-trivial trajectories. The first restriction is due
to the assumption that the set of trajectories of is deterministic and the second
one is due to the Time-action determinism assumption D1. In this section, we
briefly discuss one way of relaxing these assumptions by adding local schedulers.

Definition 10. A Generalized PDTIOA is a tuple A = ((X,FX), x̄, A,R,D, T),
where the first five components are the same as in Definition 3. The set T is not
necessarily deterministic and A does not necessarily satisfy D1.

Thus, from a given state x ∈ X of a generalized PDTIOA, A there may be
nondeterministic choice of actions that could be performed and also choice of
distinct trajectories starting from x. A local scheduler for generalized PDTIOA
A, is a PDTIOA S = ((X,FX), x̄, A,R,D′, T ′) that is identical to A except that
D′ ⊆ D and T ′ ⊆ T . A local scheduler S satisfies D1 and has deterministic,
maximally continuous trajectories.

A probabilistic system captures the notion of possible ways of resolving the
nondeterminism in a generalized PDTIOA. Formally, a probabilistic-system is
a pair M = (A,S), where A is a generalized PDTIOA and S is a set of local
schedulers for A. An environment for M is any PDTIOA E such that A||E
is closed. A probabilistic execution for M is defined to be any probabilistic
execution of S, for any S ∈ S. For probabilistic system M = (A,S), we define
the external behavior of M to be the total function extbehM that maps each
environment PDTIOA E for M to the set ∪S′∈Stdists(S′||E). Thus for each
environment, we consider the set of trace distributions that arise from the choices
of the local scheduler of M and the task scheduler ρ. This leads to a notion of
implementation of probabilistic systems, similar to that of PDTIOAs.

Definition 11. Let M1 = (A1,S1) and M2 = (A2,S2) be probabilistic systems
such that A1 and A2 are comparable generalized PDTIOAs. Then, M1 is said
to implement M2 if for every environment E of M1 and M2, extbehM1(E) ⊆
extbehM2(E).

Two probabilistic systems M1 = (A1,S1) and M2 = (A2,S2) are compati-
ble if A1 and A2 are compatible, and their composition M1||M2 is defined as
(A1||A2,S), where S is the set of local schedulers {S1||S2 | S1 ∈ S1 and S2 ∈ S2 }.
Theorem 7 gives the following sufficient condition for implementation of proba-
bilistic systems: each local schedular for the concrete probabilistic system must
always correspond to the same local scheduler for the abstract.

Theorem 7. If M1 = (A1,S1) and M2 = (A2,S2) are comparable and there
exists f : S1 → S2, such that for all S1 ∈ S1, S1 implements f(S1), then M1

implements M2.

6 Conclusions
We have introduced a compositional framework for modelling and analysis of
probabilistic systems over continuous state spaces. The framework supports mod-
els with deterministic continuous dynamics, nondeterministic and probabilistic
transitions, and nondeterministic stopping times. We have developed the ba-
sic mathematical machinery to describe the probabilistic executions and trace
distributions of the model.

In the future we will develop new proof techniques and also adapt existing
techniques from probability theory, control theory and computer science, for
analysis of PDTIOA models. The types of properties that we are particularly
interested to investigate are: probabilistic safety and stability properties, both
exact and approximate simulation relations for proving implementation. We in-
tend to apply this modelling framework to analyze self-stabilizing timing based
distributed algorithms and location aware mobile ad hoc network protocols.

Acknowledgments We greatly benefited from discussing this work with Sanjoy
Mitter. We also thank Dilsun Kaynar for giving useful comments on this paper.

References

1. M. Bujorianu and J. Lygeros. General stochastic hybrid systems: Modelling and
optimal control. In IEEE CDC, Bahamas, December 2004.

2. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Task-structured probabilistic I/O automata. Technical Report MIT-CSAIL-TR-
2006-023, Massachusetts Inst. of Technology, Cambridge, MA, March 2006.

3. S. Cattani, R. Segala, M. Z. Kwiatkowska, and G. Norman. Stochastic transition
systems for continuous state spaces and non-determinism. In FoSSaCS, 2005.

4. D. Chatterjee and D. Liberzon. Stability analysis of deterministic and stochas-
tic switched systems via a comparison principle and multiple lyapunov functions.
SIAM Journal on Control and Optimization, 2005.

5. V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and
cocongruence for probabilistic systems. Information and Computation, Special
issue for selected papers from CMCS04, 2005.

6. M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, 1993.
7. R. M. Dudley. Real Analysis and Probability. Wadsworth, Belmont, Calif, 1989.
8. S. Smolka E. Stark, R. Cleaveland. A process-algebraic language for probabilis-

tic I/O automata. In Proc. CONCUR 03, LNCS volume 2761, Marseille, 2003.
Springer.

9. M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, number 915 in Lecture Notes in
Mathematics. Springer-Verlag, 1981.

10. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117:221239, 1995.

11. H. Hermanns. Interactive Markov Chains : The Quest for Quantified Quality.
Springer Berlin / Heidelberg, 2002.

12. J. P. Hespanha. Stochastic hybrid systems: Application to communication net-
works. In George J. Pappas Rajeev Alur, editor, HSCC 2004, LNCS volume 2993,
Philadelphia, 2004.

13. D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The theory of timed I/O
automata. Technical Report MIT/LCS/TR-917a, MIT Laboratory for Computer
Sc., 2004. Available at http://theory.lcs.mit.edu/tds/reflist.html.

14. S. Mitra, D. Liberzon, and N. Lynch. Verifying average dwell time by solving
optimization problems. In A. Tiwari and J. P. Hespanha, editors, HSCC 06, LNCS
volume 3927, Santa Barbara, 2006. Springer.

15. P. Panangaden. Measure and probability for concurrency theorists. Theoretical
Computer Science, 253(2), 2001.

16. W. Rudin. Real & Complex Analysis. McGraw-Hill, Inc., New York, NY, 3rd
edition, 1987.

17. R. Segala. A compositional trace-based semantics for probabilistic automata. In
CONCUR ’ 95, LNCS volume 962, Philadelphia, 1995.

18. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Sc., Massachusetts Inst. of Technology,
June 1995.

19. E. Stark. On behavior equivalence for probabilistic I/O automata and its relation-
ship to probabilistic bisimulation. Journal of Automata, Languages, and Combi-
natorics, 8(2), 2003.

http://theory.lcs.mit.edu/tds/reflist.html

Appendix A: Proofs

A.1 Topologies and semi-rings

Proposition 5. The collection B of all trajectory basis elements is a basis for
a topology on T .

Proof. We check that B satisfies the following two properties:

1. For each τ ∈ T , there is at least one basis element B containing τ . Any finite
trajectory τ is in the basis element B(q,X) where q is a rational larger than
sup{τ.dom}. Any infinite trajectory is in B(∞,X).

2. If τ ∈ Bθ1 ∩ Bθ2 then there exists a third basis element Bθ3 such that τ ∈
Bθ3 ⊆ Bθ1 ∩Bθ2 . Let θ1 = (q1, U1) . . . (qm, Um) and θ2 = (r1, V1) . . . (rn, Vn).
Let s1 . . . sm+n be the sorted sequence of the q1 . . . qm, r1 . . . rn. We define
θ3 as (s1,W1) . . . (sn+m,Wn+m), where for each k ∈ {1, . . . ,m + n}, Wk is
given by:

Wk = Ui

T
Vj , where i = min{ω | qω ≥ sk}

j = min{ω | rω ≥ sk}

For each k, Wk is an open set in T and the number sk is in Q≥0 ∪ {∞}. It
can be checked easily that Bθ3 = Bθ1 ∩Bθ2 .

Theorem (1). Let T be the topology generated by the collection B. (T ,T) is
a Hausdorff space.

Proof. Let τ1, τ2 ∈ T be distinct trajectories. Let B1, B2 be basis elements con-
taining τ1 and τ2. If B1 ∩B2 = Ø then we are done, otherwise, consider the two
cases:

– Case 1 τ1.dom = τ2.dom. There exists r ∈ τ1.dom, such that τ1(r) 6= τ2(r).
Let U and V be disjoint open neighborhoods of τ1(r) and τ2(r).

Claim. There exists q1, q2 ∈ Q≥0, q1 ≤ r < q2 so that for all t ∈ [q1, q2) ∩
τ1.dom, τ1(t) ∈ U and τ2(t) ∈ V .

Since Q≥0 is dense in R≥0 , we can choose q1 and q2 to be arbitrarily close to
r. The claim follows immediately from continuity of τ1 and τ2. Suppose, the
trajectory base for B1 is (r1, U1) . . . (rm, Um) and we assume without loss
of generality that ri < q1 < q2 < ri+1, for some i ∈ {1, . . . ,m}. Then, we
construct a new basis element B′

1 with the base (r1, U1) . . . (ri, Ui)(q1, Ui+1)
(q2, U)(ri+1, Ui+1) . . . (rm, Um). Similarly, we construct a new basis element
B′

2 by inserting (q2, V) in the trajectory base of B2. Since U and V are
disjoint, we have disjoint open neighborhoods B′

1 and B′
2 for τ1 and τ2 re-

spectively.
– Case 2 τ1.dom ⊂ τ2.dom. We choose any rational q > sup{τ1.dom} and

construct a new basis element B′
2 by inserting (q, X) at an appropriate po-

sition in the trajectory base for B2. B1 and B′
2 are disjoint neighborhoods

for τ1 and τ2.

Proposition 6. maxtime is a continuous function.

Proof. Consider the function ltime : T → R≥0. We first show that ltime is a
continuous function. Suppose ltime(τ) = t, for some τ ∈ T and t ∈ R≥0 ∪ {∞}.
It suffices to show that for any open set I containing t, there exists an open set
Uτ containing τ , such that ltime(Uτ) ⊆ I. We select Uτ = B(q1,X)(q2,X) where
q1 = inf{I ∩ Q≥0}, q2 = sup{I ∩ (Q≥0 ∪ {∞})}. Clearly, τ ∈ Uτ and for every
τ ′ ∈ Uτ , ltime(τ ′) ∈ I.

Since max and ltime are both continuous functions, their composition ltime◦
max = maxtime is also continuous.

Lemma (1). The collection C of all basic sets of A is a semi-ring.

Proof. We check that C satisfies the three properties of a semi-ring:

1. C contains the empty set Ø. Consider a base Λ = X0R0X1A1X2 . . . AmX2m

where at least one of the sets in Λ is empty. Then, CΛ = Ø.
2. If CΛ, CΓ ∈ C then there exists a base ∆, such that C∆ = CΛ ∩ CΓ . We

can assume without loss of generality that the bases Λ and Γ are of equal
length. (If they are not, then we append an appropriately long sequence of
XR≥0XAX’s to the shorter base to make the two equal. Appending these
sets to the base does not change the corresponding basic set.) Let Λ =
X0R0X1A1X2 . . . AmX2m and Γ = Y0T0Y1B1Y2 . . . BmY2m. Then we define
∆ to be the sequence (X0∩Y0)(R0∩T0)(X1∩Y1) (A1∩B1)(X2∩Y2) . . . (Am∩
Bm)(X2m ∩ Y2m). Now, it can be checked easily that C∆ = CΛ ∩ CΓ .

3. If CΛ, CΓ ∈ C and CΛ ⊆ CΓ , then there exists a family of basic sets
{Ci}i∈I such that CΓ \ CΛ = ∪i∈ICi and for all i, j ∈ I, Ci ∩ Cj = Ø if
i 6= j. As in the previous case, we can assume w.l.o.g. that the bases Λ
and Γ are of equal length. Let Λ = X0R0X1A1X2 . . . AmX2m and Γ =
Y0S0Y1B1Y2 . . . BmY2m. Let I ⊆ {0, . . . , 2m}, J ⊆ {1, . . . ,m}, and K ⊆
{0, . . . ,m − 1} be nonempty sets of indices. We define a collection of bases
ΛI,J,K = Z0T0Z1C1Z2 . . . CmZ2m as follows:

Zi =

Yi \Xi if i ∈ I
Xi otherwise

Cj =

Bj \Aj if j ∈ J
Aj otherwise

Tk =

Sk \Rk if k ∈ K
Rk otherwise

First, we show that the bases defined above are pairwise disjoint. Consider two
bases, ΛI,J,K and ΛI′,J ′,K′ . Of the three pairs of index sets, at least one must
be a pair of different sets. Say, J ⊂ J ′, that is, there exists an index j ∈ J ′ such
that j /∈ J ′. Then, the jth sets of ΛI,J,K and ΛI′,J ′,K′ are disjoint. It follows
that the CΛI,J,K

∩ CΛI′,J′,K′ = Ø. Next, we check that any α ∈ CΛ \ CΓ is in
one of the basic sets constructed above. Let α = τ0a1 . . . amβ. Then there must
exist index sets Iα ⊆ {0, . . . , 2m}, Jα ⊆ {1, . . . ,m} and Kα ⊆ {0, . . . ,m − 1}
such that τ i

2
.fstate ∈ Yi \Xi for all even i ∈ Iα, τ i−1

2
.lstate ∈ Yi \Xi for all odd

i ∈ Iα, aj ∈ Bj \Aj for all j ∈ Jα, and τk.ltime ∈ Sk \Rk for all k ∈ Kα.

A.2 Measurability of trace function

Definition 12. Let J be the set of intervals in R≥0. For any k ∈ N the function
rcutsk : J → J 2k

is defined recursively as:

rcut0((a, b)) = {(a, b)} and

rcutk((a, b)) = {rcutk−1((a, q]), rcutk−1([q, b))}, where q ∈ Q,
2a + b

3
≤ q ≤ 2b + a

3
.

For closed and half open intervals the function is defined analogously. Given
(a, b) ∈ J , a k-partition is a sequence of intervals (a, q1], [q1, q2], . . . , [qn, b) that
partitions (a, b) such that every interval in the sequence is in

⋃k
i=1 rcutk((a, b)).

We denote the collection of all k-partitions of (a, b) by Sk((a, b)).

Proposition (4). Given an interval I and a real number r ∈ I, there exists a
k-partition of I with an endpoint that coincides with r, as k →∞.

Proof. Let rk be the nearest left endpoint of any interval containing r in the set of
all k-partitions Sk(I). From the definition of rcutk it follows that r−rk ≤ |I|(2

3)k.
Thus, rk → r, as k →∞.

A.3 Composition

Theorem (4). If A1 and A2 are compatible PDTIOAs then A = A1||A2 is a
PDTIOA.

Proof. We show that A satisfies all the properties of a PDTIOA:

1. M1 For all a ∈ A, set of states at which a is enabled is a measurable set. If
a ∈ A1 then we know that the set of states Y1 ⊆ X1 in which a is enabled is
in FX1 . The set Y1 ×X2 ∈ FX , and it is precisely the set of states in which
a is enabled.
M2 Follows from an exactly similar argument.

2. T is deterministic. Consider two distinct trajectories τ, ζ ∈ T (x), for some
x ∈ X with τ.dol ⊆ ζ.dom. Since (τ ↓ Xi), (ζ ↓ Xi) ∈ Ti(x d Xi), for
i ∈ {1, 2} and Ti is a deterministic set of trajectories for Xi, it follows that
(τ ↓ Xi) ≤ (ζ ↓ Xi). Combining this result for 1 and 2, we get τ ≤ ζ.

3. T is closed under prefix, suffix, concatenation and for every x ∈ X, ℘(x) ∈ T .
These follow immediately from the definition of T .

4. T is maximally continuous. Let maxT (x) = τ for some x ∈ X, τ ∈ T . Let
V be an open neighborhood of τ , it suffices to show that there exists an
open neighborhood U of x such that max(U) ⊆ V . As πi(V) is an open
neighborhood of τ ↓ Xi, and Ti is maximally continuous, we can find a
neighborhood Ui of (τ ↓ Xi).fstate = x d Xi such that max(Ui) ⊆ πi(V).
Now, U = U1×U2 is an open set in X. Clearly, for every y ∈ U , max(y) ∈ V
which is sufficient for proving maxT is continuous for A.
It is easy to see that X̄T = {x ∈ X | x d Xi ∈ X̄iTi

}. We check the continuity
of maxstateT : X̄T → X. Consider any x ∈ X and let maxstateT (x) = x′,

for some x ∈ X. Let V be an open set containing x′. Since maxstateTi

is continuous for i ∈ {1, 2}, we can find open sets U1, U2, such that x d
Xi ∈ Ui and maxstateTi(Ui) ⊆ V d Xi, for i ∈ {1, 2}. Therefore, using the
same method as above, we define U = {x ∈ X | x d Xi ∈ Ui}, and get
maxstateT (U) ⊆ V , which is suffices to establish continuity of maxstateT .

5. D0, D2 and D3 follow from the definition of composition.
6. D1 A is time-local action deterministic. Suppose some local action a ∈ L is

enabled at state x. Let us assume without loss of generality that a ∈ L1 and
a /∈ L2. Then a is enabled at x d X1 and since A satisfies D1 it follows that
there does not exist any non-point trajectory in T1 (and therefore in T) that
starts from x d X1.
Likewise, it is easy to check that if there exists a non-point trajectory starting
from x, then no local action is enabled at either x d X1nor x d X2.

Theorem (6). Suppose A1, A2 and B are PDTIOAs, where A1 and A2 are
comparable and A1 ≤ A2. If B is compatible with each of A1 and A2 then
A1||B ≤ A2||B.

Proof. Let E be an environment PDTIOA for both A1||B and A2||B. Consider
a task schedule ρ1 for the composed PDTIOA (A1||B)||E . Let η = tdist(ρ1) be
the trace distribution of (A1||B)||E generated by ρ1. It suffices to show that η is
also a trace distribution of (A2||B)||E , generated by some task schedule.

As ρ1 is a task schedule for A1||(B||E) it generates the same trace distribution
η for PDTIOA A composed with the environment B||E . Further B||E is also a
closing environment for A2 because A1 and A2 are compatible. As A1 ≤ A2,
there exists a task schedule ρ2 for A2||(B||E) that generates the trace distribution
η. It follows that ρ2 is a task schedule for (A2||B)||E that produces the trace
distribution η.

Appendix B: Examples

B.1 Leaking bucket: Source and Token

The code in Figure 2 specify the PDTIOAs representing the source of data
packets and the token, for the ATM automaton. Data packets and tokens are
generated with exponentially distributed inter-arrival times, with rates λD and
λT respectively. As in the model presented in [11], after each action Data, Token,
or Send, all the clocks in the system are reset and new delays are fixed.

B.2 Periodically sending process

Example 3. Consider the simple PDTIOA PeriodicSend shown in Figure 3. The
state space X of PeriodicSend is the product R2

≥0 × {true, false}2; the set of
actions A is {tick, fail} ∪

⋃n
i=1{sendi}. Typical executions of PeriodicSend are

as follows: until a fail action is received, PeriodicSend triggers alternating sendi

and tick actions, with interleaving trajectories. The length of the trajectories are

DATASRC(λD) where λD ∈ R+
Variables:

clockD : R+ initially 0
delayD : R+ initially 1

Actions:
output Data(m) m ∈ {0,1}
input Token, Send(m) m ∈ {0,1}

Transitions:
Send(m) eff ResetD

Data(m)
pre clockD = delayD

eff ResetD

Token eff ResetD

Trajectories:
Trajdef normal
invariant clockD ≤ delayD

evolve d(clockD) = 1

Tasks: {Data}

Subroutine ResetD:
delayD := choose Exp(λD);
clockD := 0

TOKENSRC(λT) where λT ∈ R+
Variables:

clockT : R+ initially 0
delayT : R+ initially 1

Actions:
output Token
input Data(m), Send(m) m ∈ {0,1}

Transitions:
Send(m) eff ResetT

Data(m) eff ResetT

Token
pre clockT = delayT

eff ResetT

Trajectories:
Trajdef normal
invariant clockT ≤ delayT

evolve d(clockT) = 1

Tasks: {Token}

Subroutine ResetT :
delayT := choose Exp(λT);
clockT := 0

Fig. 2. Automaton DATASRC and TOKENSRC.

chosen uniformly at random over [a, b]. PeriodicSend is nondeterministic because
if sendj is enabled at some state then sendi is also enabled at the same state,
for every i, j ∈ {1, . . . , n}. Note that each sendi belongs to a different task. A
typical execution of PeriodicSend (n > 4) and the corresponding trace looks like
this:

α = τ1 tick τ2 sendi τ3 tick τ4 sendk τ5 . . . , and
trace(α) = (τ1.ltime + τ2.ltime) sendi (τ3.ltime + τ4.ltime) sendk τ5.ltime . . .

where τj .dom ⊆ [0, b] for each j and i, k ∈ {1, . . . , n}.

Example 4. Consider a version of the PeriodicSend automaton of Figure 3 with
the fail action and the failed variable removed. The automaton thus obtained is a
closed PDTIOA. Let us call it PeriodicSend. Let Λ = X0R0X1A1X2 . . . X2m−1AmX2m

be a base for PeriodicSend with:

Xi = (R+)2 × {true, false}2, for each i ∈ {0, . . . , 2m},
Ri = [0, bi), for each i ∈ {0, . . . ,m− 1},where a ≤ b1 ≤ b,

Ai ⊆ {tick, send1, . . . , sendn}, for each i ∈ {1, . . . ,m}.

Let ρ = T1T2 . . . Tl be a task schedule for PeriodicSend, and pi = min(1, bi−a
b−a),

for each i ∈ {0, . . . m− 1}. It can be checked that the probabilistic execution of

PeriodicSend(a, b, n) where a, b ∈ R+, n ∈ N
Variables:

clock: R+ := 0
u :R+ := a
flag, failed: bool := false

Actions:
output sendi i ∈ {1,2, . . .,n}
input fail, internal tick

Transitions:
sendi

pre (¬ failed) ∧ flag ∧ clock = u
eff clock := 0, flag = true,

u := choose uniformly [a, b]

tick
pre (¬ failed) ∧ (¬ flag) ∧ clock = u
eff clock := 0, flag = false,

u := choose uniformly [a, b]

fail
eff failed := true

Trajectories:
Trajdef normal
stop when clock = u
evolve d(clock) = 1

Tasks:
{tick} and {sendi} for i ∈ {1, 2, . . ., n}

Fig. 3. Automaton PeriodicSend: uA is chosen uniformly at random over [a, b].

PeriodicSend corresponding to ρ, is given by:

ϕρ(CΛ) =
{∏m−1

i=0 pi if l ≥ m and Ai ∩ Tm−i+1 6= Ø, for each i ∈ {1, . . . ,m},
0 otherwise.

	Probabilistic Timed I/O Automata with Continuous State Spaces
	Sayan Mitra and Nancy Lynch

