
Energy Efficient Connected Clusters for
Mobile Ad Hoc Networks

Sayan Mitra* and Jesse Rabek**�
mitras,jesrab � @csail.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street,

Cambridge, MA 02139, USA

Abstract— A Mobile Ad Hoc Network (MANET) is
a wireless infrastuctureless network with mobile nodes.
Clustering is a common basis for building higher level
applications for such networks. The merit of a clus-
tered decomposition depends on the application that
is meant to use it. A power control based distributed
clustering service is proposed that maintains cluster
connectivity under reasonable assumptions. The size
and sparsity of the clustering can be controlled by two
parameters, namely, the minimal separation between the
clusterheads, and the maximum angular gap between
neighboring clusterheads. The optimal value of the
latter is derived; this minimizes the transmission power
of the clusterheads while guaranteeing connectivity of
the cluster graph. Experimental studies presented show
that the algorithm rapidly stabilizes to a new clustered
organization after the network topology changes due to
node joins and failures.

Index Terms— Ad hoc networks; Power control; Clus-
tering algorithms; Cluster graph connectivity.

I. INTRODUCTION

In mobile ad hoc networks (MANETs) clustering is
a common basis for building higher level applications
like routing, tracking, and location management. Un-
derlying every MANET application there are inherent
trade-offs between accuracy, energy consumption, ro-
bustness, and memory requirements [22]. Accordingly,
the merit of a clustered decomposition depends on the
application which uses it. In a routing protocol, for
example, where each clusterhead maintains complete
route to all cluster members, smaller clusters imply
less state maintained by the clusterhead and therefore
are preferable over larger clusters for scalability. Al-
though small clusters result in a high latency between
nodes that are far apart in the network, this delay in

*The first author’s research is supported by AFRL contract
number F33615-010C-1850.

**The second author was an M.Engg student at the Laboratory
for Computer Science, MIT, at he time of this work.

message delivery is tolerated. Accordingly, the clus-
tering schemes typically used for routing decompose
the network into 2-clusters. In contrast, for refer-
ence broadcast based clock synchronization (RBS) [6]
large, densely overlapping clusters are preferable. In
RBS, each cluster behaves as a synchronized unit and
timing information is shared between nodes belonging
to different clusters through common “gateway” nodes
constituting a time-routing path. Shorter the path, more
accurate the synchronization between clusters. So, it is
desirable to have few large clusters spanning the entire
graph. In general, larger, heavily overlapping clusters
improve the robustness, accuracy, and latency of the
application using the clusters, while adversely affect-
ing the power consumption, memory requirements,
and the longevity of the mobile nodes.

Irrespective of the size of the clusters, most applica-
tions require the clusters to be connected. This can be
achieved in an ad hoc fashion, by arbitrarily increasing
the broadcast radius of the clusterheads. This is unde-
sirable for two reasons: first, it shortens the battery
life of the clusterheads because the power required to
transmit a message over distance � increases as an����� degree polynomial of � , where �	��
 [20], and
secondly, it gives rise to extra interference.

In this paper, we propose a robust distributed clus-
tering service which can produce the desired type
of clustering of a network for a wide range of
MANET applications. The size and the sparsity of
the clustered decomposition are controlled by two
parameters, namely, � - the minimal separation be-
tween clusterheads, and - the maximum allowed
angular gap between neighboring clusterheads. Fur-
ther, the algorithm minimizes the broadcast power of
the clusterheads while guaranteeing the connectivity
of the cluster graph. We prove that for any value
of � , the optimal value of is
������������ ���� (1.0107
radians approx.), in following sense: this value of

minimizes the transmission power of the clusterheads
while guaranteeing connectivity of the cluster graph,
provided the given distribution of the mobile nodes
can be connected when each node transmits with
maximum power.

The clustering service is implemented in two layers.
The bottom layer selects the clusterheads based on
a maximal independent set algorithm, such that each
clusterhead is at least � distance away from all other
clusterheads. The top layer decides the transmission
power used by the clusterheads, based on certain
locally checkable condition. Specifically, each cluster-
head increases its transmission power until it learns
about another clusterhead (via some common node)
in every -cone around itself. We discuss the different
clustered decompositions that can be obtained by
running the algorithm with different � ������ settings.
We also present experimental evidence supporting the
robustness of the algorithm when subjected to changes
in the underlying network topology owing to node
failures and joins.

The rest of the paper is organized as follows: The
next section cites and differentiates related work. In
Section III the system model is described. In Sec-
tion IV the details of the algorithms constituting the
clustering service are presented. In Section V the
optimal value of the parameter , the angular gap, is
derived and certain other optimizations to the basic
clustering service are suggested. In Section VI the
simulation results evaluating the behavior of the algo-
rithm with different parameter settings are presented,
with respect to stability, robustness, and the generated
cluster topologies. Finally, Section VII concludes the
paper with a synopsis of the contributions and direc-
tions for future research.

II. RELATED WORK

The notion of cluster organization has been used for
ad hoc networks ever since their appearance. In [2],
[7] a distributed clustered architecture is introduced
for hierarchical routing. Gerla et. al. [9], [16] have
presented clustering algorithms for efficient resource
allocation, namely bandwidth and channel, in order to
support multimedia traffic. Most clustering algorithms
produce a 2-clustering of the network graph. The
generalization of this problem to k-clustering was
introduced in [1], and used for routing in [13]. It
is known that k-clustering is NP-complete [5] for
simple undirected graphs. Fernandess and Malkhi [8]
have given a polynomial time approximation algorithm

for k-clustering with �����	� worst case ratio over the
optimal solution.

Most clustering algorithms including ours, work in
two phases. First, a subset of nodes in the network are
selected to act as coordinators or the clusterheads. The
criterion for selecting the clusterheads differ between
algorithms, the most common ones being based on the
node identifiers [2], [7], [9] and node degrees [17].
In [3] a node mobility based criterion has been used
for selecting the clusterheads to cope with dynamic
changes in the network topology. The second phase,
which is typically initiated by the clusterheads, is
concerned with maintaining the extent of the clusters.
A clusterhead may inform its member nodes about
their membership explicitly, by sending a message,
or depending on the application, may just store the
membership information in its own state.

Instead of sending messages expressly for imparting
the membership information to each member node,
the clusterhead can periodically broadcast a beacon
with a particular transmission power to mark its ex-
tent [14]. It has been shown in [10] that for a uniform
distribution of a large number of wireless nodes, a
common transmit power level is optimal with respect
to the capacity of the network. In general, however
this is not true, and hence the need for clustering by
power control arises. In [12] two routing algorithms
are proposed which decide the transmit power for each
packet, thereby implicitly creating transmission power
based clusters. Our clustering service is closer to the
algorithm presented in [14], in that, we use power
control to explicitly maintain the extent of the clusters.

Varying the transmission power of nodes for effi-
cient topology control in wireless networks was stud-
ied in [19]. Li et al. [15], [21] describe a cone based
topology control (CBTC) algorithm using directional
sensors which guarantees global connectedness. The
CBTC � �� algorithm increases the transmission power
of a node
 until there is a node within its transmission
radius in every cone of angle around it. It has
been shown in [21], [15] that for ��
����� the
power settings obtained from CBTC � �� are sufficient
for maintaining connectivity. Hajiaghayi et. al. [11]
presented a modified version of the CBTC protocol
with ��������� , to ensure k-connectivity of the network.
Our algorithm for determining the transmission power
of each clusterhead is similar to CBTC but it maintains
connectivity between clusters rather than individual
vertices.

III. PRELIMINARIES

In this section we discuss our model and introduce
the notations and definitions used throughout the rest
of this paper.

The mobile nodes are assumed to be distributed in
a 2-dimensional plane and each node has an unique
identifier. Each node can broadcast messages at dif-
ferent transmission power levels; the maximum power�

being the same for all nodes. The nodes do not
possess knowledge about their location in the plane,
however they do have directional antennas, and a
common sense of direction. Having directional anten-
nas is considered to be a reasonable assumption and
have been used elsewhere in the ad hoc networking
literature (see, e.g., [15], [21], [4]). The common sense
of direction can be achieved by means of a compass.

The mobile nodes can fail or migrate, and new
nodes can join the network. When a node fails it loses
its state. If a failed node recovers, it behaves as if it
were a new node and tries to join the network.

At a given instant of time the mobile ad hoc network
is represented as a directed graph ��� ��� ��� � , where
� is the set of mobile nodes and � the set of edges
determined by the transmission power of the nodes.
The transmission power �
	 of node
 determines the
transmission radius, � ����	�� , and if
 is a cluster head
then � ��� 	 � also defines the cluster around
 , which is
the set of nodes �	 ������� ��� ��� �
 ��� � � � ����	���� .

A clustering algorithm organizes a network of nodes
into a set of clusters ������ � � � � � �!#"$� . The cluster
cover � is characterized by its radius or size, and
its sparsity. The radius of � is the radius of its
largest cluster in terms of physical distance, or the
number of network hops. The size is the cardinality
of the largest cluster in � . The sparsity of � is a
measure of connectivity between the clusters. It is the
maximum number of clusters to which any particular
node belongs. If � is a partition, that is, if all the
clusters are disjoint, then sparsity is the maximum
number of neighboring clusters of any cluster.

Definition 1. The cluster graph induced by a
set of clusters � � �� � � � � � �!#"%� is the undi-
rected graph & � �(' ��) � with ' � � and
)*�+� ��#,	�!#	 �%�
#,.-/#	10�324� .

Definition 2. A path in a cluster graph &5� �(' ��) �
is a sequence of clusters �� � � � � � �!76 � , such that each
#8:9�' and ��#8 �!#8<; � �/9�) for every �>=@? . The
cluster graph & is connected if there is a path between
every pair of cluster in ' .

IV. THE ALGORITHMS

The clustering service is implemented in two layers.
The first layer, namely the Start Cluster algorithm
(SC), maintains a set of cluster heads A , no two
of which are closer than a distance � , where � is a
parameter of the algorithm. The second layer, namely
the Cluster Control (CC) algorithm, determines the
broadcast power of the clusterheads thus defining
the extent of each cluster. The broadcast power is
determined by monitoring local membership and the
overlap with neighboring clusters. This ensures that
the set of clusters cover the entire network and that
the resulting cluster graph is connected.

A. Start Cluster Algorithm

The Start Cluster algorithm (SC) is a dynamic
version of the classical maximal independent set (MIS)
algorithm [18]. The nodes selected to be in the set are
the clusterheads and all other nodes are the ordinary
nodes.

Definition 3. The s-neighborhood BDC �
�� of node
 is
the set of nodes within distance � from
 .

Definition 4. An s-independent set of a graph � with
vertices � is a set of vertices A EF� , no two of
which are within a distance of G of each other. An s-
independent set is maximal if no vertex can be added
to it without violating s-independence property.

In the classical MIS algorithm a node decides to be a
clusterhead once and for all when it learns that all the
neighboring nodes with higher identifier have decided
not to be clusterheads. And, a node decides to be an
ordinary node when it learns about a neighbor who has
decided to be a clusterhead. Our reactive version of the
MIS algorithm makes decisions for a finite interval of
time, and so it has to be executed repeatedly by every
participating node. This makes it possible for a node
to take the necessary actions when there are significant
changes in its neighborhood. Once a node decides
to be a clusterhead, it remains a clusterhead for an
interval HJI , after which it continues to be a clusterhead
only if all the nodes with higher identifiers in its s-
neighborhood are ordinary. A node decides to remain
ordinary for as long as it is aware of a clusterhead in
its S-neighborhood, and renews its bid to become a
clusterhead only when it stops hearing from the latter.

Every participating node executes the SC algorithm
shown in Figure 1. The main subroutine decides if the

particular node is going to be a clusterhead or not, and
the messages thread handles the input message
queue. Every decision message received by a node
is stamped with an expiration time (TTL) measured
by the local clock ����� of the node. When node

receives a

�����
	����� ��� � message from node � in its
s-neighborhood, it adds � � , in an array � 	 with a TTL
H I time after the time of reception of the message.
Node
 decides to become/remain a clusterhead at
time ����� 	 if it has received a decided(0) message
from every node in its s-neighborhood within the last
H I interval of time. The algorithm is said to have
stabilized once all the nodes in the network � have
decided. Once the network stabilizes, and there are no
further joins, failures, or migrations, the set of nodes
A with � 	 ��� constitute a maximal s-independent
set of the network. In the worst case, stabilization may
take � � ����4? ��� ��� time.

message thread:

On receiving �������������������! #"%$'&)()
if $'&+*-,.$'& (then/ *1032 ; bcast �����+�������4�5�76� 8"�$7&)*4 with 9!*;:=< .

On receiving �����������������76� #"%$'&)() > * 0 > *@?BA ��$'&+(5"�CED�F *�GIHJ %K

main:

initially
/ J 0ML ; every HJ time

If for every FONQP�R���S)
TU$'&+VW,.$7& *X ��FY"�Z� [N > * "\Z],.CED4F * then
/ * 0_^ ;

bcast �����+�����������\^` a"�$7& (with 9!*;:=< .

Fig. 1. The Start Cluster algorithm. The decided(1) message
is sent when a node decides to become a clusterhead, while
decided(0) is sent when a node decides otherwise.

B. Stability of SC

If the network topology changes owing to failure,
migration, or joining of nodes, the algorithm regains
stability, in ��� � �� ? ��� ��� time, in the worst case. We
briefly discuss the performance of the algorithm in
each of these cases.

Joins: When a new node
 joins the network
� , there are two possible scenarios that may arise.
First, if
 is within the s-neighborhood of some other
vertex � 9 A , then it receives the decided(1)
message from � and immediately decides to be

an ordinary node. Otherwise,
 is outside the s-
neighborhood of every node in A and it would
decide to be a clusterhead within H I time. Therefore,
in either case the algorithm regains stability within
���8� � time.

Failures: When node
 9 � fails, again there
are two possibilities. Let the network after the
failure be denoted �Bb . If
 �9 A , that is if
 is not a
clusterhead then its failure does not affect the stability
of the algorithm. Otherwise,
 9 A then one or
more of the nodes in B1c��
�� would become eligible to
be a clusterhead. This change may propagate across
the network, and in the worst cast a new stable
configuration would be achieved in � � ����4? ��� b ���
time.

Migrations: When an ordinary node
 �9 A
changes its physical location it can be viewed as a
combination of the above two cases. That is, it fails
in its existing cluster and joins the cluster in its new
location (or becomes a new clusterhead). On the
other hand, if a clusterhead
 9 A moves into B c �d� �
for some other clusterhead � 9 A , then the situation
is indistinguishable from the case where � migrates
into

b�� cluster. We break the symmetry using some
heuristics, e.g., the clusterhead with the larger cluster
and the lower identifier remains a clusterhead and
the other node becomes ordinary. If
 9�A then its
movement would be indistinguishable from its failure
to the nodes in B1c��
�� and this may trigger a complete
reorganization as discussed above.

Thus, under all possible scenarios the SC algorithm
regains stability within ��� � ��4? ��� ��� time. If the rate
of failures, migrations, etc., in the network is not
too large then the set A remains stable most of the
time. The Cluster control algorithm presented in the
next section relies on the stability of A to produce a
robust clustered decomposition of the network.

C. Control Cluster Algorithm

The Control Cluster algorithm (CC) determines the
minimum transmission power for each clusterheads
such that the cluster graph is connected. The idea
behind CC is similar to the cone based topology
control algorithm (CBTC) of [15]. The algorithm is
parameterized by a cone angle which can be tuned
to change the sparsity of the cluster graph. The cone
angle defines the e ��gf predicate which is the key

property that enables the clusterheads to guarantee
global connectivity.

Definition 5. For a given angle , a clusterhead

is said to satisfy the e ��gf condition if there exists an
 -cone at
 in which there is no cluster graph edge
from
 to any other clusterhead (see Figure 2).

���� ����

��������

����

		

�������� ��������
� �

�

�
��� � ��� ���

�

Fig. 2. The dark vertices are clusterheads and the light ones are
ordinary nodes. There is a cluster graph edge between the clusters� * and

� V through node � , and the direction of the edge &�$79 * ��F1
is known to S . There is no edge between

� * and
�!

because there
is no common node. Clusterhead S satisfies "$#&%(') but clusterhead* does not.

The CC algorithm proceeds in rounds; starting from
some initial value �,+ , in each round the transmis-
sion power is increased in steps, according to some
function - �/. , until the maximum power

�
is reached

or the e ��gf predicate is violated. An exception to
this stepwise power increment rule is made when an
ordinary node � requests to join the cluster. In which
case, the clusterhead increases its transmission power
in a single step to include � in its cluster.

Before presenting the algorithm more formally, we
discuss how the e �� f predicate can be efficiently
checked by a clusterhead using only local information.
As Figure 2 shows, there exists an edge between two
clusterheads
 and � , if and only if some node � is
located in the intersection of their clusters 	 - 10 .
Since the nodes possess a common sense of direction,
assuming that the nodes can also infer their distances
from signal attenuation, a clusterhead
 can derive the
direction of the common edge ���32�	 � � � to � , using
� �32 	 �(� � and � �32$4 � � � , if the latter direction is informed
by � . Once
 learns about all its common edges, the
e ��[f condition can be checked by maintaining a sorted
list 5 	 of all edges; if there exists two consecutive

elements in 5 	 whose difference is greater than ,
then
 satisfies e ��gf .

The CC algorithm (see Figure 3) has a main
subroutine that controls the periodic broadcasts
and manages the internal data structures, and a
message thread that handles the incoming mes-
sages. Each node � in the network maintains a set6 , containing an element �
 ��� � for every cluster it
belongs to. The first component
 is the unique iden-
tifier of the clusterhead, and the second component
� � ���32�, �
�� , that is, the direction of
 with respect to
� . In addition to the set

6 	 and the list 5 	 mentioned
above, a clusterhead
 also stores the highest value of
287$9 , received through a JoinReq message (described
below), in a variable called :4	 .

Message thread:

On receiving �<;��>=?=?@ "�$7& (A *;0 A * ? A ��$'& ("%&�$79!*�� * � %KBDCFEHG �JI)�LK�" A * "%$7& * with power #$MDN *
On receiving �JI+�LKE"�$7&)(5" A ()
if
/ Jg:O^ thenO * 0 O * G A &�$79!*+�J�E QPg��$7&$R "�&�$79 (�J�E � gN A (K

% sorted list

"$#&%TS)� O * 0 X &$U�N O * "VP &$UXW &$UZY\[VP$]^#
On receiving �`_a@��Vb?c+�edE"\9afLg!(+
if
/ Jg:O^ thenh * 0jik#$��� h * "�9afLg`()

main:

if
/ Jg: 2 then % ordinary node

Wait for HJ
if
A * :ml then

bcast �ona@��Vbac+�ad5"�9efLg * with power 9efLg *
9afLg * 0piQ$7C��rq]"3s�C8M���9efVg * �

if
/ J :O^ then % clusterhead

if "$#V%tS+� O *
Tu% *wv q then

% * 0pix#y���Js�CXM4�z% * a" h * h * 032

Fig. 3. Cluster control procedure. For ordinary nodes
/ J : 2

and for clusterheads
/ J :O^ .

In each round a clusterhead
 broadcasts a (Hello,
���) message with its current power � 	 and waits for
Acks. Upon receiving an (Ack, ��� , , 6 ,) from
node � , a clusterhead
 transforms the directions in6 , to its own coordinate system and adds them to
the list 5 	 in sorted order. The clusterhead checks

the e ��[f condition by computing differences between
consecutive members of 5:	 . If the e ��gf condition is
satisfied and the transmission power is less than the
maximum power

�
, then the tentative transmission

power for the next round is increased according to
some function - �/. . The actual power used for broad-
cast is the maximum of this tentative power and : 	 .

An ordinary node
 upon receiving a (Hello,
��� ,) message adds �(��� , ��� �32 	 �d� ��� to its membership
set

6 	 and transmits an (Ack, ���4	 � 6) message
with power . ��	 . The power . ��	 is locally
determined by
 such that it is sufficient to either
reach some intermediate node that can forward the
message to � , or it reaches � directly. If it times out
before receiving a Hello message then it sends a
(JoinReq, 2 7y9) message with power 287y9�	 to the
nearest known clusterhead. If there is a clusterhead
 b
within � distance from
 , then
 sends the JoinReq
to

b , otherwise
 performs a discovery process by
broadcasting JoinReq with increasing power until
it receives a Hello message.

For small values of , the e ��gf predicate is easier
to satisfy, and the broadcast power of a clusterhead
has to be high in order to discover nodes which
are farther away and learn about other clusterheads.
On the other hand, with large values of the e �� f
condition might be violated with a small broadcast
radius, but this may result in disconnected clusters.
Therefore, we have to find the maximum value of
which ensures connectivity of the cluster graph. In
the next section we derive this value of for a static
network.

V. OPTIMAL CONE ANGLE FOR POWER

EFFICIENCY AND CONNECTIVITY

Given a network � � ��� ��� � and a set A E5� of
clusterheads, let & �� and & f� be the induced cluster
graphs corresponding to every � 9 A transmitting
with maximum power

�
and the power assigned by

CC() algorithm, respectively. We shall prove that for
�� 4" f 4 �
�� ��� ��� � ���� , the cluster graph & f� is
guaranteed to be connected if & �� is connected. The
value 4" f 4 corresponds to the angle at the center of
a circle with radius

�
subtended by the intercepts of

an arc of radius
 � drawn with the same center with
another circle of radius

�
touching the first circle (see

Figure 4). For proving the above statement we make
use of the following geometric Lemma:

�
� �

���
	��
�

Fig. 4. Geometric interpretation of the maximal cone angle # :�������� [�� [��� : the angle subtended at the center of a circle from
the intercepts of an adjacent circle with the same radius and a
concentric circle with double the radius.

Lemma 1. Consider a point � on the line segment �

such that � ���D� � � and �
 � � � � , and any point
� on the line ��� making �����
 � ����� ��� � ���� . If � =
� � � � =�� �
 � , then ?>� � ��� � � � � � �
 � � � � .

Proof. See the appendix.

Theorem 1. If �
������ ��� � ���� then & f� preserves
connectivity of & �� ; for ����
39 A , f, and f	 are
connected iff �, and �	 are connected.

Proof. Given the same set of clusterheads A , the
induced cluster graph & f� is a subgraph of the cluster
graph & �� , therefore it is clear that if f, �! f	 are
connected then �, �!

�
	 must also be connected. We

prove the converse as follows.
Suppose cluster graph � �� is connected while � f �

is not. So, there exists at least one pair of clusters, such
that there is no path between them in & f� . We select
one such pair f, �! f	 , for which the distance between
their clusterheads, � � ��� �d� ��
�� is the smallest. Since & ��
is connected we know that ��� ��� �d� ��
�� �
 � and that
there exists a vertex � 9 �, - �	 . Since � �9 f, -. f	 ,
it follows that the radius of the clusters f, and f	
cannot both be equal to

�
. At least one of the radii is

less than
�

, let us assume without loss of generality
that 2 , = � , therefore 2 	 � � . Then, � must have
terminated the %�� �� with e ��]f � 5 , �/� ��!�" #%$, that
is, there exists an edge between � and some other
clusterhead within the cone bisected by �
 (as shown
in Figure 5). Let � be such a cluster head that makes
the angle & minimum. Therefore, & � ����������� ���� , and� � � 2�,(' 2 0 � 2�,)' � = �
 . From Lemma 1 we
know that either � 9 �0 or
/9 �0 . In other words,
 �0 and �	 are connected in & �� .

Since � = � � = �
 , and & = � � , it follows

that �
 = �
 . By our assumption f0 and f	
are not connected. So we have a pair of clusters
 �, �!

�
0 which are connected in & �� but not in & f� ,

with � � ��� �d��� � �+= � � ��� �d� ��
�� . This contradicts our
assumption that � ��
 were the closest such pair of
disconnected clusterheads.

To show that the above value �
������ ��� � ���� is in
fact the maximum possible value ensuring connectiv-
ity, we construct a simple counterexample. Consider
the scenario where '
 � is used as the cone angle for
the e �� condition (Figure 5). The clusters �, and �	
are connected through vertex � . Owing to the presence
of the node � within

�����
distance of � , there is an

edge between f!; ���, and f!; ���0 in the upper half & ' � -
cone. Similarly, there is an edge between f!; ���, and
 f!; ���� . Clusterhead � , therefore, violates the e ��@f!; ���
condition and terminates the cluster control algorithm
with a � ����	 � � �	�
� . As a result � �93 f ; ���, , and
 f!; ���	 is not connected to the rest of & f ; ��� .

x

�

�

�

�

������
������

Fig. 5. Clusterhead uses a "$#&%tSVY���� criterion which makes its
radius � W! , disconnecting cluster

� * .

A. Optimizations

It is possible that the power assigned by the CC
algorithm described above is too high for a cluster-
head after new nodes join in its neighborhood. In
this section we present some optimizations to the
basic CC algorithm to improve its efficiency under
such dynamic conditions. Essentially, a clusterhead

should shrink its broadcast radius from a high value
� b	 to a lower value �
	 when the member nodes at a
distance farther than � ��� 	 � do not contribute to 5 	 .
The Shrink back procedure, shown in Figure 6 is
invoked by the cluster control algorithm to reduce the
transmission radius.

Shrink back(c):" *;0 A * P * N � *@T � A (: A $7&+*�K4 %K"$#* 0 � *&% " *
& * 0pix#$��(('*),+4&�$.-#Z8��S5" *
& # * 0pix#$� (('*)0/+ &�$.-#Z8��S5" * O #* 0 A &�$79!*)�J�� P ��$7&$R "�&�$79 (�J�E � [N A (T &�$.-#Z8� * "\S) &1.& # * W M!K
if �<"$#V% S � O *4 0243\"$#V% S � O #* T ��& # * W M1,.&+*�

then &��z% * �0M& # * W M

Fig. 6. Shrink back optimization. M is a parameter of the procedure
which determines how aggressively the broadcast radius is cut
down.

Clusterhead
 keeps record of the distance to the
farthest member node which actually contributes to-
wards satisfying the e �� predicate. The sets 5 	 and
5 b	 are complementary subsets of 	 : 5.	 is the set
of nodes which do not belong to any other cluster; � 	
and � b	 are the corresponding distances to the farthest
node. Clearly,
 can not shrink the cluster radius below
��	 , because that would make some of the nodes in
5 	 cluster-less. The set 5 b	 is the set of directions
in which
 has edges via nodes which are closer than
� b	 � . . The the broadcast radius is reduced to a � b	 � . ,
if this does not create new gaps, and if the new radius
does not exclude any of the nodes in 5 	 .

VI. SIMULATION

In this section we study the performance of the clus-
tering service through simulation based experiments.
We observe the cluster graph topologies generated by
setting different values of the parameters � and and
the robustness of the algorithm under dynamic changes
in the network topology due to node joins and failures.

Our discrete event simulator, implemented in C++,
emulates individual mobile nodes with asynchronous
communication. For the results presented in this sec-
tion we have used a set of 100 nodes placed in a
2-dimensional plane of 300x300 square units. The
nodes are distributed randomly in the plane such that
each node lies within the maximum broadcast distance
of at least one other node; this guarantees that the
underlying network is connected when all the nodes
broadcast with maximum transmission power.

A. Cluster Graph Topology

One of the main advantages of our clustering service
is that, one can control the type of clustered decompo-
sition of the network by appropriately setting the � and

(a) � =20 =1.01 (b) � =30 =1.01 (c) � =30 =1.57

(d) � =40 =0.8 (e) � =60 =1.01 (f) � =50 =1.57
Fig. 7. Generated Network Topologies for Different Values of - and # . Dark dots are the ordinary nodes, and light dots with outer
concentric circle are the clusterheads. A line between nodes * and S indicates the presence of an edge between clusters

� (and
� * in

the cluster graph.

 . Figure 7 shows the qualitatively different clusterings
that were generated by the service on the same distri-
bution of mobile nodes. In Figure 7(a), the minimal
distance between clusterheads �/�
 � is small, as a
result a large fraction of the nodes in the network are
clusterheads. The cone angle is set to � ��� � radians,
which is close to the maximal cone angle (� ��� � ���
radians) prescribed by Theorem 1, and therefore the
cluster graph is sparsely connected. In comparison, the
cluster graph of Figure 7(b) with �.� � � has fewer
clusterheads but they are more densely connected.
Increasing the cone angle keeping � fixed at � � we
observe (Figure 7(c)) that the sparsity of the cluster
graph increases. Increasing � to � � and reducing the
cone angle to � ��� results in a further decrease in
the number of clusterheads and gives the densely con-
nected cluster graph of Figure 7(d). With larger values

of , the e ��gf predicate in the CC algorithm is violated
with a lower power level for clusterheads which are
surrounded by other clusterheads, and therefore the
resulting cluster graph is sparser with smaller clusters.
Comparing Figures 7(e) and 7(f) to Figures 7(b)
and 7(c) respectively, we observe that for the same
value of , increasing � results reduction in the number
of clusterheads and an increase in the sparsity of the
cluster graphs.

In general, with larger values of � the connectivity
of the cluster graph, the size of the clusters, and
the power consumed increases, while larger values
of decreases connectivity and size of the clusters.
Therefore, based on the requirements of a particular
application the values of � and can be so chosen as
to produce desirable clustered decomposition.

B. Average Cluster Degree

Unlike sparsity (the maximum cluster degree), the
average cluster degree measures how well the cluster
graph is connected, on an average. Average cluster de-
gree is an important robustness metric because it tells
us the number of neighboring clusterheads that can fail
before an average clusterhead gets disconnected from
the rest of the cluster graph. The degree of cluster 	
is obtained simply by counting the number of elements
in the set 5 	 . We take the average over all clusters and
observe this value over time as the service stabilizes
(Figure 8).

Our first observation is that, with � � � � the stable
value of the average cluster degree is higher than that
with � �
 � , irrespective of the value of . Secondly,
for each value of � , the average cluster degree is higher
for a smaller value of . Both these observations are in
accordance with our expectations as explained in the
previous section. It is to be noted that, for large values
of � , a smaller fraction of clusterheads are located
at the edge of the grid. Since, these edge clusters
have fewer neighboring clusters, and therefore a lower
cluster degree, the average degree of the cluster graph
is lower than what would be expected otherwise.

Fig. 8. Average degree of the clusterheads.

C. Stability after Failures and Joins

In this section we study the robustness of the clus-
tering service under dynamic changes in the underly-
ing network topology. The network topology changes
when mobile nodes move, fail, or new nodes join
the network, and we are interested to examine the
stabilization time, that is, how quickly the remaining

nodes of the network reach a agreeable state where
they are organized into a cluster graph. In the simulator
we measure stabilization time as follows: First we let
the CC algorithm stabilize on the initial network of
100 randomly distributed mobile nodes; then, a certain
number randomly chosen existing nodes are failed or
new nodes are added in random locations, and we
observe the number of rounds required for the network
to re-stabilize. The number of execution rounds for
re-stabilization give us an indirect measure of time
required by the algorithm to reorganize the network.

0 2 4 6 8 10 12
30

40

50

60

70

80

90

Rounds

N
um

be
r

of
 s

ta
bl

e
no

de
s

Stabilization after failure of 10 nodes from a network of 100

s=40 a=3
s=40 a=1
s=20 a=3

0 2 4 6 8 10 12
20

30

40

50

60

70

80

Rounds

N
um

be
r

of
 s

ta
bl

e
no

de
s

Stabilization after failure of 20 nodes from a network of 100 nodes

s=40 a=3
s=40 a=1
s=20 a=3

Fig. 9. Stabilization after node failures. Large and heavily
overlapping cluster stabilize faster than small and sparse clusters.

The plots in Figure 9 show the changing number
of stable nodes in the network after the set of nodes
have failed. Initially the number of stable nodes de-
creases as the effect of failure propagates through the
network, but this effect stops and eventually the new
cluster structure emerges leading to stability of all

the remaining nodes in the network. As expected, we
observe larger clusters with greater overlaps (� � � �)
regain stability more quickly than smaller clusters
(� �
 �). A smaller results in larger clusters and
more overlaps, but also takes longer time for the
cluster control algorithm to terminate, so the effects
of on the the network stabilization time is complex
and dependent on the number of failed nodes.

We performed a similar set of simulations with
new nodes joining the stable network of 100 mobile
nodes (Figure 10). There are two opposing effects that
determine the total time to stabilize the network in this
case: first, with larger clusters (� � � �) larger fraction
of the new nodes turn out to be ordinary nodes and
therefore are stable right when they join the network.
This makes the initial number of stable nodes large
for large values of � . Secondly, small and densely
connected clusters (���
 � , +� � ��� �) react more
sharply to new nodes than large and sparse (� � � � ,
 � �) clusters.

0 2 4 6 8 10 12 14 16 18 20
101

102

103

104

105

106

107

108

109

110

111

Rounds

N
um

be
r

of
 S

ta
bl

e
N

od
es

Stabilization After Nodes Join

s=20 a=1.01
s=40 a=0.5
s=40 a=3
s=40 a=1.01

Fig. 10. Stabilization of algorithm after new nodes join the
network. With larger values of - , fewer nodes are unstable initially,
but the response of the clusterheads in absorbing the new nodes
is also slower.

D. Network Longevity

Our last set of simulation results deal with the
longevity of the mobile network with the nodes ex-
ecuting the clustering algorithm. We assume that each
node is equipped with identical battery packs. The
battery power consumed to transmit over a distance
� is an ����� degree function of � , where
 � � � � .
For this simulation we assume that no new nodes join
the network, the only failures are due to battery power

outage, and that the nodes are static. Typically, the
ordinary nodes broadcast infrequently and over short
distances and the clusterheads broadcast frequently
over longer distances. Therefore, clusterheads would
typically run out of battery and die sooner than the
ordinary nodes. Once a clusterhead dies, an ordinary
node takes up the job of being the clusterhead and
the cycle continues until the very last node runs out
of power. The early expiration of the clusterheads can
be mitigated by systematically rotating the broadcast
responsibility of the clusterhead within the cluster,
however we have not implemented this modification
in our algorithm in presenting the following results.

Figure 11 shows the number of surviving nodes
as the execution of the algorithm progresses over
time. With large, dense clusters (�/� � ���� ��� ��� �),
there is a distinct ’knee’ in the curve beyond which
the number of surviving nodes diminish sharply. In
contrast, sparser clusters (�>� � ���� � �) result in a
gradually degrading network. Further, when the (� �
� ����1� � ��� �) curve starts to drop at the ’knee’ point,
the number of surviving nodes on (� � � ����>� �) is
already down to 45. Therefore, form the point of view
of longevity, the preferred type of clustering would be
determined by the type of degradation desired of the
network.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

110
Node Longevity

Time Elapsed

P
er

ce
nt

ag
e

of
 li

ve
 n

od
es

s=40 a=3
s=40 a=1.01
s=20 a=3

Fig. 11. Lifespan of network executing the clustering algorithm.
There is a distinct knee in the curve for large dense clusters(- :� 2+"3# : ^�� 2+^), whereas sparse clusters (- : 2)" � 2)"3# :��) result
in a graceful degradation of the network.

VII. CONCLUSIONS

The merits of a clustered decomposition for a given
network graph depends on the MANET application

which uses the clustering. For most applications,
however, it is desirable to have a connected cluster
graph. In this paper we have proposed an adaptive
clustering service that can be tuned to suit particular
MANET applications. The cluster control algorithm
minimizes the transmission power of the clusterheads
while guaranteeing that the produced clusters are
connected whenever it is physically possible.

The clustering service does not rely on global
location information. Two parameters � - the inter-
cluster distance and - the maximum allowed angular
gap between neighboring clusterheads, are used to
control the size and sparsity of the clusters produced
by the service, and thereby achieve the desired trade-
offs among latency, energy efficiency, and robustness.
We have shown that
�� ��� ��� � ���� (approx. 1.0107 rads)
is the optimal value of which minimizes the trans-
mission power of the clusterheads while guarantee-
ing connectivity of the cluster graph, provided that
the underlying network is connected when all nodes
broadcast with maximum power. We have presented
experimental results showing the qualitatively differ-
ent type of clustered organizations that can be ob-
tained from the algorithm. Our simulation experiments
demonstrate that the algorithm rapidly recovers from
instability caused by node failures and joins.

The empirical evidence presented here suggests that
the algorithm has nice self stabilization properties; in
the future we plan to rigorously analyze its behavior
under dynamic topology changes and also extend the
results to three dimensional distribution of mobile
nodes. Our long term goal is to focus on particular
MANET applications (e.g., tracking, routing), and
use this clustering algorithm in conjunction with the
chosen application to examine the performance of the
application as a function of the cluster metrics.

VIII. ACKNOWLEDGMENTS

The authors would like to thank to Ben Leong and
Hari Balakrishnan for their comments and suggestions
on this work.

REFERENCES

[1] R. Prakash A. Amis, T. Vuong, and D. Huynh. Max-
min d-cluster formation in wireless ad hoc networks. In
Proceedings of IEEE INFOCOM, pages 32–41, March 1999.

[2] D. J. Baker and A. Ephremides. The architectural organiza-
tion of a mobile radio network via a distributed algorithm.
IEEE Transactions on Communications, COM-29(11):1694–
1701, Nov 1981.

[3] S. Basagni. Distributed clustering for ad hoc networks.
In Proceedings of the IEEE International Symposium on
Parallel Architectures, Algorithms, and Networks (I-SPAN),
pages 310–315., Perth, Western Australia, June 1999.

[4] R. Choudhury and N. Vaidya. On ad hoc routing using di-
rectional antennas. In Illinois Computer Systems Symposium
(iCSS), 2002.

[5] J. S. Deogun, D. Kratsch, and G. Steiner. An approximation
algorithm for clustering graphs with dominating diametral
path. Information Processing Letters, 61(3):121–127, Febru-
ary 1997.

[6] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-
grained network time synchronization using reference broad-
casts. SIGOPS Oper. Syst. Rev., 36(SI):147–163, 2002.

[7] A. Ephremides, J. E. Wieselthier, , and D. J. Baker. A design
concept for reliable mobile radio networks with frequency
hopping signaling. In IEEE, volume 75, pages 56–73, Jan
1987.

[8] Yaacov Fernandess and Dahlia Malkhi. K-clustering in
wireless ad hoc networks. In Proceedings of the second ACM
international workshop on Principles of mobile computing,
pages 31–37, Toulouse, France, 2002. ACM Press.

[9] M. Gerla and J. Tsai. Multicluster, mobile, multimedia
radio network. ACM/Baltzer Journal of Wireless Networks,
1(3):255–265, 1995.

[10] P. Gupta and P. Kumar. Capacity of wireless networks. In
IEEE Transactions on Information Tehory, volume IT-46,
pages 388–404, 2000.

[11] M. T. Hajiaghayi, M. Bahramgiri, and V. S. Mirrokni.
Fault-tolerant and 3-dimensional distributed topology control
algorithms in wireless multi-hop networks. In Proceedings of
the 11th IEEE International Conference on Computer Com-
munications and Networks (IC3N), pages 392–398, Miami,
Floria., October 2002.

[12] Vikas Kawadia and P. R. Kumar. Clustering by power control
in ad hoc networks. In Proceedings of IEEE MILCOM,
Atlantic City, NJ, October 1999.

[13] P. Krishna, N. Vaidya, M. Chatterjee, and D. Pradhan. A
cluster-based approach for routing in dynamic networks. In
ACM SIGCOMM Computer Communication Review, pages
49–65, April 1997.

[14] Taek Jin Kwon and Mario Gerla. Clustering with power
contol. In Proceedings of IEEE MILCOM, Atlantic City,
NJ, October 1999.

[15] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and
Roger Wattenhofer. Analysis of a cone-based distributed
topology control algorithm for wireless multi-hop networks.
In Proceedings of the twentieth annual ACM symposium on
Principles of distributed computing, pages 264–273. ACM
Press, 2001.

[16] Chunhung Richard Lin and Mario Gerla. Adaptive clustering
for mobile wireless networks. IEEE Journal of Selected
Areas in Communications, 15(7):1265–1275, 1997.

[17] A. K. Parekh. Selecting routers in ad hoc wireless networks.
In ITS, 1994.

[18] David Peleg. Distributed computing: a locality-sensitive
approach. Society for Industrial and Applied Mathematics,
2000.

[19] Ram Ramanathan and Regina Hain. Topology control of
multihop wireless networks using transmit power adjustment.
In INFOCOM (2), pages 404–413, 2000.

[20] Theodore Rappaport. Wireless Communications: Principles
and Practice. Prentice Hall PTR, 2001.

[21] Roger Wattenhofer, Li Li, Paramvir Bahl, and Yi-Min Wang.
Distributed topology control for wireless multihop ad-hoc
networks. In INFOCOM, pages 1388–1397, 2001.

[22] Bhaskar Krishnamachari Yasser. The energy-robustness
tradeoff for routing in wireless sensor networks.
url:citeseer.nj.nec.com/552652.html.

APPENDIX

Proof of Lemma 1.

Proof. Draw circles � and 5 with radii
�

and centers
� and
 , respectively. Let the points of intersection of
��� with � and 5 be . , � , and ��b respectively. We
consider three cases based on the position of � in ���
(see Figure 12).

v

(a) (b)

�
�

�

�

���	

�

� �

�

�
�

�

�

�

�

� �
� �

�

�
�	

�

Fig. 12. Nodes are present at * , S , � , and F which is any point
on *�� , with P * SXP[, P * F P .(a) Cases 1 and 2: node F is located
either inside circle � or

"
. (b) Case 3: node F is between M and�

but outside both � and
"

.

Case 1: � is located to between � and � . Let � b
be the closest possible location of � from � . Since
��� � & = � ���� and � � � b � = � �
 � it follows that �����
and ����� ��� � ���� . Using ��� �"!# ,�	 # �$��� �&%# 	 0&/ # , we get �
 � b ���
� �
 � �
 � � . Therefore, for any location of � in � � b ,
� �
 ��� � .

Case 2: � is located between . and � . From � ���D� ��
, � � �*� � , and & = � � , it follows that � � . � � � .

Therefore, for any location of � in � , � �k. ��� � .
Case 3: � is located in between . and � and outside

of both � and 5 (Figure 12(b)). First we show that
� �'� ��� � . Let ��� be a tangent to 5 on the same side of
�
 as � � . Since � �
J� �
 � , it follows that � ����� � � .

Therefore � �'� � � � . From case 2 it is known that
� � . � � � , it follows that for any position of � between
 and � , � � � ��� � .

