A Variability-Based Approach to Reusable and Efficient
Model Transformations

Daniel Striiber!, Julia Rubin?, Marsha Chechik®, and Gabriele Taentzer!

1 Philipps-Universitit Marburg, Germany
2 Massachusetts Institute of Technology, USA
3 University of Toronto, Canada
{strueber, taentzer}@mathematik.uni-marburg.de,
mjulia@csail.mit.edu, chechik@cs.toronto.edu

Abstract. Large model transformation systems often contain transformation
rules that are substantially similar to each other, causing performance bottle-
necks for systems in which rules are applied nondeterministically, as long as one
of them is applicable. We tackle this problem by introducing variability-based
graph transformations. We formally define variability-based rules and contribute
a novel match-finding algorithm for applying them. We prove correctness of our
approach by showing its equivalence to the classic one of applying the rules indi-
vidually, and demonstrate the achieved performance speed-up on a realistic trans-
formation scenario.

1 Introduction

Model-driven development emerged as a means to combat complexity of large-scale
software development through the use of abstraction and refinement. Model-to-model
and model-to-code transformations are key enablers of this development paradigm.
While there have been many advances in understanding the formal properties of model
transformations and devising their development environments, research on maintain-
ability is still in preliminary stages [1]. Large model transformation systems often con-
tain transformation rules that are substantially similar to each other. The most frequently
applied mechanism for creating such rules is copying and modifying existing variants.
This presents a maintainability obstacle (e.g., all related rules must be updated when a
bug is found). The maintainability concern is often combined with a performance con-
cern: In model-driven architecture [2], models go through a series of transformations
such as optimizations and code generation, each introducing computational effort.
Inspired by product line engineering approaches [3, 4], a number of existing works,
e.g., [5-7] tackle the reuse problem by introducing variability in model transformation
rules. These works focus on representing a set of similar rules in a compact manner, pro-
viding the user with the ability to later configure the rules and produce specific variants.
Rule variants are then matched and applied individually, using the classic approach.
Since the number of desired configurations of each rule depends on the transformation
input which may not be known upfront, the number of configured variants might be
high. Thus, even though these works address the maintainability concern by providing
a more compact representation of rule sets, they do not offer any performance-related
benefits: all variants of a rule must still be considered by the transformation engine.

(© Springer-Verlag Berlin Heidelberg 2015
A. Egyed and L. Schaefer (Eds.): FASE 2015, LNCS 9033, pp. 283-298, 2015.
DOI: 10.1007/978-3-662-46675-9 19

284 D. Striiber et al.

In this paper, we instead propose to augment the transformation engine itself by mak-
ing it variability-based. We handle a scenario where all transformation rules need to be
considered as long as one of them is applicable. Such an approach is useful in model
refactoring suites or translators transforming models between a specific source and tar-
get languages. We introduce a novel algorithm for resolving variability automatically
during the rule matching process, i.e., determination of application sites in the input
model. Our central idea is to find matches for the common parts of all rule variants first
and then to use them as starting points for the matching of the variable parts. We show
that the transformation output produced by our algorithm is equivalent to the one pro-
duced when configuring and matching the rules individually, while our approach offers
a substantial improvement in performance.

We present our approach to variability-based transformation using graph transfor-
mations [8], and, specifically, make the following contributions: (1) a formalization
of variability-based rules, investigating their syntax and application semantics on the
basis of graph transformation and proving their equivalence to the application of the
corresponding classic rules; (2) a novel match-finding algorithm achieving a perfor-
mance gain when compared to matching the rules individually; (3) an implementation
of variability-based model transformation on top of Henshin, a rule-based model trans-
formation language and tool; (4) an evaluation based on a real-life model transformation
system that gives evidence of that performance gain.

The remainder of this paper is structured as follows: We introduce a motivating sce-
nario in Sec. 2. In Sec. 3, we give the necessary background and, in Sec. 4, formally
define the concept of variability-based graph transformation. We describe the algorithm
for directly applying variability-based transformations in Sec. 5 and its implementa-
tion in Henshin in Sec. 6. Is effectiveness for model transformations when compared to
manipulating a corresponding set of classic model transformation rules is evaluated in
Sec. 7. In Sec. 8, we compare our approach with related work. We conclude in Sec. 9
with the summary and discussion of possible future directions.

2 Motivating Example

In this section, we give an example of variability-based transformation rules and their
application. Our example is inspired by a set of real-life rules for optimizing and sim-
plifying first-order logic expressions [9], aimed to improve performance of engines that
process the expressions, e.g., theorem provers or SAT solvers.

Fig. 1 shows four transformation rules that simplify first-order logic formulas by re-
moving redundant not symbols and thus reducing the “depth” of a formula. We present
the rules in an integrated form, with the left- and right-hand sides of the transformation
being represented in one graph. The elements of this graph have three kinds of labels:
delete, preserve, and create. Elements labeled with delete and preserve are matched to
an input model. The former are removed while the latter are kept in the output. Elements
labeled with create just specify additions to the output.

For the example in Fig. 1, Rule A removes a —=V— segment of a formula and trans-
forms it into an 3 segment. This is done by removing nodes #2, #4 and their corre-
sponding edges, replacing the quantifier of node #3 to be “exists” (node #7) rather
than “forall” (node #8), and connecting the modified quantifier to the enclosing and the

Variability-Based Transformations 285

Rule A: Re RedundantNot-ReplaceForalllnBasi Rule B: RemoveRedundantNot-ReplaceExistsInBasic

«preserve»
:BasicFormula

«preserve»
BasicFormula

«delete»
args

«delete» 2 «deleten |(PTESEIVE? 6
BasicFormula €eLe . Operator
operator
n

g
«delete» 2 «deleten | <PTESEIVE? 6
:BasicFormula €eLe . Operator
operator

name="NOT" ame="NOT"
«create» |«delete» «create» |«delete»
ar args «preserve» v args args «preserve» 8
. :Quantifier " :Quantifier

« » = = « » 7 i

«preserve» «createy f - me="EXISTS «preserve» sjucreatey i me—"FORALL
h quantifier » quantifier

:QuantifiedFormula :QuantifiedFormula

«delete»
quantifier

«deletex»

Quantifier’] «preserve»

«preserve»
:Quantifier
«create»|

nested

«create»
nested

«delete»
args args
Rule C: RemoveRedundantNot-ReplaceForalll ified Rule D: RemoveRedundantNot-ReplaceExistsInQuantified

«preserve» 1
:QuantifiedFormula

«preserve»
:QuantifiedFormula

«delete»
nested
«delete» 2| deleten |(RTESEIVEY 6 «delete» 2] deletey |CDrESEIVEY 6
:BasicFormula OPErator :Operat:)r _ BasicFormula Operator :Operatﬂor _
| | [name="NOT' [| [name="NOT
«create» |«delete» «preserven 7 «createn | «deleter «preserve» 8
args args
nested & -Quantifier nested & :Quantifier
«preserve» jucreater g e EXISTS «preserver splcreaten o FORALL”
h quantifier . quantifier
:QuantifiedFormula :QuantifiedFormula
«delete» «delete»

«preserve» «preserve»

:Quantifier

name="EXISTS"

:Quantifier

name="FORALL"

«createy| «delete»

«createn| «deleten
nested

nested nested nested
«preserve» 5| |«delete» 4 «preserve» 5
:Formula :BasicFormula :Formula

«delete» 4
:BasicFormula
«delete»

args args

«delete»
operator

«delete»
operator

Fig. 1. Four variants of the Remove Double Negation refactoring rules

enclosed formulas — nodes #1 and #5, respectively. Similarly, Rule B removes a =3—
segment and transforms it into a V segment. Rules C and D differ from A and B in
the type and adjacent edges of the topmost enclosing formula (element #1): basic vs.
quantified. A BasicFormula has an operator and a set of argument formulas, whereas a
QuantifiedFormula has a quantifier and nests exactly one other formula. Note that there
exists a third kind of formula, PredicateFormula, that encloses no other formulas.
Fig. 2 shows a first-order logic for- Ry —
mula ¢ = (=Vz - =F(z)) A true that [BasicFormula 2~ Litera 7
J

. . . o 0 0

can be simplified using one of these ‘ ==t [Cvalue="TRUE
i ’—I—‘args'

rules, namely, Rule A. The formula is also “BasicFormula 2 e =

| operator

> :Operator
[~:Quantifier D

name="FORALL"

represented as a graph, with formula-
specific elements depicted on the left-
hand side of the figure. The right- nested]

hand side presents a library of “generic” [PredicateFormula? [:BasicFormua)
reusable first-order logic operators. Ele- i
ments #1-#5, #9, #11, #10 match with the Tl
corresponding elements #1-#8 of Rule A.
We call this assignment a match my4.
Finding m 4 triggers the application of

args

:Quantifier &

XISTS”

12

nam

Fig. 2. Example first-order logic formula ¢

286 D. Striiber et al.

Rule: RemoveRedundantNot

«preserve» [~quantified|1a| |«preserve» [quantified] 1b
:BasicFormula :QuantifiedFormula
«create» «delete» «delete» «create»
args args nested nested
[~quantified | [~quantified]|[quantified] |[quantified]
«delete» 2 «deleten «preserve» 6
:BasicFormula operator :Operator
«deletey name="NOT"
ledel quantifier [/oral/]
J/args «preserve» 7
«create» :Quantifier
«preserver 3 quantifier [-/oral/] name—"FORALL"
:QuantifiedFormula
«deleten «preserve» 8
quantifier [~/ora//| 1 |:Quantifier
«create» «deletex 0 o
nested nested| «create» name="EXISTS
«preserve» 5| |«delete» 4 quantifier [foral]
:Formula :BasicFormula
«delete»
operator
«delete»
args

Fig. 3. Variability-based Remove Double Negation refactoring rule

Rule A, producing the formula (3z - F(x)) A true. Note that m 4 is a valid match
because PredicateFormula (node #5 in Fig. 2) is a sub-type of the type Formula.

The four rules in Fig. 1 have a lot of commonalities: significant parts of their internal
structure and typing are the same. Matching each of these rules with the formula intro-
duces unnecessary complexity and may result in a performance overhead. Fig. 3 shows a
compact variability-based rule that represents all four individual rules in Fig. 1. The dif-
ferences between the classic rules are explicitly captured and represented by variation
points. Rule elements are then annotated with presence conditions — boolean formu-
las over the variation points. In the visual representation, annotations are appended in
square brackets to the names of their corresponding nodes and edges. For the simplicity
of presentation, we omit the presence condition true, e.g., for nodes #2-#8.

In our example, there are two variation points: (1) The forall variation point controls
the direction of the quantifier inversion. When set to true, it corresponds to the —V—
to 3 inversion, as in rules A and C; when set to false, it corresponds to the =3 to
V inversion, as in B and D. (2) The qguantified variation point controls the enclosing
formula and its adjacent edges. When set to true, it corresponds to a formula of the
type QuantifiedFormula with outgoing nested edges, as in C and D; when set to false, it
corresponds to a formula of the type BasicFormula with outgoing args edges, as in rules
A and B. Note that this variation pointed cannot be captured using node sub-typing, as
it affects edges with different types.

A variability-based rule can be configured by setting variation point values and then
selecting all elements whose presence conditions evaluate to true while removing those
whose presence conditions evaluate to false. In our example, configuring the rule with
forall=true and quantified=false produces Rule A in Fig. 1 while the configuration
forall=false and quantified=true produces Rule D.

Conceptually, a variability-based rule is equivalent to a set of rules for all its valid
configurations. However, the match-finding algorithm for a variability-based rule pro-
posed in this paper performs matching of all its valid configurations at once, thus pos-
itively affecting both the maintainability and the performance of the transformation
system. The algorithm automatically detects a configuration that induces a valid match

Variability-Based Transformations 287

using a two-step process. In the first step, it matches the base rule — the portion of the
rule annotated with true and representing common parts of all individual rules. For the
example in Figs. 3 and 2, this results in exactly one match, m4,., assigning elements
#2, #6, #3, #8, #7, #4, #5 to #2, #9, #3, #11, #10, #4, #5 and connecting edges accord-
ingly. In the second step, to match the variable parts the algorithm enumerates the valid
configurations (in our example, Rules A to D) and tries to match them using 7. This
yields exactly one match for Rule A: m 4. The result of match-finding is m 4 paired with
the configuration forall=true and quantified=false that enabled this match.

3 Background: Algebraic Graph Transformation

We present our fundamental approach to variability-based transformation using graph
transformation [8]. Graphs can be used to represent the underlying structure of visual
models, and their conformance to a metamodel can be formally represented by typed
attributed graphs mapped to type graphs. For simplicity, our treatment here uses basic
graphs without types, attributes, and constraints, but our implementation and evaluation
use the full power of typed attributed graphs, with inheritance, etc. since the concept
of variability-basedness is orthogonal to these features. A directed multi-graph, simply
called a graph in the following, comprises a set of nodes and a set of edges connecting
these nodes. Structure-compatible mappings between graphs can be expressed in terms
of graph morphisms which are compatible to source and target functions.

Definition 1 (Graph). A graph G = (Gn,Gg, srca,trga) consists of a set Gy of
nodes, a set G of edges, and source and target functions, srca,trga : Gg — Gn.

Definition 2 (Total (Partial) graph morphism). Given two graphs G and H, a pair
of total (partial) functions (fn, fr) with fn : Gy — Hy and fg : Gg — Hg
forms a total (partial) graph morphism f : G — H, a.k.a. morphism, if it fulfills the
Sfollowing properties: (1) fy o srcg = srcg o fg and (2) fy otrge = trgg o fg. If
both functions fn and fg are injective, f is called injective. If both functions fn and
fE are inclusions, f is called inclusion.

In the following, we recall the main definitions of the algebraic approach to graph
transformation called the gluing approach. In this rule-based approach, graph elements
occurring in the left and right-hand sides of a rule, i.e., in an interface graph, are used
to glue new elements to already existing ones.

Definition 3 (Rule). A (production) rule p = L & T 5 R consists of graphs L, 1
and R, called left-hand side, interface graph and right-hand side, respectively, and two
injective graph morphisms, | and r.

A graph rule is applied along a match m of its left-hand side to a given graph G. The
application of a graph rule consists of two steps: First, all graph elements in m(L—1(I))
are deleted. Nodes to be deleted may have adjacent edges which have not been matched,
so the rule application may produce dangling edges. Therefore, all matches m have to
satisfy the gluing condition: If anode n € m(L) is to be deleted by the rule application,
it has to delete all adjacent edges as well. Afterwards, unique copies of R — r(I) are
added. This behavior can be characterized by a double-pushout [8]. Given a rule and a
match, the resulting rule application is unique [8].

288 D. Striiber et al.

Fig. 4. Rule application by a double pushout (DPO)

Definition 4 (Rule application). Let a rule p = L 415 Randa graph G with a
total graph morphism m : L — G be given. A rule application from G to a graph H,
written G =, , H, is given by the diagram in Fig. 4 where (1) and (2) are pushouts.
We refer to G, m and H as a start graph, a match, and a result graph, respectively.

For example, the upper part of Fig. 2 shows a typed attributed graph which can
be transformed by applying Rule A from Fig. 1. The rule match w.r.t. nodes has been
described in Sec. 2. In addition, the match can be extended to edges. By rule application,
nodes #2 and #4 are deleted, together with their adjacent edges. The edge between nodes
#3 and #10 is also deleted. As no dangling edges are left behind, the gluing condition is
satisfied. Edges between #3 and #9, #1 and #3, as well as between #3 and #4 are created
yielding the graph structure for the formula ¢’ = (3 - F(x)) A true.

4 Variability-Based Graph Transformation

In this section, we introduce variability-based graphs and transformation rules and show
how to apply them. We provide proofs to all lemmas, propositions, and theorems in this
section in an accompanying technical report [10].

4.1 Variability-Based Graphs and Rules

We denote variability using presence conditions — propositional expressions over a set
of independent variation points. The set of these, called a language of presence condi-
tions, is fixed for the set of rules and not changed by transformation steps.

Definition 5 (Language of presence conditions). Given a set of variation points V,
Ly is the set of all propositional expressions over V, called presence conditions. A total
function ¢fg : V. — {true, false} is a variability configuration. ¢fg satisfies a presence
condition pc if pc evaluates to true when each variable v in pc is substituted by cfg(v). A
presence condition is valid if there is a variability configuration satisfying it. A presence
condition X is stronger than Y iff X — Y.

In the example in Sec. 2, V' = {forall, quantified}. true, —~quantified, and forall N
quantified are valid presence conditions; forall A —forall is not valid.

Definition 6 (Variability-based graph). Given a language of presence conditions Ly,
a variability-based graph G over Ly is a graph G = (Gn, Gg, srca, trge) and a pair
of functions (pcay , pCGy) Withpegy + Gn — Ly andpeg, : Gg — Ly such

Variability-Based Transformations 289

Gr —"z G 6 .y
trg
Ly Lv
Fig. 5. Variability-based graph Fig. 6. Variability-based graph morphism
that (1)Ve € Gg-(pcg,(e) = peay(sreg(e))and(2)Ve € Gg-(peg,(e) =
peay (trga(e))) (see Fig. 5). For brevity, we conflate pc,, and pcay into a single
function pcg : (Gny UGE) — Ly assuming that Gy NGg = (.

This definition ensures that the presence condition of each edge is stronger than or
equal to the presence conditions of both its source and target nodes. Note that pcg,, and
pceg, are total functions, i.e., all graph elements are annotated with presence conditions.
Elements which are always present are annotated with frue. Thus, any graph G without
variability can be considered variability-based by defining Vo € G - pcg(x) := true.

For example, the left-hand side of the variability-based rule in Fig. 3, i.e., all pre-
served or deleted graph elements, forms a variability-based graph. All graph elements
without annotation are mapped to the presence condition true, while nodes #la and
#1b and the adjacent edges as well as edges outgoing from node #3 are mapped to the
depicted presence conditions.

In the following, we ensure that morphisms and rules over variability-based graphs
preserve existing presence conditions.

Definition 7 (Variability-based graph morphism). Given two variability-based
graphs G and H over Ly as well as a graph morphism f : G — H, f is a variability-
based graph morphism if pcy o f = pcg (see Fig. 6).

Lemma 1 (Category of variability-based graphs). Given a fixed Ly, variability-
based graphs and graph morphisms over Ly form a category.

Definition 8 (Variability-based rule). Given Ly, a variability-based rule p = L L
IS Rover Ly consists of a span of two variability-based graph morphisms [and 7
over Ly . The underlying rule of pisp = (L PRy SN R).

For example, Fig. 3 shows a variability-based rule where all preserved graph elements
do not change their presence conditions.

4.2 Application of Variability-Based Rules

We now show how to apply variability-based rules: (1) either by flattening them to a set
of classic rules and applying a maximal among them in the classic way, or (2) directly,
using a suitable variability configuration to identify the corresponding match. We then
prove the equivalence of these two approaches.

Variability-Based Transformation through Flattening. We begin by showing how a
variability-based rule can be flattened, i.e., represented by a set of classic rules.

290 D. Striiber et al.

Definition 9 (Flattening of variability-based graph). Let a variability-based graph
G over Ly be given. For each valid presence condition ¢ € Ly, G, =
(Gens Geg, STCe, trge) is the flattened graph iff (1) Vn € Gy -n € G.y ifc =
peay(n); (2)Ve € Gg-e € G, ifc = pegp(e); and (3) src. = srcG|GCE and

trge = trgcla. - Fla((G) is the set of all flattened graphs: {G | c € Ly A ¢ is valid}.

That is, a flattened graph G for presence condition ¢ consists of those elements of Ly
which are annotated by presence conditions implied by c. Note that different conditions
can yield the same flattened graphs if the same set of used presence conditions is im-
plied. The set of flattened graphs does not contain graphs for presence conditions equal
to false since no variability configurations satisfy it.

For example, flattening the left-hand side L of the rule in Fig. 3 yields a set of
gTaPhS COHtaiHing the left-hand sides Lfomll/\quantiﬁed,L—‘fomll/\quantiﬁewLforall/\—\quantiﬁed
and L, aiinguaniifea Of all the rules in Fig. 1 as well as the intersection of all these —
the base left-hand side L. In addition, F lat(ﬁ) contains four graphs where only one
of the variation points is bound. For all other valid presence conditions pc € Ly, Ly

is equal to one from this list.

Lemma 2 (Smallest graph in flattening). G, is the smallest subgraph of G in

Flat(G).

The flattening of graphs can be lifted to graph morphisms and rules straightforwardly,
yielding the rules ordered by the implication of their presence conditions to ensure that
application of larger rules, modeling more specific cases, is attempted first.

Definition 10 (Flattening of variability-based graph morphism). Ler a variability-
based graph morphism f : G — H be given. Flattening of f is Flat(f) = {f. : G. —

H.|ce€ Ly A c isvalid} with G, € Flat(G), H. € Flat(H) and f. = f|a..

Definition 11 (Flattening of variability-based rule). Given a variability-based rule
p= LE TS Rover Ly, we can apply the flattening of morphisms twice: Flat(p) =
({pe: Le 4= I, 25 R | c € Ly A c isvalid}, <) with l. : I, — Le € Flat(l), v, :
I. — R, € Flat(+). For the resulting rule set, a partial order between rules is defined
through implication between their presence conditions: p., < pe, iff (ca = ¢1).
Rule pirye € Flat(p) is also called base rule.

For example, flattening the rule in Fig. 3 yields a set containing the four rules shown
in Fig. 1 as well as their common maximal sub-rule (being the base rule) — the rule in
Fig. 3 with only elements annotated by true.

The base rule is smaller than all the other rules in the set w.r.t. the partial order <.
All rules of Fig. 1 are incomparable to each other. The additional four rules are larger
than the base rule but smaller than the rules in Fig. 1.

Definition 12 (Ordered rule set). An ordered rule set R = (Ryuyes, <) consists of a
set Ryuies of rules and a partial order < over this set.

Definition 13 (Application of an ordered rule set). Given an ordered rule set R and
a graph G, the application of R to G is the set of rule applications: Trans(R,G) =

Variability-Based Transformations 291

L - =2 domm, (L) L — Lege

m
-~ ldomm i =

G

Fig. 7. A match induced by variability configuration

{G =pm H} withp € Rues,p = (L PLIN SN R) and a match m : L — G and
V' € Ryues withp' > p : =Famarchm’ : L' — G with m’(L") D m(L).

For example, for the graph of formula ¢ in Fig. 2, there is exactly one match of base
rule py.. However, this rule is not maximal — Rule A = pforann—quaniifiea in Fig. 1 can be
matched as well. This match includes the match of the base rule, i.e., it is larger, and
there is no larger one. For the graph structure of the formula ((—Vz - = F(z)) A true) A
(=Vx - =F(x)) A true), Rule A can be applied twice and there are no larger rules that
match.

Direct Application of Variability-Based Rules. In the following, we consider the di-
rect application of variability-based rules by finding a suitable variability-based match
on-the-fly. The central task is to find a variability configuration such that the part of
the left-hand side that can be matched is locally maximal, i.e., the match of a rule part
cannot be extended by variable parts. If the resulting partial morphism of the left-hand
side to graph G satisfies the gluing condition for the corresponding flat rule, the rule
application can take place.

Definition 14 (Maximal partial morphism). Given two graphs G and H, let PM¢g g
be the set of all partial graph morphisms from G to H. A partial morphism m € PM
is maximal if Vm' € PM - =(dom, (G) D dom, (G)).

Definition 15 (Variability-based match). Given a variability-based rule p over Ly
and a graph G, a variability-based match m = (m, c¢fg) over Ly consists of a maximal
partial morphism m € PM, ¢ and a variability configuration c¢fg : V — {true, false}
such that Yz € dom,, (L) - cfg satisfies pcr(x). cfg induces a rule peg, s.t. cfg satisfies
all presence conditions occurring in p.f,. Moreover, reducing m to its domain, we get a
morphism meg, which has to satisfy the gluing condition w.r.t. pes, (see Fig. 7).

To apply the rule in Fig. 3 to the graph for formula ¢ in Fig. 2 by mapping to the same
elements as Rule A in Fig.1, we choose the variability configurations cfg(quantified) =
false and cfg(forall) = true. Thus, p.f, is Rule A. The resulting morphism mf, = m4
satisfies the gluing condition, hence, it is a match for Rule A.

In the following, we show that the matched left-hand side of the variability-based
rule is exactly the left-hand side of the chosen flat rule and there is no larger rule whose
match would comprise the chosen one.

Proposition 1 (Variability-induced rule). Given a variability-based rule p with a
variability-based match m = (m, cfg) to graph G, M induces a rule p, with the
following properties: (1) p, € Flat(p); (2) Lesy, = doma, (L), and (3) —3p’ € Flat(p)
s.t. pge < P’ and cfg satisfies pery (x), Vo € L.

292 D. Striiber et al.

Definition 16 (Application of a variability-based rule). Given a match m for
variability-based rule p and graph G, the application of p at m is the classic rule ap-
plication of peg to Mgy induced by ™ leading to rule application G =, ., H.

Applying the rule in Fig. 3 to the graph of formula ¢ in Fig. 2 at the variability-based
match computed in the example after Def. 15 yields the graph structure of formula
¢’ described at the end of Sec. 3. Now, we show that the set of all applications of a
variability-based rule p to a graph G is equal to the set of classic rule applications
obtained from flattening p and applying these rules to G.

Theorem 1 (Equivalence of rule applications). Given a variability-based rule p and
a graph G, the following holds: {G =, H|m = (m,cfg) withm € PMp g} =
Trans(Flat(p), G).

5 Variability-Based Matching Algorithm

In this section, we describe an algorithm for implementing the concept of variability-
based match (Def. 15). Our guiding intuition is to find matches for the base rule first,
then expand these matches for the variable parts and finally filter the result to contain
only maximal mappings.

Matching the base rule (see Def. 11) yields matches for the common parts that we
store in a collection called baseMatches. Function FINDMATCHES in Fig. 8 extends
baseMatches to find matches for the variable parts. It enumerates all consistent vari-
ability configurations, derives the corresponding rules and matches them classically.
FINDMATCHES receives an input model, a variability-based rule, the baseMatches set,
and two intermediate parameters: a data structure bindings that assigns each of the rule’s
presence conditions to one of the literals true, false or unbound (initially all entries are
set to unbound) and a set to accumulate variability-based matches (initially empty). The
function outputs the set of variability-based matches.

An execution of INDMATCHES systematically binds all presence conditions, start-
ing on Line 2 with an arbitrary one that we call pcy. To enumerate all valid configu-
rations, we first set pcg to true and then to false (Lines 3-4 and 5-6). In both calls to
FINDMATCHESINNER, we first consider those presence conditions that were previously
unbound and now are either contradicting or implied by the current bindings. On Lines
10 and 11, we compute them using a SAT solver, calling the results bindings, and
bindings_, (for false elements and true elements, respectively). We update the bind-
ings accordingly on Line 12. If all presence conditions are now bound, the problem
becomes classic matching. We determine the classic rule to be matched by removing
rule elements with a false presence condition on Line 14. The classic match-finder tries
to bind the rule elements contained in the derived rule, but not in the base rule. The
computed matches are translated into variability-based matches, being pairs of a clas-
sic match and the current variability configuration, on Lines 15-16. If some presence
conditions have not been bound, we call INDMATCHES again on Line 18. On Lines 7
and 19, we reset temporary bindings of variables to clean up before backtracking. To
retain only the maximal matches, as demanded by Def. 15, we clean up after the outer
FINDMATCHES call by removing all non-maximal entries from the result.

Variability-Based Transformations 293

Input: model: Input model
Input: rule: Variability-annotated rule
Input: baseMatches: Classic matches of the base rule
Input: bindings: {Presence conditions used in rule} — {true, false, unbound}
Input: matches: Accumulated variability-based matches
Output: matches: Accumulated variability-based matches
1: function FINDMATCHES(model, rule, baseMatches, bindings, matches)

2: pco = bindings.select(unbound).get(0)

3: bindings.set(pco, true)

4. FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)

5: bindings.set(pco, false)

6: FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)

7. bindings.set(pco, unbound)

8: return matches

9: function FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)

10: bindings , = bindings.select(unbound).select(p | bindings.contradicts(p))
11: bindings_, = bindings.select(unbound).select(p | bindings.implies(p))
12: bindings.setAll(bindings , — false, bindings_, — true)

13: if bindings.select(unbound).isEmpty() then

14: classicRule = rule.minus({x € rule | z.pc € bindings.select(false)})

15: classicMatches = Matcher.matchClassically(model, classicRule, baseMatches)
16: matches.addAll(create VariabilityBasedMatches(classicMatches))

17: else

18: FINDMATCHES (model, rule, baseMatches, bindings, matches)

19: bindings.setAll(bindings , — unbound, bindings_, — unbound)

20: return

Fig. 8. Pseudocode for recursive function INDMATCHES

To exemplify our algorithm, we continue with the scenario at the end of Sec. 2. First,
we create and match the base rule, comprising the elements annotated with frue, by
classic match-finding. The computed baseMatches set contains exactly match mpqse.
We arbitrarily select a presence condition ~qualified and set it to true on Line 3, thus
deriving qualified to be false on Lines 10-12. To bind the rest of the presence conditions,
we call INDMATCHES again on Line 18. We then select forall and set it to true, thus
setting —forall to false and completing the binding of presence conditions. On Line 14,
we remove all rule elements labelled —forall or ~qualified to derive Rule A. Calling the
classic match finder on this rule on Line 15 yields ma. We pair this classic match with
the current bindings to create a variability-based match. The remaining three configu-
rations are determined analogously; however, they do not yield any additional matches.

Complexity of our algorithm is determined by the number of configurations which
grows exponentially with the number of variation points. Of course, the configurations
determine rules that in the classic approach would be matched individually. Thus, com-
plexity of our algorithm is the same as that in classic matching. Yet, since we save
matching effort by precomputing base matches and then extending them, we expect our
algorithm to perform better than the classic one. We experimentally compare perfor-
mance of our approach with classic in Sec. 7.

294 D. Striiber et al.
6 Implementation

Our implementation is based on the Henshin model transformation suite [11] which
provides basic transformation functionalities for classic rules. Henshin consists of a
transformation meta-model, a graphical editor for rule specification, and an interpreter
engine for rule application. To specify variability-based rules, we extended the meta-
model and editor of the Henshin language, allowing annotations of rule elements with
presence conditions in the properties view. The user can highlight groups of rule ele-
ments sharing the same presence condition by assigning colors. To apply variability-
based rules, we extended the Henshin interpreter engine, implementing the algorithm
described in Sec. 5. We used FeatureExprLib [12], a tool which computes valid config-
urations of features using a SAT solver, for evaluating presence conditions. Finally, we
cached the results of all evaluations in order to avoid repeating the same computations.

Our implementation also allows the user to restrict the set of valid configurations by
defining relationships between variation points, such as mutual exclusion and require.
These relationships can also be specified in terms of just presence conditions, e.g., set-
ting a condition to A A =B if a variation point A excludes B.

7 Evaluation

In this section, we aim to answer two research questions: (RQ1) How compact are rule
sets with variability-based rules compared to classic? (RQ2) What is the speedup of
applying rules with variability instead of the corresponding classic ones?

Scenario. We investigated a transformation system comprised of 54 classic transfor-
mation rules. The rules constitute a translator from Object Constraint Language (OCL)
expressions to nested graph constraints [9].

In this system, the main performance bottleneck, which we call bottleneck rule sub-
set (BRS), is a subset of 36 rules that are applied nondeterministically, as long as one of
them can be matched. The left-hand sides of the BRS rules have between 9 and 37 graph
elements and share a considerable amount of commonalities. We applied the transfor-
mation system to 10 constraints described in [9] — an assortment of OCL constraints
designed for a large coverage of applicable rules. The size of the input models, com-
prising individual constraints as well as the OCL standard library, containing operators
and literals referenced by the constraints, ranges from 1832 to 1854 model elements.

Setup and Metrics. We manually refactored the 36 classic rules in BRS into 10
variability-based ones, relying on name similarities. We merged the original rules and
annotated the result with presence conditions. To ensure correctness of the refactoring,
we checked equality of the models yielded by both the original and the variability-based
rule sets.

To investigate RQ1, we measured two metrics on both rule sets: number of rules and
number of elements per rule, allowing us to quantify compactness. To investigate RQ?2,
we measured the execution time on both rule sets, allowing us to quantify performance.
We determined the execution time on a Windows 7 workstation with a 3.40 GHz Intel
17-3770 processor and 8 GB of RAM.

Variability-Based Transformations 295

Results of RQ1. In our example, variability-based rules help decrease the number of
rules by 72% while increasing the number of elements per rule by 17%. Specifically,
from 36 rules with the total of 1281 nodes and 1764 edges, we extracted 10 variability-
based rules with 399 nodes and 589 edges and 2-3 variation points each. The ratio be-
tween common and variable parts increased with the size of the rule: the smallest rules
had 10 common and 34 variable elements; the median — 69 common and 34 variable
elements; the largest — 102 common and 60 variable elements.

Results of RQ2. Table 1 shows the result of applying the classic and the variability-
based rule sets on each model, repeating the experiment 10 times.

We show the mean time (mean) and standard
deviation (sd) for each rule set and model. For
three of the input models, ocl0l to ocl03, no
performance difference was observable. For the
remaining seven models, the execution time of
transformations using rules with variability was
on average 3.9 times faster than with the classic odel mean sd mean sd

Table 1. Running time

time (sec) time (sec)
classic var.-based

rules. To examine the cause of the performance .01 <1 <1 <1 <1
difference more closely, we counted the number 102 <1 <1 <1 <1
of successful and failed matching attempts (fora 103 <1 <1 <1 <1

detailed account, please refer to [10]). In accor- ocl04 56.7 10.6 142 4.5
dance with Theorem 1, the number of successful c105a 65.1 9.2 13.0 34
rule applications was always the same for both 4.105h 96.7 20.4 19.7 4.8
rule sets. In our approach, for ocl04 to ocl09 the 4cl106 49.0 13.4 11.5 3.9
number of failed match attempts is substantially 40107 389.4 93 .4 784 3.5
lower, 1.72 times on average. We explain this ob- 4c108 191.0 11.7 48.4 12.7
servation by our reduced number of rules thatin- 4c109 11.6 2.6 50 15
creases the ratio of applicable to total ones. Over-
all, our experiments showed that in a scenario
with a considerable amount of variability between
rules, our approach allowed to create more compact rules and considerably improve the
performance of their application.

average 85.9 16.1 19.0 34

Threats to Validity and Limitations. The most important threat to validity is our
choice of transformation rules and input models that may not be representative. We
attempted to mitigate it by selecting a set of realistic transformation rules and input
models already studied in the literature.

The performance gain achieved by our approach is affected by the amount of vari-
ability appearing within the rules. The maximum performance gain is observed for rule
bases with large common parts which we match globally, paired with small variable
parts which we match individually. Since the ratio of common and variable parts ob-
served in our study may not be the same in all systems, the results might be different.
Yet, matching common parts of similar rules only once is still expected to result in
performance improvements. Furthermore, we are aware of the following caveats: (1)
for very small examples, the overhead of variability processing might outweigh the re-
duced matching costs; and (2) if the left-hand side of the base rule does not represent a

296 D. Striiber et al.

connected graph and the left-hand sides of the rule variants do, matching the base rule
might become more expensive. We intend to investigate this issue in the future.

8 Related Work

The variability-based rules introduced in this paper are inspired by annotative represen-
tations of product lines [13—15] and augment representations proposed in earlier works.
While our focus is on the batch processing of all valid configurations of a variability-
based rule, a number of related approaches, e.g., [5-7], target scenarios where a rule
configuration is set externally to derive a desired classic rule. In such cases, [5, 6] report
on a trade-off between better variability management and a performance overhead, the
latter caused by the derivation of rules. In contrast, variability-based rules and matching
improve both the compactness and the performance of a transformation system.

As for expressiveness, [5] and [7] are based on creating refinement rules for the vari-
able parts and assigning them to one feature (or variation point). In turn, we support
propositional presence conditions over variation points. In our evaluation example, we
avoided several redundancies by assigning rule elements to a conjunction of two vari-
ation points. In this respect, [6] goes even further by allowing users to annotate a rule
element with embedded C++ code, which, however, would produce an extremely large
search space for variability-based matching.

Several model transformation languages implement rule refinement [1] — an impor-
tant mechanism for reuse inside the same transformation system. In such languages, a
base rule is refined by a set of sub-rules modifying it. Then, some approaches [16, 17]
flatten the rules for application, i.e., compile them into simpler rules. The translational
semantics in the approach proposed in RubyTL [18] is closest to ours — it applies the
base rules first and then applies the refinement rules on the target model of the transfor-
mation. In contrast, our approach aims to efficiently find matches in the source model.

In [19], the authors propose an approach for transformation “lifting”: given a classic
model transformation, a transformation that operates on a family of related models is
generated automatically. Instead, we do not focus on transforming a family of mod-
els but rather on creating and applying a family of related transformation rules in an
efficient manner. [20] presents a reuse concept based on abstract transformation rules
that can be instantiated for variants of similar meta-models. The abstract transforma-
tion rules are reverse engineered from existing transformation rules. In [21], the au-
thors apply incremental graph pattern matching based on Rete networks to improve
performance of transformation systems. However, they target the use case of successive
application of the same set of rules on a modified input model and do not deal with
variability inside the transformation system. These approaches are orthogonal to ours,
and we intend to combine them with ours in the future.

9 Conclusion

In this paper, we proposed a novel approach to improve reuse and performance in model
transformation systems. Aiming to handle a class of problems where rules with many

Variability-Based Transformations 297

commonalities are to be applied nondeterministically as long as one of them is appli-
cable, we introduced variability not only to the rules but also to transformations using
them. We proved correctness of our approach and contributed an efficient matching
algorithm evaluated using a realistic model transformation system.

In this work, the refactoring of classic to variability-based rules was performed man-
ually. As a future work, we intend to automate this step, possibly by applying techniques
proposed by the product line engineering community for determining commonalities
and variabilities in models. Moreover, while this work focused on rule application,
other computationally expensive operations performed on rules, such as state-space
exploration or critical pair analysis, might also benefit from explicit variability man-
agement. We intend to investigate this in the future. Providing an efficient solution for
the matching of base rules represented as disconnected graphs is also subject for pos-
sible future work, as is to compare our approach against existing algorithms aiming at
specific tasks in compilers and theorem provers. Finally, we aim to apply variability-
based rules to distributed modeling scenarios with multiple variants of editing steps,
e.g., synchronous and asynchronous ones [22].

Acknowledgements. We thank Thorsten Arendt and Frank Hermann for providing
input for our evaluation.

References

1. Kusel, A., Schonbock, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger, W.:
Reuse in Model-to-Model Transformation Languages: Are We There Yet? In: SoSyM, pp.
1-36 (2013)

2. Soley, R.: Model Driven Architecture. Object Management Group (2000)

3. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley (2001)

4. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer (2005)

5. Sijtema, M.: Introducing Bariability Rules in ATL for Managing Variability in MDE-based
Product Lines. In: Proc. of MtATL 2010, pp. 39-49 (2010)

6. Kavimandan, A., Gokhale, A., Karsai, G., Gray, J.: Managing the Quality of Soft-
ware Product Line Architectures through Reusable Model Transformations. In: Proc. of
QoSA/ISARCS 2011, pp. 13-22. ACM (2011)

7. Trujillo, S., Zubizarreta, A., De Sosa, J., Mendialdua, X.: On the Refinement of Model-to-
Text Transformations. In: Proc. of JISBD 2009, pp. 123-133 (2009)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graphs and Graph Transformation based on Adhesive HLR Categories. Fundamenta Infor-
matica 74, 31-61 (2006)

9. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core OCL Invariants to Nested Graph
Constraints. In: Giese, H., Kénig, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 97-112.
Springer, Heidelberg (2014)

10. Striiber, D., Rubin, J., Chechik, M., Taentzer, G.: A Variability-Based Approach to Reusable
and Efficient Model Transformation - Technical Report,
https://www.uni-marburg.de/fbl2/swt/research/publications

https://www.uni-marburg.de/fb12/swt/research/publications

298

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. Striiber et al.

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Con-
cepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C., Rouquette,
N., Haugen, @. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121-135. Springer,
Heidelberg (2010)

Kenner, A., Kistner, C., Haase, S., Leich, T.: TypeChef: Toward Type Checking #ifdef Vari-
ability in C. In: Proc. of FOSD 2010, pp. 25-32 (2010)

Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Gliick, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422-437. Springer, Heidelberg (2005)

Kaistner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product
Line Engineering. In: Proc. of the Wksp. on Modularization, Composition and Generative
Techniques for PLE (McGPLE) at GPCE 2008, pp. 3540 (2008)

Rubin, J., Chechik, M.: Combining related products into product lines. In: de Lara, J., Zis-
man, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp.
285-300. Springer, Heidelberg (2012)

Anjorin, A., Saller, K., Lochau, M., Schiirr, A.: Modularizing Triple Graph Grammars Using
Rule Refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411,
pp. 340-354. Springer, Heidelberg (2014)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, L., Valduriez, P.: Atl: A qvt-like transformation
language. In: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pp. 719-720. ACM (2006)

Cuadrado, J.S., Molina, J.G.: A Model-Based Approach to Families of Embedded Domain-
Specific Languages. IEEE TSE 35, 825-840 (2009)

Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting Model Transformations
to Product Lines. In: Proc. of ICSE 2014, pp. 117-128 (2014)

Sanchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model transformations
for reusability. In: Di Ruscio, D., Varré, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 186-201.
Springer, Heidelberg (2014)

Bergmann, G., Rath, L., Szabd, T., Torrini, P., Varrd, D.: Incremental pattern matching for the
efficient computation of transitive closure. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozen-
berg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 386—400. Springer, Heidelberg (2012)
Striiber, D., Taentzer, G., Jurack, S., Schifer, T.: Towards a distributed modeling process
based on composite models. In: Cortellessa, V., Varrd, D. (eds.) FASE 2013 (ETAPS 2013).
LNCS, vol. 7793, pp. 6-20. Springer, Heidelberg (2013)

	A Variability-Based Approach to Reusable and Efficient Model Transformations
	1 Introduction
	2 Motivating Example
	3 Background: Algebraic Graph Transformation
	4 Variability-Based Graph Transformation
	4.1 Variability-Based Graphs and Rules
	4.2 Application of Variability-Based Rules

	5 Variability-Based Matching Algorithm
	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion

