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ABSTRACT

Software product lines and model transformations are two
techniques used in industry for managing the development of
highly complex software. Product line approaches simplify
the handling of software variants while model transforma-
tions automate software manipulations such as refactoring,
optimization, code generation, etc. While these techniques
are well understood independently, combining them to get
the benefit of both poses a challenge because most model
transformations apply to individual models while model-
level product lines represent sets of models. In this paper,
we address this challenge by providing an approach for auto-
matically “lifting” model transformations so that they can be
applied to product lines. We illustrate our approach using
a case study and evaluate it through a set of experiments.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Theory, Management

Keywords
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1. INTRODUCTION

Model Driven Engineering (MDE) and Software Product
Line Engineering (SPLE) are powerful techniques used in in-
dustry for managing the complexity of large scale software
development. MDE helps manage complexity by using mod-
els to raise the level of abstraction at which developers create
code. In this context, model transformations are the key en-
abling technology for automating the movement within and
between levels of abstraction [40]. SPLE approaches help
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manage complexity by treating large sets of similar software
product variants as a single conceptual unit rather than a
set of individual products, explicitly capturing product line
commonalities and variabilities [11].

Both MDE and SPLE are used by numerous industrial
organizations, and particularly, in the automotive embed-
ded systems domain. However, combining SPLE with model
transformations is a challenging task: most existing trans-
formations, such as model refactoring or code generation,
are developed for individual product models and do not take
SPLE variability constructs into account.

As a consequence, an organization that relies on SPLE
to manage its product portfolio cannot reuse existing third
party transformations. Instead, it has to apply them to
the individual products derived from the product line or re-
develop the transformations in order to apply them to the
entire product line. The former approach is impractical be-
cause the transformations that need to be applied must be
tracked along with the product line and kept up-to-date.
Moreover, it is often desired to apply the transformation on
the level of the entire product line in order to enable anal-
ysis, validation and evolution of the resultant product line.
Liebig et al. [29] have shown that analysis applied to the
product line outperforms approaches that sample individual
products. We give three examples of such techniques below.

1. Classen et al. developed a model checking technique
for product lines expressed as transition systems [9]. Using
this technique for a product line of, say, UML statecharts, is
possible only if the product line is first transformed into an
equivalent transition system one. While such a transforma-
tion already exists for individual statechart models [46], it
does not take variability constructs into account and hence
cannot be applied to a product line as a whole.

2. Consider a product line that must support multiple
binding times — stages of the lifecycle in which decisions
about variability are made [43]. Supporting both design and
run-time binding requires translating a design-time prod-
uct line of models into a run-time product line of code.
Such a translation can be obtained by lifting existing code-
generating transformations that are typically used in MDE
strategies, to apply to the entire product line instead.

3. Consider the case when a set of standard refactorings
has to be performed on a model, e.g., if a new architectural
policy requires all public methods in a class have accessor
methods. In that case, an existing “Encapsulate Variable”
refactoring transformation [31] could be applied to all class
diagrams in order to accomplish the task. However, if we
want to apply such refactorings to a product line of class di-



agrams, the transformation would not be directly applicable,
and would have to be lifted instead.

While lifting a transformation is useful, doing so manu-
ally is hard and error prone because the lifted transforma-
tion must correctly address SPLE constructs and consider
all possible product variants derived from the product line
model. In this paper, we propose an approach for lifting
the transformations automatically, i.e., no manual changes
to the transformation are required to enable it to apply to
the entire product line.

Specifically, we make the following contributions: (1) We
define and prove correctness of a general lifting algorithm
for graph rewriting-based model transformations. The algo-
rithm is designed for the annotative product line approach
typically used in practice. (2) We provide a prototype im-
plementation of the algorithm integrated into an existing
transformation engine [3]. (3) We use this implementation
with a benchmark case study for modeling techniques [7].
(4) Finally, we empirically evaluate the scalability of the al-
gorithm and its implementation. The results suggest that
the approach has good scaling behaviour. Note that the
focus of our approach is not SPLE-specific transformations
(e.g., adding a feature or refactoring a feature model), but
rather transformations applicable to individual products.

The rest of the paper is structured as follows. In Sec. 2,
we motivate the problem and our solution using a simple
product line of washing machine controllers. Sec. 3 provides
the needed background on product lines and model trans-
formations. Our approach is presented in Sec. 4. In Sec. 5,
we describe the implementation of the lifting approach and
present its application to the benchmark case study. Sec. 6
describes a set of experiments aimed to study the scalabil-
ity of our approach. We compare our approach with related
work in Sec. 7 and conclude the paper in Sec. 8.

2. MOTIVATING EXAMPLE

Fig. 1 shows a simple product line W for washing ma-
chine controllers expressed using a UML state machine. The
feature model (the top part of the figure) allows for three
optional features to be added to a basic washing machine:
(Heat) adds the ability to have hot water washes, (Dry)
adds an automatic dry following the wash, and (Delay) adds
the ability to delay the start time of the wash. Note that the
heated wash and delayed wash features are mutually exclu-
sive while drying can be added independently. The Excludes
constraint between Heat and Delay in the feature model
indicates that at most one of these can be selected.

The domain model of W (the bottom of Fig. 1) is a state
machine which specifies that after initiating and locking the
washer, a basic wash begins or a waiting period is initiated,
either for heating the water or for a delayed wash. Then the
washing takes place, followed, optionally, by drying. Finally,
if drying or heating was used, the clothes are cooled and the
washer is unlocked, terminating the process.

Depending on which of the features have been selected,
only some parts of this process may be available. The propo-
sitional formulas in boxes throughout the controller indicate
the presence conditions [12] for different model elements,
i.e., the configurations of features under which the element
is present in a product. For example, the transition from
state Locking to state Waiting is only present if either fea-
ture Heat or feature Delay is selected; it is guarded by
heatingEnabled and has action HeaterOn() only when fea-

118

Feature Model

Washing Machine
Controller Product

! delayed wash
Line

wash and dry

Domain Model

[heatEnabled;delayE bII dl/

eatbnabled;delayEnable HeatVDela

o Locking | [HeatlHeaterOn Waiting
HeatVDelay

HeatVDelay

/setDeIay(); / HeaterO f(
wash.Start() wash.Stant(| HeatVDela:
~
.Heat Washing
©5 [UnLocking /QuickCool()
— Dry entry / TempCheck() Heat

/QuickCool()

Figure 2: The “fold incoming actions” rule Rr for
refactoring a state machine.

ture Heat is selected, while it is guarded by delayEnabled
only if feature Delay is selected.

Consider a simple state machine transformation. Fig. 2
shows a transformation rule Rp that implements the “fold
incoming actions™ refactoring transformation that moves
common actions on incoming transitions to a state into the
entry action for the state. Specifically, the rule is applied to
a state machine by attempting to match it to the location
where some state, x, has two incoming transitions with a
common action, a, as depicted in the LHS of the rule in the
middle of Fig. 2. Then the matched portion is replaced with
the RHS of the rule (on the right of the figure) which deletes
action a from the transitions and makes it the entry action
of state z. The negative application conditions (NACs, on
the left of Fig. 2) prevent the rule from being applied when
state = already has an entry action (NAC1) or when there
are more than two incoming transitions to it (NAC2)?. The
transformation is executed by applying the rule Rp to the
state machine until it can no longer be applied.

!Based on a refactoring by the same name presented in [42].
2The general case allows moving the action if it is present
in all incoming transitions but we limit it to two transitions
for simplicity.



While the above description makes it clear how to apply
this transformation to an arbitrary state machine, the goal
of this paper is to apply such a transformation to an entire
product line of models rather than a single product. Thus,
we aim to apply the transformation rule Rr to the product
line W. Since W represents a set of possible state machine
variants, we would expect that the application of R to W
should act as if Rr were applied to each variant separately.
However, applying Rr directly to the domain model of W
does not achieve the desired result for several reasons:

1. It may miss valid applications of the rule. For exam-
ple, the two incoming transitions to state Washing have the
same action wash.Start() which would match the LHS of
the rule but since state Washing already has an entry action
TempCheck(), the rule does not seem to be applicable be-
cause it matches the negative application condition NACI.
However, if we consider the presence conditions of the fea-
tures, we see that the entry action TempCheck() only exists
for those products in which feature Heat is selected. Thus,
the rule is applicable for some products, specifically, those
in which the feature Delay is selected.

2. It may cause inappropriate applications of the rule. For
example, Rr seems to be applicable to the two occurrences
of action QuickCool() on the two incoming transitions to
state UnLocking. However, if QuickCool() were folded into
Unlocking, it would be present in all products, even those
for which neither Heat nor Dry are selected.

3. The presence conditions may be affected by rule ap-
plications. For example, Rr is applicable to the incoming
transitions of state Washing with action wash.Start() when
the feature Delay is selected. As a result, the action should
be deleted from these transitions and added as an entry ac-
tion to state Washing only when Delay is selected. This can
only be accomplished by setting the presence conditions for
these elements appropriately. Yet conventional transforma-
tion rules such as Rr do not manipulate presence conditions!

In the rest of this paper, we describe an approach to ad-
dress these complexities in a generic way in order to adapt
rules such as Rr to be correctly applicable to product lines.

3. BACKGROUND

In this section, we fix the notation and provide the nec-
essary background on product lines and model transforma-
tions.

3.1 Product Lines

We follow the annotative product line approach [12, 25,
35], formally defined below.

DEFINITION 1 (PRODUCT LINE). A product line P con-
sists of the following parts:
(1) A feature model that consists of a set of features and a
propositional formula ®p defined over these features to spec-
ify the relationships between them.
(2) A domain model consisting of a set of model elements.
(3) A mapping from the feature model to the domain model
consisting of pairs (E, ¢g) mapping a domain model element
E to a propositional formula ¢r over features. The formula
¢& is referred to as the presence condition of the element E.

For the example in Fig. 1, the feature model of the product
line W contains four features: Wash, Heat, Delay and
Dry. Relationships between these features are defined by
the propositional formula ®w = WashA—(HeatADelay).
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In this example, domain model elements are state machine
constructs such as states, transitions, state entry and exit
activities, and transition actions. The presence conditions
are given in boxes next to the corresponding domain model
elements, e.g., the state Waiting in Fig. 1 is annotated by the
presence condition HeatVDelay. Feature Wash is manda-
tory and thus always occurs. For simplicity of presentation,
we omit Wash from the presence conditions. We also do
not annotate elements whose presence conditions are true,
e.g., the state Locking.

DEFINITION 2 (FEATURE CONFIGURATION). A valid fea-
ture configuration p of a product line P is a subset of its
features that satisfies ®p, i.e., Pp evaluates to true when
each variable f of ®p is substituted by true when f € p and
by false otherwise. The set of all valid configurations in P
is denoted by Conf(P).

DEFINITION 3 (PRODUCT DERIVATION). A product M
is derived from the product line P under the feature config-
uration p if M contains those and only those elements from
the domain model whose presence conditions are satisfied for
the features in p.

For the example in Fig. 1, sets {Wash, Heat, Dry},
{Wash, Dry} and {Wash} are some of the valid config-
urations of the product line W. Any set not containing the
feature Wash or containing both Heat and Delay does
not correspond to a valid configuration as it violates the for-
mula Py given above. The product derived using only the
feature Wash will go through the states Locking, Washing
and Unlocking, while the product derived using the fea-
tures Wash and Dry will go through the states Locking,
Washing, Drying and Unlocking.

Note that while our work is based on the above definition
of annotative product lines it can readily be adapted to other
annotative approaches, e.g., CVL [23].

3.2 Model Transformations

In this paper, we focus on model transformations done via
graph transformations [17]. A graph transformation consists
of executing a set of graphical rules defined as follows:

DEFINITION 4  (TRANSFORMATION RULE). A transforma-
tion rule R is a tuple R = ({NAC},LHS,RHS), where LHS
and RHS are the typed graphs called the left-hand and the
right-hand sides of the rule, respectively, and {NAC} rep-
resents a (potentially empty) set of typed graphs called the
negative application conditions.

Fig. 3 depicts the NACs, LHS and RHS of the rule Rr from
Fig. 2 as typed graphs using types from the UML meta-
model [33]. For example, NAC1 consists of a state x with
an entry action al that is a UML behaviour (e.g., a class
operation).

The NACs, LHS, and RHS of a rule consist of different
parts, i.e., sets of model elements which do not necessarily
form proper graphs. These parts play different roles during
the rule application:

C": The set of model elements that are present both in the
LHS and the RHS, i.e., remain unaffected by the rule.

D": The set of elements in the LHS that are absent in the
RHS, i.e., deleted by the rule.

A": The set of elements present in the RHS but absent in
the LHS, i.e., added by the rule.
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Figure 3: Rr represented as typed graphs.

Table 1: Matching sites of rule Rr in Fig. 3 for the
domain model in Fig. 1.

Site | N C

Washing, Locking,
Waiting, wash.Start(),
1w, lw_Locking,
lw_Washing, ww,
ww_Waiting, ww_Washing

lw_wash.Start(),
ww_wash.Start()

Washing,
TempCheck

UnLocking, Washing,
Drying, QuickCool(),
wu, wu_Washing,
wu_UnLocking, du,
du Drying,
du_UnLocking

Ko wu_QuickCool(),

)
du_QuickCool()

N": The set of elements present in any NAC, but not those
present in C".

For the example rule Rp from Fig. 3, these parts are as
follows: C" is {x,x1,x2,a,t1,t1 x1,t1 x, t2,t2 x2,t2 x},
D" is the set {t1_a,t2_a}, A" is the set {x_a}, N" is set
{a1,x_a1,x3,t3,t3.x3,t3_x}. To reduce clutter, only D"and
A"are explicitly indicated in the figure.

A rule R is applied to a model M by finding a matching
site of its LHS in M:

DEFINITION 5  (MATCHING SITE). A matching site of a
transformation rule R in a model M is a tuple K = (N,C,D),
where C and D are matches of the parts C" and D" of the
LHS of R in M, and N is the set of all matches of NACs in
M relative to C and D.

Two matching sites for the rule Rr in the washing ma-
chine controller in Fig. 1 are shown in Table 1 (two more

matches, isomorphic to K and K, are not shown for brevity).

In this table, 1w and ww are the names of the transitions be-
tween states Locking/Waiting and Washing; while wu and
du are the names of the transitions between states Washing/
Drying and UnLocking. The table says, for example, that
in part D of matching site Ki, t1_a=1lw_wash.Start() and
t2_a= ww_wash.Start().

In the above definition, N denotes the set of all matches
within model M of the NACs of R given the match of C" and
D". If the same NAC can match multiple ways, then all of
them are included in N as separate matches. For example, if
state Washing had another input transition, that transition
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Algorithm: Apply Rule
Input: Rule R, model M, matching site K = (N, C, D)
Output: Transformed model M’

1. M =M

2: if N = () then

3: let A be a set of fresh elements corresponding
to the part A" of R

4: add A to M’,

5: remove D from M’

6: return M’

Figure 4: Algorithm for applying a graph transfor-
mation rule.

would also appear in N for K since it would match t3.
The set of matching sites define those places in the model
where the rule can potentially be applied:

DEFINITION 6  (APPLICABILITY CONDITION). Given a
transformation rule R, a model M, and a matching site K =
(N, C, D), R is applicable at K iff N is empty®.

The above definition ensures that the rule can only be ap-
plied at a given site if C and D are matched and no NAC
is matched. For Rr, the matching site K; given in Table 1
does not satisfy the applicability condition since N1 # 0.
On the other hand, no NACs hold in the second matching
site, Ka.

The rule application algorithm is given in Fig. 4. The ap-
plicability condition is checked in Step 2 and if it satisfied,
the rule is applied by adding the elements in A (Step 4) and
deleting the elements in D (Step 5). For example, applying
Rr to K> requires the deletion of the action QuickCool()
from the two transitions because it is contained in D, and
the addition of QuickCool() as an entry action for state
UnLocking according to A".

We refer to rules such as the ones described above as
classical, to differentiate them from their lifted counterparts
which can be applied to product lines.

4. APPROACH

In this section, we describe the process of lifting a trans-
formation rule to apply to product lines. When a classical

3The theory of graph transformation requires some addi-
tional formal preconditions, most notably, the gluing condi-
tion [17]. We so not discuss them here for brevity.
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satisfied by lifting — solid lines denote rule applica-
tion and dashed lines denote product derivation.

rule R is adapted for product lines, we say that it is lifted
and denote it by RT.

4.1 Correctness Criteria

We begin by attempting to define the requirements for R',
i.e., how it should act on a product line so that it preserves
the effect intended by R. A natural answer is that after ap-
plying R, the target product line should have the same set
of products as it would if R were applied separately to each
product in the source product line. Furthermore, we would
expect that this would also preserve feature configurations.
This is illustrated in Fig. 5 — for each configuration p, the
result should be the same target product M’, regardless of
whether R' is first applied followed by the derivation from
P, or if p is first used to derive M and then R is applied.
We capture these criteria formally:

DEFINITION 7 (CORRECTNESS OF LIFTING). Let a rule
R and a product line P be given. R' is a correct lifting

of R iff (1) for all rule applications P LN P, Conf(P') =

Conf(P), and (2) for all configurations p in Conf(P), M £
M’, where M is derived from P, and M’ is derived from P’
under p.

Note that this definition is silent on two points. First, it
does not require that the target feature model be identical
to the source feature model; they just need to be equivalent,
i.e., have the same set of valid configurations. However,
since R is only defined for the domain model, i.e., it does
not manipulate features, a reasonable expectation is that
it should leave the feature model unchanged. Second, the
above definition does not specify exactly how the domain
model should change, as long as the set of products is as
required. The same set of products can be represented by
different domain models and presence condition [36]. A rea-
sonable expectation here is that the domain model should
change as little as possible. These “expectations” are not
part of the correctness condition since they are not required
to preserve the semantics of R; yet, they are “nice to have”
properties for an implementation of lifting — see Sec. 4.5.

When applying a graph transformation rule to a model,
it is sufficient to find a graph match of the LHS of the rule
and then check whether the NACs are applicable. However,
our motivating example in Sec. 2 illustrated that applying
a rule to a product line is more complicated because not all
domain model elements may appear in a given product, and
so the rule may apply to some products and not to others.
Thus to satisfy the correctness criterion, we must affect only
those products in which the LHS is present and the NACs
are absent.

4.2 Lifting Algorithm

We now define what it means to apply a lifted rule R to a
product line in an analogous way to the definition in Sec. 3.2
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Algorithm: Apply Lifted Rule
Input: Product line P with constraint ®p, rule R,
matching site K = (N, C, D) in the domain model of P
Output: Transformed product line P’
1. P=P

2 Buppry = V(O IN EN} A 65 A G152
3: if @p A Puppiy is SAT then

4: for a € A" do

5: add a to domain model of P’

6: P = Pappiy

7 endfor

8: for d € D do

9: bq = da N " Pappiy

10: if ®p A ¢/, is not SAT then

11: remove d from domain model of P’
12: endfor

13: return P’

Figure 6: Algorithm to apply a lifted graph trans-
formation rule.

of the application of rule R to a model. Lifting a rule is not
accomplished via higher-order transformation; instead, we
change the execution semantics of rule application.

A matching site for R is a matching site for R (see Def. 5)
in the domain model of P. Applicability is defined as follows.

DEFINITION 8
Given a product line P with constraint ®p, a transforma-
tion rule R = ({NAC},LHS,RHS), and a matching site K =
(N,C,D) in the domain model of P, the lifted rule R is ap-
plicable at K iff ®p A ®Poppiy is satisfiable, where Poppiy =
(= V{o&IN € N}) A o< A o5

Here, ¢&' is the conjunction of the presence conditions for
elements in C; similarly for ¢&*¢ and ¢&*¢. This definition
says that R" is applicable iff the presence conditions guaran-
tee that at this matching site, the rule R matches in at least
one product of P. Specifically, it checks that there exists a
product such that all elements of C and D are present and
not all elements in any NAC match are present.

The general algorithm of a rule application for a lifted
rule is given in Fig. 6. In this algorithm, Steps 2-3 check the
applicability condition, Steps 4-7 handle elements added by
R", while Steps 8-12 handle elements deleted by R'. Specif-
ically, Step 5 adds each new element to the domain model
of P’, and Step 6 sets its presence condition to ®qppiy since
such elements are added only to those products where R was
applicable. For deletion, Step 9 sets the presence condition
as ¢q N " Qappiy to guarantee that the element will be ab-
sent, i.e., it is deleted “virtually” in the products where R
was applicable, and that it remains intact in all other prod-
ucts where it occurred previously. Step 10 checks whether
the element is now present in any product and if not, it
deletes it “actually” by removing it from the domain model.

As with a classical rule system, lifted rules continue to be
applied until no rule is applicable.

4.3 Illustration

We illustrate the lifting algorithm by applying the lift
R; of the rule in Fig. 3 to the example product line in
Fig. 1. The result is shown in Fig. 7, with shading indicat-
ing changed presence conditions. Recall that ®w =WashA

(LIFTED RULE APPLICABILITY CONDITION).
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Figure 7: The result of applying the lifted rule R;
from Fig. 3 to the product line W in Fig. 1.

—(HeatADelay) (from Sec. 3.1). The two matching sites for
the rule are shown in Table 1. For K1, ®uppiy =Delay after
substituting the presence conditions from Fig. 1 and simpli-
fying. Thus, the applicability condition ®w A®appiy, =WashA
—HeatADelay, is satisfied only in those products that have
‘Wash, Delay and not Heat. This is because when Heat is
selected, the entry action TempCheck() occurs, and this trig-
gers NAC1, so the rule is not applicable. The only element
added in Steps 4-7 is the new entry action wash.Start() for
state Washing, with the presence condition Delay. Step 9
virtually deletes the action on the transition out of Locking
when Delay is selected by changing its presence condition to

—Delay while the one out of Waiting becomes HeatA—Delay.

Step 11, which would really delete these actions, is not trig-
gered for either transition since there are still products that
require the actions on these transitions (i.e., Step 10 yields
SAT for both). For the matching site K2, ®appiy =DryA
—DryAHeat which is inconsistent and hence unsatisfiable.
Thus, the algorithm does not proceed beyond Step 3 and
the rule is not applied.

4.4 Analysis

In this section, we discuss the correctness of the lifting al-
gorithm in Fig. 6 as well as the properties of termination and
confluence for lifted rules. These results apply to arbitrary
graph transformations being lifted and are not dependent on
other properties of the transformations such as their being
injective, endogenous, exogenous, and so on.

Correctness. Here we show that a transformation lifted
according to the algorithm in Fig. 6 applied to product line
P to produce P’ satisfies the correctness condition in Def. 7.

First note that the lifting algorithm does not manipulate
the feature model and so the feature model of P’ is identical
to the one of P. Thus, Conf(P’) = Conf(P), and condition
(1) is satisfied.

We now show that condition (2) is also satisfied, i.e., for
any configuration p in P that derives a product M, if R is
applied to M to produce M’ then M’ is the product derived
from P’ under p.

We focus our argument on a specific matching site K =
(N, C, D) since by transitivity, if the rule is correct when
applied to each site, then the application to any sequence of
sites is also correct. We begin by showing the correctness
of the applicability condition (Def. 8) of the lifted rule R':
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if R is applicable for product M at site K, then R' is also
applicable, i.e., RT does not miss any relevant sites.

The condition in Def. 8 says that ®p A Pqppiy must be sat-
isfiable for R to apply. But since p is a valid configuration,
it must satisfy ®p by Def. 2 and since, by assumption, R is
applicable in M at K, all of the elements in C and D are
present and no NAC in N is present. Thus, ®appiy holds
and ®p A Dyppiy is satisfiable, i.e., the lifted rule applicabil-
ity condition is correct.

We now argue that the algorithm for lifted rule applica-
tion, given in Fig. 6, is correct, i.e., applying R' at site K
has the same effect on M as applying R at K in M. We
first consider the effect of R on adding elements and then
its effect on deleting elements.

Applying R to a product creates new elements according
to A" , and these are the same in every product to which
R applies. Thus, Step 5 adds these elements to the domain
model. By setting the presence condition for these elements
to ®uppiy in Step 6 we guarantee that these will be present
in all products (including M) where R would have been ap-
plicable. Thus, the addition of new elements is correct.

Applying R to a product deletes the elements in D. Step
9 ensures that the presence condition for these elements is
further constrained so that they are absent in those prod-
ucts where ®qpp, holds. Thus, the deletion of elements is
correct. Note that, up to this point, the elements have been
only deleted virtually, by limiting their occurrence with pres-
ence conditions. Steps 10-11 are an extra “clean-up”: these
elements are deleted from the domain model if there are
no products that contain these elements, given that they
now have more constrained presence conditions. Thus, these
steps do not affect correctness.

Since both the applicability condition and the effect of
rule application (element addition and deletion) are correct,
we conclude that R' is correct w.r.t. Def. 7.

Termination. To prove termination, we show that if an ap-
plication of a set of classical rules on an input model always
terminates, then so does the set of the corresponding lifted
rules. Without loss of generality, we restrict ourselves to a
rule set containing a single classical rule R which we assume
to be terminating. Since R is correct according to Def. 7,
repeatedly applying it to a product line P has the same ef-
fect as repeatedly applying R to each product of P. Since R
is terminating, it eventually no longer applies to any prod-
uct of P. At this point, ®qppiy which encodes the classical
applicability is false and thus ®p A ®4pp1y is not satisfiable,
and, by Def. 8, R" does not apply. Thus, when the appli-
cation of R terminates, the application of R" terminates as
well, i.e., if R is terminating, so is R'.

Confluence. Repeatedly applying lifted rules to a product
line P has the same effect as repeatedly applying the corre-
sponding classical rules to each product of P. If the classical
rules are confluent and terminating, the process over lifted
rules reaches the same final set of products regardless of the
order in which rules are applied. Thus, the lifted rule set is
confluent “up to equivalence”. That is, it always produces
product lines with the same set of products.

4.5 Minimality

While they do not affect correctness, issues of minimality
of target product line may be relevant to the practical use
of the lifting algorithm. We briefly discuss them below.



Domain model minimality. The domain model is not
minimal when it contains elements not found in any product.
The lifted rule algorithm only affects the presence conditions
of added or deleted elements. Steps 10-11 of the algorithm
ensure that virtually deleted elements that no longer occur
in any product are deleted from the domain model. Added
elements have the same presence condition as the rule appli-
cability condition and so these must occur in the products
where the rule is applicable. Thus, we conclude that if the
domain model was minimal initially then it will remain so
after the lifted rule application.

Feature model minimality. A feature is “superfluous” if
selecting it does not affect the derived products. A feature
model containing superfluous features is not minimal.

Note that the lifted rule application does not affect the
feature model part of a product line, and so the source and
the target feature models are identical. This is a “nice to
have” feature, as discussed following Def. 7. However, the
lifted rule application might make some features superfluous.
For example, if a transformation was applied to the washing
machine controller product line in Fig. 1 that deleted the
transition from state Washing to UnLocking as well as state
Drying with all the transitions connected to it, then the
feature Dry would become superfluous.

Minimality of presence conditions. Presence conditions
are propositional formulae, and our algorithm does not guar-
antee that after lifted rule application they will be in a min-
imal or normal form. While this may affect performance,
we do not expect a significant impact on the usability since
modelers would rarely look at the presence conditions di-
rectly and instead would use tools to manipulate and reason
with them.

5. TOOL SUPPORT AND APPLICATION

Tool Support. We implemented the lifting algorithm as
an extension to the graph transformation tool Henshin [3],
using the Z3 SMT solver [16] to do the SAT checks (algo-
rithm steps 3 and 10). The tool integration platform used
was the Model Management Tool Framework (MMTF) [37],
an Eclipse-based infrastructure for model management.

The key challenges we faced in the implementation were
related to the growth in the number of presence conditions
to be tracked at each new step of the lifting algorithm (see
Steps 6 and 9). We tackled these using incremental SAT
solving techniques.

Application. We used the Car Crash Management soft-
ware product line case study, referred to as bCMS-SPL [7],
as a detailed application scenario for our transformation lift-
ing approach. Our goal was to develop a better understand-
ing of the feasibility of the approach in practical contexts by
applying it to a larger, more realistic example. In addition,
we compared this example with the results of the scalability
study given in Sec. 6.

bCMS-SPL describes a software system for managing the
identification, tracking and resolution of car crashes within
a community. The system focuses on fire and police as the
emergency response providers and facilitates communica-
tions between the stakeholders including the victim(s), wit-
nesses, police officers, fire persons, emergency vehicles and
coordination personnel. In addition to the basic require-
ments for such a system, variation points are also specified,
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Figure 8: A feature model showing the variation
points the bCMS-SPL case study.

shown as a feature model in Fig. 8. These address dif-
ferent ways in which the system could be customized. For
example, the feature CrisisMultiplicity selects between a
system that can only address a single crash at a time and
one that can handle multiple crashes in parallel. Overall,
the feature model defines 15,360 valid product variants.

We used a documented UML product line developed for
the bCMS-SPL requirements [8] and focused on its struc-
tural part, i.e., the class diagram. When all of the variants
were merged and extended where incomplete, this class dia-
gram had 48 classes, 54 associations, 168 attributes and 174
operations. Of these, 118 had presence conditions (i.e., were
not always present).

We applied the lifting to two transformations. The first,
a Class Diagram to Relational Database schema translation
(C2R), is often used as a benchmark for prototyping and
comparing transformation approaches [13]. C2R consists of
9 transformation rules, shown in Fig. 2 of [47], with the
LHS parts ranging between 13 and 42 elements. The result
of applying the lifted C2R transformation is a product line
with the same feature model as in Fig. 8 but applied to
an Entity-Relational model. Thus, the C2R transformation
illustrates how a lifted transformation can be used to convert
a product line for one type of domain model into a product
line for another.

4 Adapted from the feature model in [8] which models five of
the seven variation points in bCMS-SPL.



Table 2: Results of experiments with the bCMS-SPL case study.

Classical Lifted
Transformation | Avg Time per App(ms) Avg # of Apps | Time per App(ms) Slow down Max chain # of Apps
C2R 2.25 357.8 288.60 128.47 3 399
AddGet 0.45 3.6 12.49 27.73 1 5

The second transformation we consider is AddGet — a re-
striction of the standard class diagram refactoring “Encapsu-
late Variable” [31] used to add “getter” and “setter” methods
to public data members (i.e., attributes) of a class in order
to control access to an object’s state. For simplicity, AddGet
is restricted to just “getter” methods.

Results. We conducted our experiments using our pro-
totype implementation on an Intel Core i7-2600 3.40GHz x4
cores (8 logical) computer with 8GB RAM, running Ubuntu-
64 13.04. For each transformation, we ran its lifted and clas-
sical versions on five randomly generated products, show-
ing the averaged results in Table 2. The second and third
columns show the average running time per rule application,
in ms, and the average number of rule applications for the
classical rules, respectively; these reflect the fact that C2R
is a substantially more complex rule than AddGet.

The sixth column shows the maximum length of rule ap-
plication “chains” for the lifted rule. A chain occurs if the
RHS of a rule application is subsequently matched as the
LHS or NAC of another rule application. Rule chaining is
important since the presence conditions of RHS elements in
a rule application are constructed from logical combinations
of the presence conditions for LHS and NAC elements (see
steps 2, 6 and 9 of the lifting algorithm). Thus rule chains
cause presence conditions to grow in size each time a chain-
ing occurs. The maximum length of the chains in both cases
is small, and so the growth of presence conditions is not a
concern. We use this observation to calibrate the scalability
experiments in Sec. 6.

The seventh column shows the number of rule applica-
tions for the lifted rule. This number is consistently larger
than for the classical rule (column three). We expect the
lifted rule to have more applications than the classical rule
for two reasons. First, the lifting algorithm can delete an
element virtually, via presence conditions (see step 9). Vir-
tual deletion means that the element is still in the domain
model and can get matched again in subsequent rule appli-
cations. Classical rules delete the element entirely. Second,
since the effect of NACs cannot be determined without con-
sidering the presence conditions, the transformation engine
cannot use the occurrence of NACs in the domain model to
eliminate potential rule applications. Thus, this causes more
matches than in the classical case. Yet we observed that the
impact of these increases is relatively minor.

The fourth column lists the running time for the lifted ver-
sions of the rules and the fifth — the slow-down factor. Thus,
the lifted version of C2R runs 128 times slower than its clas-
sical counterpart whereas AddGet is 28 times slower. Re-
call that applying the lifted rule is equivalent to applying its
classical version to all of the 15,360 products simultaneously!
Thus, we conclude that lifting the rules in the bCMS-SPL
case study leads to a 2-3 orders of magnitude improvement
in performance if compared to the classical application over
all products.

124

6. EVALUATION

In this section, we describe an experimental study aimed
to answer the research question “How does our approach
scale with respect to increasing the size of product lines and
transformation rules?” To answer this question, we tried to
identify the bottlenecks in our approach and generate ran-
domized inputs to stress test them.®

6.1 Methodology

Lifted rule application begins with finding a rule match-
ing site, which is a well-studied subgraph isomorphism prob-
lem [18]. Here, our approach performs as well as the tradi-
tional graph transformations. Next, the application algo-
rithm in Fig. 6 is applied. Steps 4-9 of the algorithm can
be completed in time linear in the size of the matching site
K. We thus focus our examination to Steps 3 and 10 since
they require solving the satisfiability problem, which is NP-
complete. The former entails checking whether ®p A ®4ppiy
(Def. 8) is SAT and the latter — if ®p A Pg A =P gppiy is UN-
SAT. In this section, we refer to these formulas as &1 and ®»,
respectively. Since ®; and ®; are similar in structure, we use
the same experimental design whereby we generate random
but realistic inputs to a SAT solver to measure the time re-
quired to check SAT and UNSAT, respectively. To generate
realistic inputs, we simulated the execution of the algorithm
in Fig. 6, replacing matching with random element selec-
tion. We varied input generation using two experimental
variables: (a) the feature model, and (b) the transformation
rule. In addition, based on pilot runs and the case study
described in Sec. 5, we calibrated random input generation
to ensure that the generated formulas correspond to realistic
scenarios. We describe the details below.

Varying the Feature Model. Each element in ®; and
®, is represented by its presence conditions which are ex-
pressed over the set of features. Moreover, as described in
Sec. 3.1, the feature model of a product line P can be en-
coded in the propositional formula ® p expressed over the set
of features [15]; ®p is a subformula of ®; and ®. Thus, the
first experimental variable is the choice of a feature model.
To get realistic values of this parameter, we used the collec-
tion of real feature models available in the S.P.L.O.T repos-
itory [30] . At the time of experimentation, the repository
contained 359 real feature models, ranging from 9 to 290
features, with an average of 26 features each.

Varying the Transformation Rule. The subformula
Doppiy of @1 and P2 in Def. 8 gets more complex for larger
sizes of the rule’s LHS and NACs. Thus, our second exper-
imental variable is the choice of the rule. To vary it, we
use seven real graph transformation rules chosen from the
literature and shown in Table 3. We specifically chose those
that represent variety of transformation use cases (transla-
tion, refactoring, refinement, etc.) and have LHS, RHS and
NAC:s of different sizes, ranging from 0 to 30.

5For more details about the experimental study see www.cs.
toronto.edu/se-research/icsel4.htm



Table 3: Rules used in the experiments. For each rule, the values n,c,d,a are the number of elements in the

rule parts N", C", D", A", respectively.

# Rule Category n ¢ d a Source

1 | Relations:StationwMale View generation | 1 2 1 1 [4], Fig.2

2 | UML Activity to Petri Net transition Refinement 7 2 3 7| [45], Fig.l
3 | while Reduction 3 2 8 3| [34],Fig5h
4 | Encapsulate Variable Refactoring 30 9 0 24| [31], Fig.20
5 | Fold incoming transitions Refactoring 1 12 7 1 [5], Fig.5

6 | attr2fkeyR Translation 6 19 0 6 | [47], Fig.2
7 | assoc2fkeyR Translation 16 21 0 16 | [47], Fig.2

Generating inputs. In order to generate realistic inputs,
we simulate the rule application algorithm in Fig. 6. At
each simulation step r, we produce a formula ®gpp1, () that
approximates the formula ®qppiy in @1 and P2. We re-
sorted to simulating the algorithm due to the lack of readily
available real examples of product line domain models. We
simulated the matching and transformation steps of the al-
gorithm by generating expressions that represent elements
with randomly generated presence conditions.

In each simulated rule application we constructed the new
presence condition for added or deleted elements from ran-
domly generated presence conditions for the LHS and NACs
in the rule. The initial presence conditions were randomly
assigned either True or a single feature variable. Then, as
new presence conditions were constructed by simulated rule
applications, they were put into a pool for possible reuse in
subsequent rule applications. This was done to simulate the
chaining of the rules (see Sec. 5). In subsequent rule appli-
cations, elements were drawn from this pool with a chaining
probability and assigned to LHS and NACs of the rule ap-
plication. The above process was repeated a preset number
of times.

Calibrating input generation. The generation process
described above requires calibration of a few additional ex-
perimental parameters. Rather than considering these as
independent variables, we chose to fix their values based on
pilot runs and observations of the case study in order to
avoid the combinatoric explosion of possible experimental
configurations. These parameters are: (1) the size of the
original domain model, fixed at 100 elements to simulate
models of a reasonable size; (2) the probability that the ini-
tial presence condition is a feature rather than True, fixed
at 0.6; (3) the maximum number of simulations for each
model/transformation rule pair, fixed at 500 rule applica-
tions; (4) rule chain lengths, limited to the maximum of 4.

6.2 Results

We implemented the experiment using MMTF [37] as the
integration platform and used the hardware setup described
in Sec. 5. Each datapoint is obtained by averaging 10 runs.

The results are shown in Fig. 9(a). The horizontal axis
uses the logarithmic scale and plots the increase in size of the
input feature model, measured by the number of features.
The vertical axis plots the time required to check the gen-
erated formulas ®; and ®5 in seconds. Each rule in Table 3
corresponds to a separate line.

The experiments show that the time required to check
the satisfiability of the formulas grows at most linearly for
all models, and logarithmically for small to medium sized
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product lines. Such product lines formed the majority of
the samples gathered from S.P.L.O.T. For larger product
lines, with more than 100 features, the time increases more
linearly.

The determining factor in the observed variation of run-
times is the number of calls to the solver that returned UN-
SAT (a.k.a. UNSAT calls) — for our examples, these were
faster than those returning SAT. Fig. 9(b) shows the num-
ber of UNSAT calls against increasing the product line size.
The inverse correlation between the solver runtime and the
number of UNSAT calls is most dramatic for rule 4 at the
100 feature mark. Similarly, we observe that the “smaller”
rules (rules 1-3 in Table 3) have fewer UNSAT calls, take
relatively more time to complete and have less variation in
processing time. Matching of the “larger” rules (rules 4-7 in
Table 3) is more difficult due to their complex patterns and
therefore yields more UNSAT calls.

Our preliminary results allow us to conclude that our ap-
proach scales well as the size of the product line and the
rules increases. The complexity of the problem is likely re-
lated to the clause-variable ratio of formulas in the SAT calls
and needs further investigation.

Threats to Validity. The first threat to validity is the
choice of input models and the random generation of inputs.
We attempted to mitigate this by selecting real feature mod-
els from S.P.L.O.T and by adapting the random input gener-
ation algorithm to closely approximate the real observations
from the case study. The second threat is the calibration of
the experimental parameters with fixed values, rather than
varying them as independent variables. To mitigate this, we
calibrated the parameters using values observed in our pilot
runs and the case study.

7. RELATED WORK

We have studied the issue of transformation lifting for
models with uncertainty [19]. Such models contain anno-
tations to indicate which elements may not exist and use
a propositional formula to define sets of elements that can
exist at the same time. Although the current paper has
been inspired in part by this work, there are substantial dif-
ferences. Product lines and models with uncertainty both
represent sets of models but do so in different ways — the
former contain feature models, domain models and pres-
ence conditions, while the latter contain only a single model
and a single propositional formula, i.e., there is no concept
that corresponds to the notion of a feature. As a result of
these distinctions, the approach for lifting transformations
for product lines does not require expensive propositional
formula manipulations needed for models with uncertainty,
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such as existential quantification, making it quite different
and substantially more efficient.

Several works focus on making existing software engineer-
ing techniques “variability aware” so that they are applicable
on the level of the whole product line rather than individual
products — see [44] for a survey. Examples include model
checking [9], type checking [26] and testing [27]. Our ap-
proach shares the goal of lifting operations to the product
line-level, but focuses specifically on model transformations.

Numerous product line-level model transformations allow
to derive individual products from a product line [12, 21, 22],
merge products and feature models [1, 10, 35], refine feature
models [14] and more. Borba et al. [6] organize these works,
formally defining a theory of product line refinements as well
as a catalog of commonly used refinements. Our work differs
from these as we focus on lifting existing transformations
from the product to a product line-level rather then hand-
crafting transformations for product-line specific purposes.

Schulze et al. [38] propose a variant-preserving refactoring
approach for feature-oriented product lines [2], aimed to im-
prove the structure of source code. The authors show how to
extend traditional approaches to product lines created using
feature-oriented programming. Instead, we focus on anno-
tative product line representations realized with models, and
is not limited to just structural improvement.
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Several approaches consider the problem of managing the
variability of a model transformation itself. Sijtema [41]
proposes a method for using a feature model to configure
the decisions made by a transformation as it converts an
input model into an output model. Kavimandan et al. [28]
promote reuse of model transformations through parame-
terization and specialization of transformation rules. We do
not focus on variability of the transformation but rather on
applying transformations to assets that contain variability.

Product line evolution approaches, e.g., [32] and [39], fo-
cus on studying and supporting scenarios such as splitting,
merging, adding or removing features and their implemen-
tations. Several such approaches are based on providing
templates of “safe” evolution which are to be applied man-
ually. Our focus is rather on transformations that preserve
the original set of features, while modifying the structure
and the abstraction level of their implementations, and we
do so automatically.

Freeman et al. [20] describe an example of “lifting” selected
features and their compositions from a product line with
“complex” implementations to a product line with “simpler”
ones. This work relies on operators mapping higher-level
features and their compositions to their lower-level counter-
parts. Despite a shared name, our work is different: we “lift”
transformations rather then product lines.

8. CONCLUSION

MDE and SPLE are key techniques used in modern large
scale software development practice. Yet, using these tech-
niques together can pose significant challenges. In partic-
ular, classical model transformations designed for use with
individual models cannot be reused with product lines of
models without substantial modification. In this paper, we
addressed this challenge by proposing an algorithm and an
accompanying tool for automatically lifting classical model
transformations (expressed as graph transformations) to cor-
responding transformations of product lines. This allows
transformations to be reused with no additional develop-
ment effort, and maintains a clear separation of concerns
between the transformation definition and variability man-
agement. The initial experiments with the technique showed
that it scales well. We believe that transformation lifting is a
foundational technique required to address the MDE/SPLE
integration problem and we hope that it will help improve
the practice of complex software development.

In the future, we plan to do more extensive evaluation of
the lifting technique. In addition, we intend to extend it in
several ways. (1) Currently, rules are assumed to be exe-
cutable independently and in any order. Rule control flow
mechanisms restrict such applications, and we are interested
in lifting rules which are subject to such mechanisms. (2)
We are interested in lifting transformations written in other,
more programmer-oriented languages, such as ATL [24]. (3)
We plan to explore ways to integrate transformation lifting
with existing product line tools.
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