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Abstract—To improve the reliability of on-chip network based systems, we design a deadlock-free routing technique that is more

resilient to component failures and guarantees a higher degree of node connectivity. The routing methodology consists of three key

steps. First, we determine themaximal connected subgraph of the faulty network by checking whether the defective components

happen to be the cut vertices and bridges of the network topology. A precise fault diagnosis mechanism is used to identify partial

defective routers. Second, we construct an acyclic channel dependency graph that breaks all cycles and preserves connectivity of the

maximal connected subgraph. This is done through the cycle-breaking and connectivity guaranteed (CBCG) algorithm. Finally, we

introduce a fault-tolerant adaptive routing scheme that can be used with or without virtual channels for network congestion avoidance

and high-throughput routing. The simulation results show both the effectiveness and robustness of the proposed approach. For an

8� 8 2D-Mesh with 40 percent of link damage, full connectivity and deadlock freedom are still archived without disabling any faultless

router in 98.18 percent of the simulations. In a 2D-Torus, the simulation percentage is even higher (99.93 percent). The hardware

overhead for supporting the introduced features is minimal. An on-line implementation of CBCG using TSMC 65nm library has only

0.966 and 1.139 percent area overhead for the 8� 8 and 16� 16 2D-Meshes.

Index Terms—Fault-tolerance, Network-on-chip, Channel Dependency Graph, Reliability, Routing algorithm
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1 INTRODUCTION

THE ongoing miniaturization of semiconductor
manufacturing technologies has enabled the integration

of hundreds to thousands of processing cores on a single
chip [1]. But with each successive node shrink, scaling of
system-on-chip (SoCs) becomes more challenging. Gate
widths are nearing the molecular scale and the need for
more control over dopant distribution and voltage charac-
teristics are running against the fundamental limits of
physical laws [2]. Radiation, electromagnetic interference,
electrostatic discharge, aging, process variability and
dynamic temperature variation are the major causes of
failure in MOSFET based circuits [2], [3], [4]. The combina-
tion of these factors in the near future will make long-term
product reliability extremely difficult in many-core sys-
tems. Therefore, in order to maintain connectivity and cor-
rect operation, fault-tolerance issues must be taken into
account when designing the communication fabric of these
systems.

On-chip network (OCN) has emerged as an attractive
solution to transmit messages through a distributed system
of programmable routers connected by links. It enables a
more efficient and flexible communication resources utiliza-
tion and sharing than traditional point-to-point links and
buses. At OCN level there are two main problems: (1) how
to efficiently connect the increasing number of on-chip com-
putation and storage resources, and (2) how to effectively
manage decreasing transistor reliability. ONC can poten-
tially achieve fault tolerance by providing alternative routes
when messages or packets encounter faulty regions. Gener-
ally, fault control in OCN is a two-phase process: fault diag-
nosis and fault containment. For in-operation detection,
different schemes like error-correcting-codes (ECC) have
been explored. In this work, we use a dedicated build-in self
test (BIST) module as described by Cota [5] and Kohler
et al. [6] to pinpoint the location of faulty components. Our
research mainly focuses on fault tolerance itself. It is worth
mentioning that in practice a combination of techniques is
required to provide a complete protection against different
types of faults.

Circular route dependencies cause deadlock and are
difficult to detect. They arise from unpredictable fault
distribution that leads to irregular network topology and
the use of alternative paths to avoid faults. Prohibiting
certain turns and applying dedicated escape virtual
channels are convenient and powerful approaches for
deadlock prevention. However, the use of turn-models
may not be adequate or even feasible if certain network
connections are removed due to faults and heterogeneous
IP blocks. Furthermore, prohibiting turns arbitrarily and
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independently from the faulty component or condition
severely limits routing options. Dynamic routing and
multiple virtual channels increase the complexity of rout-
ing decisions and router micro-architecture. More impor-
tantly, complex routers increase the power consumption
and the probability of component failure.

In this paper, we develop a more general turn-prohib-
ited methodology to address fault tolerance in OCNs by
exploring cycle-breaking and connectivity guaranteed
(CBCG) algorithm. First an adaptive fault-tolerant virtual
channel-free routing algorithm is introduced, followed by
a proposed heuristic rule to reduce network contention.
We provide extensions to a previously developed fine-
grained fault diagnosis method to make full utilization of
the semi-defective router to improve the network perfor-
mance. CBCG can be implemented by either on-line or off-
line fashion and run right after chip fabrication or periodi-
cally for changing network topologies, where some of the
links/routers are out-of-serive because of broken compo-
nents or fine-grained ON/OFF power management of volt-
age-frequency islands.

Section 2 of this paper summarizes related work. Sec-
tion 3 describes our generalized turn-prohibited fault-toler-
ant framework along with proofs for deadlock-freedom and
connectivity guarantee. The adaptive fault-tolerant virtual
channel free routing algorithm is presented in Section 4, fol-
lowed by the proposed heuristic rule described in Section 5.
Extensions to the methodology are the subject of Section 6.
Section 7 provides experimental results and a comparison
of CBCG to previous methods. Section 8 concludes the
paper.

2 RELATED WORK

The growing concern about reliability of OCN has
prompted extensive research in recent years [7], [8], [9].
Glass and Ni [10] proposed one-fault-tolerant routing
derived from negative-first routing algorithm without VCs
with (n-1) fault-tolerant degree for n-dimensional meshes.
Wu [11] presented a dimension-order and odd-even turn
based algorithm, but his approach does not support failures
of edge nodes. Recently, Fu et al. [12] proposed an abacus-
turn-model based reconfigurable routing method named
AbTM. It extended the Odd-Even turn-model, where a spec-
ified node is selected in each column and named clockwise
bead or counter-clockwise bead. All East-South turns are pro-
hibited above the clockwise bead, and all South-West turns
are forbidden below it. As for the counter-clockwise bead, all
North-West turns above it are prohibited and all East-North
turns below it are forbidden. Fick presented a similar
method [13].

A block based fault model [14] sacrifices system process-
ing capability because some fault-free nodes are isolated
and marked as faulty in order to form rectangular or convex
regions. In addition, packets are routed around the fault
regions, thus leading to significantly unbalanced link utili-
zation and degraded network performance. Recently,
Fukushima et al. [15] proposed a routing algorithm named
Overlapped-Ring-Chain-Route to reduce the number of deacti-
vated nodes in the rectangle region, while still satisfying the
computational capability of faultless nodes.

Prohibiting certain turns is a convenient and powerful
approach to deadlock prevention. Glass and Ni [16] pro-
posed 12 different ways to break a link’s dependence and
three unique turn models, namely “West-first”, “North-last”
and “Negative-first”; and Chiu [17] introduced “Odd-even”
turn. However, there are two obvious side effects when
Glass and Chiu’s turn prohibitions method is put into prac-
tice. The first is that turn-models are suitable for regular
topologies such as meshes and tori, but they may not be fea-
sible if certain connectivity is removed by the presence of
heterogeneous IP blocks in MPSoCs or in customized On-
chip network; the other is the fixed position of forbidden
turns regardless of the realistic fault situation. Furthermore,
the limited routing options could still be affected by faulty
components, and cause flows inconsistency, thus strictly
adhering to the turn-model may generate an inconsistent
network [8], [18], [19], [20]. Turn-models are not feasible for
irregular networks, but the proposed CBCG has no such
restrictions on the network topology.

A well-known method named Up*/Down* delivers mes-
sages in irregular networks can be adopted to deal with
faulty networks [21]. It first builds a BFS spanning tree, then
assigns communication links either an “up” or “down”
direction. Messages which are using a down link cannot
make a turn to up links, eliminating the cyclic dependencies
of links. However, this method might cause a bottleneck
near the root of the tree. Dong proposed multiple spanning
trees to improve the efficiency of the Up*/Down* routing
scheme [22]. However, with high turn prohibitions the
Up*/Down* routing disables too large a number of turns,
resulting in lower adaptivity and degrading network per-
formance. We propose an adaptive fault-tolerant routing
methodology which prohibits a reasonable number of turns
to avoid the formation of a cycle while preserving connec-
tivity of the underlying faulty network.

Packets trapped in a hold-and-wait cycle can always be
“drained” through an additional dedicated escape chan-
nel [23], [24], which provides routing flexibility without the
constraint of an acyclic CDG. However, the route and vir-
tual channel arbitration mechanism and their implementa-
tion become complicated due to the increased number of
channels. Gomez [25] proposed an intermediate node based
multi-phase routing using different escape channels for
each phase, however this approach still suffers from some
limitations because the underlying Duato’s protocol may
not make full use of escape channel’s bandwidth and the
required virtual channel number is proportional to the
number of intermediate nodes. Recently, methods for full
utilization of the semi-defective router have been intro-
duced [26], [27], [28]. Other approaches with some tolerable
addition of hardware including spare wires, backup paths,
crossbar bypass bus and buffers would increase OCN
components’ complexity [18], [29], [30].

Inspired by a simple cycle-breaking (SCB) algorithm [31]
we have improved our previous work [32] to be a more
practical implementation on OCN and also propose a heu-
ristic rule to select a relatively good performance solution
among all the qualified candidates. Moreover, two exten-
sions of CBCG are introduced to further reduce the negative
influences of out-of-service links/routes and improve the
performance of our proposed methodology.
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3 METHODOLOGY

3.1 Network Model

The structure of a generic wormhole virtual-channel router
is shown in Fig. 1. Each port is associated with a pair of
input and output links, which contains a single or several
input buffers (also called VCs). As shown in the figure, the
data path of the router consists of buffers and a crossbar
switch. The routing module and VC allocator determine the
next hop and the next virtual channel, and switch allocator
is responsible for determining which flits are selected to tra-
verse the crossbar. When a message is blocked because there
is no available buffer space in the downstream router, it will
hold the buffer resources that are along its path. Therefore,
message routing in wormhole switch based networks is
prone to deadlock.

3.2 Definitions and Preliminaries

We first give standard definitions of architecture characteri-
zation graph (ARCG) and directed channel dependency
graph (DCDG).

Definition 1. Given an OCN architecture characterization graph
G ¼ GðR;LÞ, where the routers and links in the network are
given by the sets R and L, each ri 2 R represents one router
that is associated with each processor element, while each arc
li;j 2 L represents a bidirectional link from ri to rj.

Definition 2. A directed channel dependency graph
DCDG ¼ DGðV;EÞ is derived from the ARCG, where nodes
vi;j; vj;i 2 V corresponds to a bidirectional edge li;j in ARCG.
There is a directed arc from vi;x to vx;j if li;x and lx;j are input
and output links of the same node x (ignoring 180 degree
turns).

For a given ARCG, two nodes i and j are called connected
if ARCG contains a path from i to j; graph ARCG is said to
be connected if every pair of nodes in ARCG is connected.
For a given connected graph ARCG, a cut vertex of ARCG is
a node whose removal results in a disconnected ARCG; a
bridge of ARCG is an arc whose removal disconnects ARCG
(see Fig. 2a for an example: nodes d; f; g are cut vertices and
arcs ðc; dÞ, ðf; gÞ and ðg; jÞ are bridges). Strongly connected
nodes of the ARCG is a set of nodes C � V such that for
every pair of nodes x and y in C, they are reachable from
each other; a connected component (ARCGcc) is a subgraph of
ARCG containing all the nodes belonging to C; a turn in
ARCG is a triple of nodesði; j; kÞ if li;j and lj;k are edges in

ARCG, whereas in the corresponding DCDG, it is the edge
between the nodes vi;j and vj;k; a path P ¼ ðri; rj; . . . ri; rjÞ in
ARCG or P ¼ ððvi; vjÞ; ðvm; vnÞ; . . . ; ðvi; vjÞÞ in DCDG is
called a cycle.

3.3 Identify Cut Vertices and Bridges

It is important to emphasize that the unpredicted position of
faults can possibly result in a disconnected network even
though it was initially designed to be connected. If one of
the fault routers (links) happens to be the cut vertex (bridge)
of the underlying ARCG, the failure will disconnect all
node pairs belonging to disconnected subgraphs. Fault tol-
erance without disabling any flawless routers, in a defective
network can be beyond the capacity of fault-tolerant rout-
ing. Therefore, checking whether the defective components
are the cut-vertices (bridges) of the network is a prerequisite
of our methodology.

Let ARCGp ¼ ðR;LpÞ be the depth-first tree of ARCG.
The root of ARCGp is a cut vertex iff it has at least two chil-
dren in ARCGp; if v is a non-root node of ARCGp, v is a cut
vertex iff v has a child u such that there is no back edge from
u or any descendant of u to a proper ancestor of v. We can
see that in Fig. 2b, root a has only one child b, thus a is not a
cut vertex, non-root d has a child node c, where there is no
back edge from c to any ancestor of d, thus node d is a cut
vertex. Similarly, node f and g are identified as cut vertices.
An edge of ARCGp is a bridge iff it does not lie on any simple
cycle of ARCG. Therefore, edges ðc; dÞ, ðf; gÞ and ðg; jÞ are
marked as bridges in Fig. 2b.

Note that although different root node selection, and the
order of visiting neighbors of a node, might generate differ-
ent Depth-first search spanning tree, the set of cut vertices
and bridges are equivalent as described in Chapter 22 [33].

3.4 Cycle-Breaking and Connectivity Guaranteed

Deadlock occurs when in-flight packets are holding onto a
set of network resources in a cyclic manner, thereby inhibit-
ing routing progress indefinitely. A network’s deadlocking
properties can be depicted using DCDG by noting the exis-
tence of cycles, in other words, the potential for deadlock
exists if cycles are present in the graph. Therefore, a widely
used deadlock avoidance approach is to disallow the
appearance of cycles in the network’s DCDG. According to
Dally and Seitz [34], a routing algorithm is deadlock free if
the links can be numbered and every message can only tra-
verses links in a strictly increasing (or decreasing) order.

Fig. 1. Structure of a generic wormhole VC router.

Fig. 2. The cut vertices and bridges are heavily shaded in (a) The
network topology which is a connected graph and (b) The corresponding
depth-first search spanning tree. Timestamps within nodes indicate
discovery time/finishing times.
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Therefore, to meet our dual objectives of deadlock avoid-
ance and preserve the connectivity, we need to find a way
to label each link and generate a SETpturns of prohibited
turns. The proper ordering of available links can be used for
routing, while guaranteeing at least one path could connect
every pair of nodes for a connected graph.

We present an algorithm called CBCG as described in
Algorithm 1, followed by properties and an analysis of
the CBCG.

� Line 8: We can determine the set of cut vertices of
ARCG using the Depth-first search algorithm (as
described in Section 3.3).

� Line 9-10: It is reasonable to assume that a node with
larger degree produces more traffic congestion, so
we prefer to select nodes with minimal degree as the
constrained turns. There is possibly more than one
node with the minimal degree in SETncut, and differ-
ent ordering of the selected nodes will produce
different SETpturns and SETaturns. The influence on
network performance and a proposed heuristic rule
for node selection is discussed in Sections 4 and 5.

� Line 11-16: Note that at this stage of the algorithm
when node x is selected, all other undeleted nodes
are yet unlabeled, therefore turn ði; x; jÞ is prohibited
iff labelðxÞ < labelðiÞ and labelðxÞ < labelðjÞ; but turn
ðx; i; jÞ and ði; j; xÞ are allowed, such that
labelðxÞ < labelðiÞ and labelðxÞ < labelðjÞ;

� Line 18-19: The labeling assignment is in an increasing
order and guarantees each link has a unique number.

Algorithm 1. Pseudocode of CBCG Algorithm

Input:An undirected graph ARCGðR;LÞ
Result: Sets of prohibited and allowed turns at each node in the

ARCG.
1: Initialization;
2: SETncut is empty; /* Set of non-cut vertices */
3: SETlvertex is empty ; /* Set of labeled nodes */
4: SETpturns is empty ; /* Set of prohibited turns */
5: SETaturns is empty; /* Set of allowed turns */
6: label ¼¼ 1;
7: while jRj! ¼ 2 do
8: Generate ARCGpðR;LpÞ; /* Depth-first tree of ARCG */
9: Determine the SETncut of ARCGðR;LÞ;
10: Select a non-cut vertex x from SETncut with
11: the minimal degree;
12: for turns ði; x; jÞ in ARCGðR;LÞ do
13: Add ði; x; jÞ in SETpturn

14: end
15: for turns ðx; i; jÞ and ði; j; xÞ in ARCGðR;LÞ do
16: Add ðx; i; jÞ and ði; j; xÞ in SETaturn

17: end
18: Remove node x from ARCGðR;LÞ;
19: Label node x equal to label;
20: labelþþ
21: end
22: Label the remained two nodes jRj � 1 and jRj;
23: retrun SETpturns and SETaturns

Example. Fig. 3 demonstrates the operation of the CBCG

algorithm. The original defective connected network is
shown in Fig. 3a, where dashed lines indicate faulty

router D and faulty links. It requires seven stages to
complete the algorithm because there are eight avail-
able nodes in the graph. SETncut, SETlvertex, SETpturns

and SETaturns are Ø after initialization. At the begin-
ning, the number of unlabeled nodes in ARCG is 8. By
using DFS algorithm, the number of non-cut vertex is
determined to be 6 (the cut vertices B and H are heavily
shaded in Fig. 3a). At stage one, there are two non-cut
vertices A and G, both with the minimal degree of 1.
We randomly select A and label it ‘1’, as shown in
Fig. 3b. None of the turns are prohibited, since the
degree of node A is 1; after that, node A is removed
and CBCG algorithm proceeds. At stage two, node G
is selected and labeled ‘2’, as is shown in Fig. 3c; in
stage 3, node C with degree 2 is selected (among all
the four qualified candidates B, C, H and I) and is
labeled ‘3’. Now the two prohibited turns are denoted
by dotted arcs in Fig. 3d, i.e., ðB;C; F Þ and ðF; C; BÞ.
During the last stage, nodes I, F are labeled ‘7’, ‘8’ and
algorithm CBCG is finished. All the prohibited turns
and labeled nodes are shown in Fig. 3g.

Two properties of the CBCG algorithm are :

� CBCG is deadlock-free guaranteed.
� CBCG is connectivity guaranteed.

Proof of Property 1. Assuming there is a cycle C in ARCG,
node i is with the minimum label labelðiÞ in C. Then there
exists a turn ðm; i; nÞ, both labelðmÞ and labelðnÞ are greater
than labelðiÞ, m; i; n 2 C. Obviously, based on the labeling
scheme turn ðm; i; nÞ 2 SETpturns, which is forbidden and
brings a contradiction, so cycleC is non-existent.

Proof of Property 2. The property can be expressed as: for
any two nodes x; y 2 ARCG, there exists a path
P ¼ ðx; . . . ; yÞ that does not include turns from SETpturns.
In the first stage, node V1 is selected, labeled ‘1’ anddeleted
afterwards, therefore, SETlvertex has one element V1, and
SETaturns has turns of the form ðV1; i; jÞ and ði; j; V1Þ.
Because node V1 is a non-cut vertex in ARCG, according to
line 9 in Algorithm 1, there still exists a path from any
node x to any node y if x; y 2 ARCG n SETlvertex; Likewise,
if x ¼ V1 or y ¼ V1, all the turns of the form ði; j; x or yÞ and
ðx or y; i; jÞ are allowed. Thus there exists at least one
path from x, x 2 ARCG n SETlvertex to y ¼ V1 or from y,

Fig. 3. Example demonstrating the CBCG algorithm. The fraction of pro-
hibited turns is 20 percent.
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y 2 ARCG n SETlvertex to x ¼ V1. Now, assuming after
stage n, there are total of four kinds of circumstances of
source-destination pair ðx; yÞ as discussed below:

Case1. x; y 62 SETlvertex.
At stage n, node Vn is the selected non-cut vertex

and labeled ‘n’, according to the definition of cut ver-
tex, there still exists at least one path between unla-
beled nodes x; y 2 ARCG n SETlvertex.

Case2. x 2 SETlvertex and y 62 SETlvertex.
Assuming x 2 SETlvertex and is labeled ‘X’,

y 2 ARCG n SETlvertex without a label. Taking a step
back to stage X-1, based on the CBCG labeling scheme,
at this moment both x and y are unlabeled, thus
according to Case1 x and y are connected; Then at
stage X node x is selected, however all turns of the
form ðx; i; jÞ are permitted, so x and y are still
connected.

Case3. x 62 SETlvertex and y 2 SETlvertex.
At this moment y 2 SETlvertex and is labeled ‘Y’,

x 2 ARCG n SETlvertex without a label. Consider
stage Y-1, we have the same situation as Case 2, thus
x and y are connected because x; y 2 ARCG
nSETlvertex; at the next stage Y, non-cut vertex y is
selected and all turns of the form ði; j; yÞ are still
allowed, thus x and y are connected.

Case4. x; y 2 SETlvertex.
Considering now x and y are labeled ‘X’ and ‘Y’,

assuming ‘X’<‘Y’, then go back to stage X, at this
moment we have the same situation as Case 2;
whereas ‘Y’<‘X’, moving back to stage Y, we have
the same situation as Case 3, therefore x and y are
connected.

Finally for both cases, the proposed CBCG is connectiv-
ity guaranteed. In summary, by imposing the turn pro-
hibitions in this manner, any possible cycle contains at
least one constrained turn, so all cyclic link dependencies
in the network are eliminated, while the network remains
connected.

3.5 Complexity Analysis

A Depth-first tree ARCGp ¼ ðR;LpÞ is generated from
ARCG, which is needed to calculate the set of cut vertices
(line 8 of Algorithm 1) and DFS runs in time OðjRj þ jLpjÞ. It
takes Oð1Þ to check whether the root of ARCGp is a cut ver-
tex. Any non-root node is a cut vertex iff it has a child u in

ARCGp with no back edge to a proper ancestor of itself,
time for this procedure is proportional to the number of
children of v in ARCGp. Thus to check over all non-root
nodes is OðjRjÞ. Selecting a node x with the minimal degree
from the set of non-cut vertices (line 9 of Algorithm 1) runs in
OðjLpjÞ. Lines 11-12 and 14-15 both are OðjRjÞ, and lines 17-
19 is Oð1Þ. After that, selected non-cut vertex is removed
from the ARCGp and we need to repeat the procedure once
again until the number of remaining nodes is 2. The
removed node only affects the cut property of its parents, so
the worst-case running time is OðjRjÞ. In all, the complexity
of CBCG algorithm is OðjRj þ jLpjÞ.

4 FAULT-TOLERANT ROUTING

An irregular underlying topology further compounds the
difficulty of message routing in a defective network. In gen-
eral, fault tolerant routing framework needs to determine
whether any router needs to be disabled and it needs to
assign a feasible routing guideline.

4.1 Determining the Maximal Connected Subgraph
of ARCGARCG

Before calculating all the prohibited turns to eliminate
cycles using CBCG we need to verify whether the defective
network is fault-tolerable without disabling any healthy
nodes, as mentioned in Section 3.3. Node pairs can only
communicate with each other if they belong to the same con-
nected subgraph. Suppose the node set V cg ¼ fG1; G2; . . . ; Gkg
contains all the connected subgraph Gi of ARCGðR;LÞ. If
there is only one element G1 in V cg (V cg ¼ fG1g) then
G1 ¼ R, then every node pair in ARCG is connected. Other-
wise we only keep the Gmax with the maximize number of
verties in V cg and disable all the other vertices. ARCGcg

max is
the corresponding subgraph of ARCG driven from Gmax.
The V cg is totally determined by the fault situation of the
defective network, which can be calculated by calling the
DFS(ARCG). Each tree formed by DFS algorithm is a sepa-
rate Gi of ARCG and accordingly the one with the maximal
number of nodes is the Gmax.

4.2 Adaptive Routing without Virtual Channel

After determining the ARCGcg
max we can generate the acyclic

DCDG by deleting edges ðði; jÞ; ðj; kÞÞ according to CBCG

(ARCGcg
max) and forbidding all the turns in the form ði; j; kÞ in

SETpturns. Fig. 4 demonstrates an example, here the
ARCGcg

max ¼ ARCG and Gmax = {0; 1; 2; 4; 5; 6; 7; 8} in this

Fig. 4. Examples of acyclic channel dependency graphs generated using CBCG algorithm. (a) The defect network, fault node is 3 and fault link is ð0; 3Þ;
(b) DCDG of (a); (c) The acyclic DCDG of Fig. 3 using CBCG algorithm, the order of selected nodes is 0-6-2-1-7-4-8-5, and forbidden turns are ((1,2),
(2,5)) and ((5,2),(2,1)) at node 2, ((4,7),(7,8)) and ((8,7),(7,4)) at node 7; (d) is (c) with added dummy nodes and arcs to determine available routes
for flow given source and destination nodes 1 and 7. They are highlighted with blue dashed circles and lines.
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case. Fig. 4a is the same with Fig. 3a, except that nodes are
annotated with natural numbers rather than alphabets for
convenience. Fig. 4b is the corresponding DCDG of Fig. 3a.
According to the previous analysis, SETpturns = {ð1; 2; 5Þ;
ð5; 2; 1Þ; ð4; 7; 8Þ; ð8; 7; 4Þ}. Fig. 4c is generated by removing
corresponding edges ðð1; 2Þ; ð2; 5ÞÞ, ðð5; 2Þ; ð2; 1ÞÞ, ðð4; 7Þ;
ð7; 8ÞÞ and ðð8; 7Þ; ð7; 4ÞÞ from the original DCDG. The prop-
erties of CBCG can be verified by checking for the existence
of cycles and at least one path between all node pairs in the
constructedDCDG.

As mentioned earlier, there might be multiple non-cut
vertices with the minimal degree in every stage of the
CBCG. Different ordering of selected nodes would in turn
construct different acyclic DCDGs as shown in Fig. 5, thus
generating different SETpturns. Obviously, it is worth not-
ing that the qualities of network performance might be
directly affected by different underlying topology of
DCDGs. Further observations and discussions are intro-
duced in Section 5.

Before making the routing decision for flow iwith source
Si and destinationDi, we need to make a temporary modifi-
cation to the acyclicDCDG by adding dummy nodes Si and
Di. Then we add directed arcs from Si to all nodes of the
form ðSi; xÞ, and to Di from nodes of the form ðx;DiÞ.
Fig. 4d shows an example of traffic flow from node 1 to 7
(Dummy vertices are 1 and 7, added arcs are ðð1; ð1; 2ÞÞ;
ð1; ð1; 0ÞÞ,ð1; ð1; 4ÞÞ,ðð6; 7Þ; 7Þ,ðð4; 7Þ; 7Þ and ðð8; 7Þ; 7Þ, they

are highlighted using blue dashed circles and lines). Then
adaptive routing is applied and the route taken by a packet
is determined dynamically based on available paths. For
example, if node 1 wants to send a packet to node 7, it can
choose either path ð1; ð1; 4Þ; ð4; 7Þ; 7Þ or ð1; ð1; 4Þ; ð4; 5Þ; ð5; 8Þ;
ð8; 7Þ; 7Þ as is shown in Fig. 4e. Dummy nodes 1, 7 and asso-
ciated arcs are removed afterwards. Repeat the procedure
until all the traffic flows are assigned with feasible routes.

Proposed adaptive routing is implemented with node
table-based routing. Tables are stored at each router, which
consist of all the possible outgoing channels corresponding
to its flow identifier. Adaptive route decisions are made by
leveraging the local congestion information at intermediate
hops along the path at runtime to improve network
performance.

5 OBSERVATIONS

The CBCG algorithm prohibits turns to avoid deadlock while
preserving connectivity. The different orders of selected
non-cut vertices generate different positions and types of for-
bidden turns, which will influence the DCDG topology
directly. In Fig. 5, we depict seven different acyclic DCDGs
obtained by using different ordering of non-cut vertices selec-
tion. Since route options are determined by the available
channels of the underlying DCDG, different orders of
selected non-cut vertices will influence the network perfor-
mance indirectly.

Fig. 5. All the seven DCDGs generated using CBCG algorithm with different ordering of selected non-cut vertices, the sequence of selected nodes are
6-0-7-8-4-5-1-2, 6-0-1-2-7-4-5-8, 0-6-7-8-5-4-2-1, 0-6-8-7-4-1-5-2, 6-0-8-7-5-2-4-1, 0-6-2-1-7-4-5-8 and 6-0-2-1-8-7-5-4; the dashed arrows in each
figure indicates forbidden turns.
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Using Fig. 4a as an example, there are a total of 64 differ-
ent ways to prevent deadlock while guaranteeing connectiv-
ity. As per the procedure of CBCG, at stage 1 nodes 0 and 6
both have the minimal degree 1; then at stage 3, there are
four nodes 1; 2; 7; 8 with the minimal degree 2, notice that at
this moment nodes 0 and 6 are removed, thus 1 and 7 also
have degree 2 (see Fig. 3d). Similarly, there are four options
at stage 5 and 2 options at stage 6. Therefore, there are a

total of C1
2 � C1

4 � C1
4 � C1

2 ¼ 64 different sequence orders for
selecting non-cut vertices. However, there are only seven
unique patterns when symmetries are taken into account. In
the following sections, we put forth some observations
made through our extensive experiments.

5.1 What Is the Performance Impact of Different
Ordering of Non-Cut Vertices Selection or
Different DCDGs?

We use HORNET, a highly configurable, cycle-accurate on-
chip network simulator [35] for all the simulations. Figs. 6
and 7 display throughput and average packet latency under
UNIFORM-RANDOM synthetic traffic pattern for all of the seven
DCDGs in Fig. 5. The CBCG achieved a large variety of satu-
ration throughput, with a maximum of 4.225 flits/cycle for
Fig. 5b and a minimum of 3.644 filts/cycle for Fig. 5g. Simi-
larly, average packet latency was a maximum of 22.838
cycles for Fig. 5g and a minimum of 14.366 cycles for Fig. 5a.

Note that all the seven DCDGs prohibit four turns. Since
the number of disallowed turns are equal, we turn our
investigation to properties of the generated acyclic DCDGs.
We compare different DCDGs in terms of the degree of
nodes. The degree of a node is defined as the number of

channels entering or leaving the node. In Fig. 5f for exam-
ple, there are four nodes ð4; 1Þ, ð1; 4Þ, ð5; 4Þ and ð4; 5Þ with a
degree of 4, and four nodes ð7; 4Þ, ð4; 7Þ, ð8; 5Þ and ð5; 8Þ
with a degree of 3 and the other eight nodes have a degree
of 2. Analysis results and corresponding network perfor-
mance of all the seven DCDGs are categorized into four
classes in Table 1. Fig. 5a with 12 3-degree nodes and six
2-degree nodes achieved the best network performance. In
contrast, Fig. 5g with six 4-degree nodes, 12 2-degree nodes
performed the worst. Observing the noticeable pattern in
the Table 1, we can make an assumption that network per-
formance is inversely proportional to the number of maxi-
mal degree nodes. The conclusion is reasonable, because
local congestion could take place around the nodes with
large degree. The higher degree results in higher possibility
of contention, thus becoming susceptible to turning into a
bottleneck. The random selection of the non-cut vertex can-
not guarantee that the generated DCDG achieves the best
behavior. Moreover, it is not practical to performs a large
number of runs to get the best result. Hence, we propose a
heuristic rule for proper selection of the non-cut vertices to
obtain the DCDG that achieves near-optimal performance
and state it as follows:

� Heuristic Rule to select the sequence of non-cut verti-
ces: Select a non-cut vertex with the minimal degree,
and in the event of multiple candidates, choose the
one whose SumdðiÞ has the largest value.

The SumdðiÞ for node i can be calculated as:

SumdðiÞ ¼
XSetnðiÞ

j

ððdi � 1Þ þ ðdj � 1ÞÞ ¼ diðdi � 1Þ þ
XSetnðiÞ

j

ðdj � 1Þ ;

Fig. 6. Throughput results for all the seven DCDGs as shown in Fig. 5
under UNIFORM-RANDOM traffic pattern.

Fig. 7. Packet latency for all the seven DCDGs as shown in Fig. 5 under
UNIFORM-RANDOM traffic pattern.

TABLE 1
Property and Network Performance of DCDGs in Fig. 5

Different Acyclic
DCDGs

Number of nodes with
different degrees Saturation Throughput Latency Avg. Throughput Avg. Latency

4-degree 3-degree 2-degree 1-degree (flits/cycle) (cycles) (flits/cycle) (cycles)

Fig. 5a 0 12 6 0 4.159 14.366 4.159 14.366
Fig. 5b 2 8 2 0 4.225 14.566
Fig. 5c 2 8 2 0 4.081 15.089 4.058 15.301
Fig. 5d 2 8 2 0 3.870 16.248
Fig. 5e 4 4 10 0 3.950 16.813 3.880 17.505
Fig. 5f 4 4 10 0 3.811 18.198
Fig. 5g 6 0 12 0 3.644 22.838 3.644 22.838
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where SetnðiÞ is the set containing immediate neighbors of i
and di is the degree of node i in the ARCG. For a selected
non-cut vertex x in an undirected ARCG, a forbidden turn
comes from one of its neighbors and goes to another, thus
the number of disallowed turns is proportional to square of
the number of its neighbors. In addition, the forbidden turns
will influence all the nodes in DCDG with the form of ðx; yÞ
and ðy; xÞ. Consequently, selection of a node with the largest
value of SumdðiÞ, will decrease the maximal degree of nodes
in the constructed acyclic DCDG. This results in a higher
possibility of generating minimal number of nodes with the
maximum degree. The heuristic method cannot always
guarantee to get the best DCDG, however in most cases it
enables us to obtain a near optimal result. To implement the
proposed heuristic method we need to replace lines 9-10 in
Algorithm 1 with lines in Algorithm 2.

Algorithm 2. Pseudocode of the Heuristic Method

1 SETminc is the set contains non-cut vertex i in SETncut with the
minimal degree;

2 if There is one element in SETminc then
3: x = the single element in SETminc ;
4: else
5: for i in SETminc do Calculate SumdðiÞ
6: x is the one with the maximal SumdðxÞ
7: end

5.2 What Is the Complexity of the Heuristic
Algorithm?

The computational cost of the heuristic method is OðjRjÞ.
The degree of each node in ARCG has to be computed and
added up in the initial phase, this step runs in OðjRjÞ. Time
complexity to calculate SumdðiÞ for every node i is OðjRjÞ.
Therefore, the overall computational cost of the CBCG algo-
rithm remains OðjRj þ jLpjÞ.
Example. Fig. 8 illustrates the operation of the improved CBCG

algorithm. The SumdðiÞ of every node i is shown in the
upper-left corner of nodes in Fig. 8a. According to our pro-
posed heuristic algorithm, at the third stage of CBCG, node
B,C,H and I have the same degree of 2, thus SETminc con-
tains 4 nodes. ThenB orH is selected, because SumdðBÞ ¼
SumdðHÞ ¼ 9 > SumdðCÞ ¼ SumdðIÞ ¼ 6. Similarly, at the
fifth stage node E with the largest SumdðEÞ ¼ 12 is
selected among nodesE, F ,H and I or among nodesE, F ,
B and C depending on whether node B orH is selected at
the third stage. Therefore, two circumstances are generated
as shown in Figs. 8b and 8c, they are equivalent when con-
sidering the symmetry of network topology, and the corre-
sponding DCDG is shown in Fig. 5a. The last two columns

of Table 1 indicate the heuristic solution outperform others
as expected.

6 COMPLEMENTARY MECHANISMS

In this section, we consider two possible extensions to the
proposed methodology : (1) improving resource utilization
by fine-grained fault diagnosis and (2) increasing routing
options by adding more virtual channels.

6.1 Precise Fault Diagnosis

Fault diagnosis is the ability to pinpoint the location of
faults. An entire router could be out-of-service even when
only a single input buffer or switch of the crossbar is defec-
tive [6]. By precisely narrowing down on the fault location
we can operate semi-faulty routers or links in partial-usage
modes by making full use of remaining available network
resources, such as healthy input buffers and crossbar
switches and re-routing packets around faulty components.
Therefore, more fine-grained fault diagnosis models can be
explored for better resource utilization and network perfor-
mance. Grecu et al. [36] presented an on-line fault detection
and location method and Kohler et al. [6] proposed a fault
location approach which enables users to locate fault in the
links, input buffers and in parts of the crossbar.

For example, assuming that the East to North switch link
of the crossbar and the south input port buffer at router 3
are broken for network in Fig. 4a. For the generated DCDG,
all the healthy buffers and available crossbar switches of the
defective router are kept, and only the broken components
are removed. Consequently, vertex (0,3) (the broken South
input port buffer) and the edge between (4,3) and (3,6) (East
to North switch link of the crossbar) are removed from the
DCDG, Fig. 9a illustrates this. It is easy to come to the con-
clusion that the fine-grained diagnosis has some advantages
over the coarse-grained technique because the former has
more vertices and channels for message routing.

6.2 Multiple Virtual Channels

Virtual channels can be very expensive to implement,
requiring additional memory resources and associated allo-
cation and arbitration logic. Nevertheless, for better fault
tolerance and increased link utilization multiple virtual
channels can be employed as they provide logically inde-
pendent communication paths to packets multiplexed
across each network link, thereby reducing head-of-line
blocking and improving network performance.

In the fine-grained scheme, if a link is not physically bro-
ken or all its related crossbar switches are not damaged,
then the link is deemed functional as long as one of its VCs
is still operational. As a result, a single broken input buffer
at a port would not affect the correct functionality of that
input port. Therefore, using more VCs also decreases the
possibility of out-of-service links caused by unavailable
downstream VCs. Consequently, there is a positive effect on
the maximal connected subgraph ARCGcg

max, as well as the
corresponding acyclic DCDGs.

7 PERFORMANCE EVALUATION

This section presents the performance of CBCG algorithms
under course and fine grained schemes, single and multiple

Fig. 8. Example illustrating the heuristic CBCG algorithm, dashed arrows
indicate the forbidden turns.
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virtual channel configuration. Through simulation experi-
ments, we compare CBCG with other fault-tolerant routing
methods like Finter [25], DATE09 [13] and uDIREC [28].

7.1 Simulation Details and Traffic Patterns

We use HORNET, a highly configurable, cycle-accurate on-
chip network simulator [35] for all the simulations. In our
experiments, HORNET as working under network-only mode.
Synthetic benchmarks and traffic profiles obtained from a
parallel implementation of a H.264 decoder are used to
investigate network performance. For the coarse-grained
scheme, flows with faulty nodes as source or destination are
removed. In the fine-grained scheme, a node is unavailable
as a source node when all the virtual channels of its input
port from the local processing element are broken, or if all
the switch links of the crossbar connected with local input
port are dead. Similarly, a node cannot be a destination
node if all the switch links of the crossbar leading from
other input ports to the local output port are out-of-service.
The traffic has a uniform random distribution with packet
length set to 8 flits. We implemented an 8� 8 2D-Mesh and
Torus with 5, 10, 15, 20, 30 and 40 percent fault-rates. The
positions of unavailable nodes and links were randomly
generated. For the fault situations, we made the assumption
that the number of out-of-service nodes and links ratio is
approximately 1:2 like Boppana presented [14]. Under the
fine grained scheme, virtual channels and switch links have
the same probability of failure in a faulty router. In addition,

we gave the same total amount of buffer resources for all the
experiments. In order to get performance results indepen-
dent of relative distribution of faults, we performed 10,000
simulations with different fault distribution for each fault-
rate case. All experiments have 200,000 warm up cycles and
a total of 1,200,000 analyzed cycles.

7.2 Reliability Analysis

The CBCG methodology is capable of tolerating a significant
percentage of faults without disabling any healthy nodes,
subject to the underlying defect topology being connected.
The statistical results can be viewed in Table 2. We observe
that even under 40 percent fault-rate, CBCG-fine exhibits very
good reliability. Only 0.07 percent of the simulations are not
fully achievable for CBCG-fine with two VCs in a 2D-Torus
network. For lower fault-rates, reliability improves slightly
in the 2D-Mesh topology and it is 100 percent reliable for a
5 percent fault-rate. For 2D-Torus, reliability is a 100 percent
for fault rates of 20 percent and below. In the 2D-Mesh net-
work for CBCG-coarse, reliability drops rapidly as the number
of faults in the network increase. Interestingly, 2D-Torus
suffers only 2.49 percent of non fully achievable simulations
even under 40 percent fault-rate for CBCG-coarse. It is worth
noting that applying precise fault diagnosis scheme can dra-
matically improve system reliability, however adopting
multiple virtual channels only increases the reliability
slightly. The probability of disjoint subgraphs increases
when the number of faults rises, at the same time the rare

TABLE 2
Reliability with Increasing Faults in a 8� 8 2D-Mesh and 2D-Torus Networks without Disabling Any Healthy Nodes

2D-MESH 2D-TORUS

F_rate coarse (VC1/2) fine(VC1) fine(VC2) coarse (VC1/2) fine(VC1) fine(VC2)

Reliability T_rate Reliability T_rate Reliability T_rate Reliability T_rate Reliability T_rate Reliability T_rate

5% 99.98% 24.74% 100% 26.15% 100% 25.93% 100% 29.68% 100% 30.87% 100% 30.63%
10% 99.89% 24.38% 99.98% 25.99% 99.98% 25.75% 100% 28.43% 100% 30.24% 100% 29.99%
15% 99.20% 23.94% 99.91% 27.00% 99.93% 26.53% 100% 27.15% 100% 30.28% 100% 29.79%
20% 97.63% 23.39% 99.73% 26.80% 99.80% 26.30% 100% 26.00% 100% 29.68% 100% 29.17%
30% 90.08% 21.94% 98.98% 27.37% 99.02% 26.60% 99.85% 24.67% 100% 29.53% 99.99% 28.78%
40% 83.66% 21.01% 98.12% 28.11% 98.18% 27.10% 97.51% 22.93% 99.95% 31.08% 99.93% 29.70%

F_rate and T_rate are the fault rate and percentage of forbidden turns.

Fig. 9. (a) DCDG of Fig. 4a using precise fault diagnosis method, input buffer associated with link (0,3) and switch link from East to North of the
crossbar at router 3 are broken, compared with Fig. 4a, the additional available resources are highlighted in blue dashed lines; (b) A generated
acyclic DCDG by CBCG algorithm, the order of selected nodes is 3-6-0-8-7-4-5-1 and forbidden turns are ((4,3),(3,6)), ((6,3),(3,4)), ((1,4),(4,5)), ((5,4),
(4,1)), ((5,8),(8,7)) and ((7,8),(8,5)); (c) Another constructed acyclic DCDG the order of selected nodes is 3-6-0-7-8-2-5-1-4 and forbidden turns are
((4,3),(3,6)), ((6.3),(3,4)), ((1,2),(2,5)), ((5,2),(2,1)), ((4,7),(7,8)) and ((8,7),(7,4)).
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situation of a small number of faults in a large network
resulting in a disjoint network has been encountered. In dis-
joint networks node pairs belonging to different subgraphs
can no longer communicate. In these cases, faults cannot be
tolerated without disabling any faultless nodes and this is
an inherent limitation for all kinds of fault-tolerant routing.

7.3 Performance in the Presence of Faults

7.3.1 Coarse-Grained CBCG without VCs

Using a flawless network as the baseline for our discussion,
we first measure network performance by means of satura-
tion throughput and packet latency obtained in the presence
of faults under uniform traffic. Fig. 10a shows the network
saturation throughput. The achieved throughput is
decreased by 5.15 percent when 5 percent faults are present
in the network, but it drops by 46.5 percent when fault rate
increases to 40 percent. It is noticeable that saturation
throughput drops rapidly as the number of injected faults
increases. This behavior is a consequence of fewer available
links and routers for communication. The fact that average
distance of paths increases when routes around faults use
non-minimal routing contributes to this behavior. Fig. 12
shows the results of packet latency. We see that packet
latency is significantly increased when the number of failure

links rises. At packet injection rates below saturation, aver-
age flit latency is increased by 8.24 percent when 5 percent
faults are present and the latency is increased by
131.36 percent when the fault rate is 40 percent.

7.3.2 Fine-Grained CBCG with 2VCs

In this section, we compare the network performance when
precise fault diagnosis and multiple VCs are employed.
Fig. 11 shows the throughput results when fault rates are
5 and 40 percent. As expected, 2VCs along with a fine-
grained fault diagnosis scheme exhibits the best perfor-
mance. CBCG-coarse with two VCs gains 14.92 percent
improvement over CBCG-coarse using only a single VC under
5 percent fault-rate. When the fault-rate increases to 40 per-
cent, the improvement is reduced to 14.15 percent. As for
CBCG-fine, the performance of two VCs compared to single
VC is improved by 10.11 and 10.38 percent under 5 and 40
percent fault-rates respectively.

Comparing the performance of CBCG-fine and CBCG-
coarse, at 5 percent fault-rate we see that precise fault diag-
nosis with a single VC achieves an improvement of
10.90 percent over CBCG-coarse. When two VCs are used,
the improvement is 6.25 percent. As the fault-rate
increases to 40 percent, CBCG-fine with a single VC has a

Fig. 10. Throughput and latency results of different fault-rates. Each point is the average results of 10,000 simulations for an 8 � 8 2D-Mesh. The
results of 4 � 4 2D-Mesh exhibited the same feature and we omit them here for brevity. The average fraction of prohibited turns are 25.12, 24.47,
24.38, 23.94, 23.39, 21.94 and 21.01 percent for flawless, 5, 10, 15, 20, 30 and 40 percent fault-rates respectively.

Fig. 11. Throughput results of 5 and 40 percent fault-rates for an 8 � 8 2D-Mesh under UNIFORM-RANDOM traffic pattern, faults position are randomly
distributed. The results of 10, 15, 20 and 30 percent exhibited the same feature. The average fraction of prohibited turns are 24.74 and 21.01 percent
for CBCG-coarse(vc1) and CBCG-coarse(vc2), meanwhile, 26.15 and 25.93 percent (28.11 and 27.10 percent) for CBCG-fine(vc1) and CBCG-fine(vc2)
under 5 percent(40 percent) fault-rate, respectively.
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throughput of 3.050 flits/cycle as compared to 2.672 flits/
cycle for CBCG-coarse with one VC, an improvement of
26.20 percent. CBCG-fine has a throughput of 3.722 flits/
cycle if we use two VCs. This is a 22.03 percent improve-
ment over CBCG-coarse with 2 VCs, which has a throughput
of 2.672 flits/cycle. Therefore, we conclude that precise
fault diagnosis is necessary especially for severe fault
cases, because it utilizes the communication resources
more efficiently. It is interesting to observe that while com-
paring Fig. 11a with Fig. 11b, under 5 percent fault-rate
CBCG-coarse using 2VCs performs slightly better (3.63 per-
cent) than CBCG-fine with single VC. However, when the
fault-rate is 40 percent CBCG-fine using single VC gains
10.56 percent more delivery than CBCG-coarse with two
VCs. This observation shows that precise fault-diagnosis is
more effective way to improve network performance than
simply adding more virtual channels for severe fault cases.

Fig. 12 demonstrates the packet latency results for 5 and
40 percent fault-rates. As expected, adopting multiple VCs
and a precise fault-diagnosis scheme decreases the average
latency by alleviating the HoL blocking and providing more
available operational paths for transmission. Comparing
Fig. 12a with Fig. 12b, we see that the average packet latency
for low traffic densities more than doubles for CBCG-coarse as
the fault-rate increases from 5 to 40 percent. For example,
CBCG-coarse with one VC has an average packet latency of
31.327 cycles at 5 percent fault-rate and this increases to
67.411 cycles at 40 percent fault-rate. As the fault-rate
increases from 5 to 40 percent the average packet latency for

CBCG-fine employed with single or two VCs increases by 88.11
and 80.07 percent respectively. Note that both CBCG-coarse and
CBCG-fine have comparable average packet latency for low
fault-rate, but CBCG-fine degrades better as the fault-rate
increases.

7.3.3 CBCG versus others

In this section, we further investigate the network perfor-
mance of CBCG by comparing it with previous methods.
References for comparison are the schemes proposed by
Gomez et al. in [25] named Finter, which is an intermediate
node based multi-phase routing using a different escape
channel for each phase. A flag transmission and routing
entry update mechanism presented by Fick et al. named
DATE09 [13]. A fine-resolution detection and reconfiguration
strategy named uDIREC proposed by Parikh and Ber-
tacco [28], that makes detection decisions and stores the
topology information in a software-maintained scoreboard
at the “supervisor node” before appling Up*/Down* rout-
ing to avoid deadlock. As mentioned previously, 10,000
simulations are performed with uniform-randomly injected
faults for different fault-rates. Fig. 13 shows the perfor-
mance results for an 8 � 8 2D-Mesh network under 5 and
15 percent fault-rates. Fig. 14 shows the packet latency
results for 5 and 15 percent fault-rates.

As shown in Fig. 13, CBCG-fine(vc4) achieves the best
performance with 8.899 flits/cycle delivery rate and an
average latency of 23.207 cycles under 5 percent fault-rate.

Fig. 12. Latency results of 5 and 40 percent fault-rates for an 8 � 8 2D-Mesh.

Fig. 13. Throughput results of 5 and 15 percent fault-rates for an 8�8 2D-Mesh under UNIFORM-RANDOM traffic pattern, faults position are randomly
distributed. The average fraction of prohibited turns are 24.74, 26.01 and 27.32 percent (23.94, 26.31 and 26.89 percent) for CBCG-coarse(vc4), CBCG-
fine(vc4) and DATE09 under 5 percent (15 percent) fault-rate.
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CBCG-fine(vc4) gains 16.2 percent in throughput and
decreases average packet latency by 4.29 percent when com-
pared with DATE09. The advantages are more notable
when the fault-rate increases with the throughput gain
increasing to 25.3 percent and average latency improving to
4.68 percent over DATE09, under 15 percent fault-rate. DATE09
determines which links and turns are disallowed depending
on the defective network topology in order to safely route
packets around failures, however it overlooks the traffic
load balance. CBCG applies a heuristic rule to alleviate net-
work congestion and hence shows improved network per-
formance. Finter avoids deadlock by using different escape
channels along each phase, however its performance suffers
from the under-utilization of escape channel’s bandwidth.
It shows comparable average latency for 5 percent fault-
rate, but does not degrade well as fault-rate increases. CBCG

has significantly better throughput at both 5 and 15 percent
fault-rate. uDIREC applies fine-grain fault-diagnosis and
Up*/Down* routing after exhaustively searching for the
best connectivity solution among all the different breath-first
searching results. A large percentage of turns are forbidden,
because there are only two types of turns (“up-to-down”
and “down-to-up”). Therefore, the routing options are lim-
ited and performance is sacrificed. uDIREC has similar
throughput performance as CBCG, but poor average packet
latency. In conclusion, according to our simulations results
CBCG outperforms other schemes when taking both through-
put and latency into consideration.

7.4 Implementation

CBCG can be implemented “off-line” or by using a
“supervisor node” to maintain the network topology infor-
mation allowing forbidden turns to be realized by look-up
table based schemes. Meanwhile, CBCG can also be realized
in a distributed fashion using node-table based routing.
Specifically, the cut-vertices can be annotated by a distrib-
uted Depth-first search using embedded computation logic
at the router, while each node’s table consists of the row cor-
responding to the input ports and possible output ports for
each direction. The disabled turns can be masked at the cor-
responding position of the routing table. We synthesized
our “on-line” implementation using Synopsys Design Com-
plier with TSMC 65nm library at 1.38 GHz, the area is
2209.32 and 2612.88 mm2, occupied 0.966 and 1.139 percent
for the baseline wormhole based router of 8 � 8 and 16 � 16

2D-Meshes. There are four VCs at each port, each VC con-
tains eight flits and flit size is 64-bits [37].

8 CONCLUSION

Routing methods to enhance message transmission include
maintaining connectivity and avoiding deadlocks, both
crucially important in the presence of failures. Three main
contributions for reliable network-on-chip have been pro-
posed in this paper:

� First, deadlock freedom and preservation of connec-
tivity are achieved by our proposed CBCG methodol-
ogy, which generates a connected acyclic channel
dependency graph. Our method needs to disable
healthy nodes only when there are disjoint
subgraphs caused by faults, which is infrequent for a
network with few faults.

� Second, a heuristic method is presented to improve
the effectiveness of the CDCG algorithm in order to
reduce the probability of congestion and achieve
near optimal performance.

� Finally, improving resource utilization by applying a
precise fault diagnosis scheme, and increasing link
utilization by adopting multiple virtual channels are
discussed. Furthermore, these complementary mech-
anisms yield benefits by maximizing the size of the
maximal connected subgraph of the network.

Finding the right balance between performance gain and
resource overhead is the fundamental engineering chal-
lenge. The goal is to obtain a relatively good performance,
while keeping the overhead under practical limits. CBCG

works well for OCNwithout virtual channels, thus allowing
lesser design complexity and relatively simple architecture.
Precise fault diagnosis and adding virtual channels are not
required in our routing algorithm, but they can be used to
improve performance at the cost of increased complexity of
the router implementation. To conclude, CBCG lets the user
to make the decision of whether or not to use more VCs
based on different application requirements.
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