
Diastolic Arrays: Throughput-Driven
Reconfigurable Computing

Myong Hyon Cho∗, Chih-Chi Cheng†, Michel Kinsy∗, G. Edward Suh‡ and Srinivas Devadas∗
∗Massachusetts Institute of Technology, †National Taiwan University, ‡Cornell University
∗{mhcho, mkinsy, devadas}@mit.edu, †ccc@video.ee.ntu.edu.tw, ‡suh@csl.cornell.edu

Abstract— Diastolic arrays are arrays of processing elements
that communicate exclusively through First-In First-Out (FIFO)
queues. FIFO virtualization units enable relaxed timing of data
transfers, and include hardware support to guarantee bandwidth
and buffer space for all data transfers, which may follow com-
posite paths through the network. We show that the architecture
of diastolic arrays enables efficient synthesis from high-level
specifications of communicating finite state machines so average
throughput is maximized. Preliminary results are presented on
an H.264 decoding benchmark.

I. INTRODUCTION

A diastolic array is a reconfigurable substrate that is meant

to serve as a coprocessing platform to speed up applications or

parts of applications that are throughput-sensitive and latency-

tolerant. Diastolic arrays are coarser-grained than FPGAs but

finer-grained than multicores. The adjective diastolic is used

to refer to the relaxation of the heart between muscle con-

tractions. Data transfers in diastolic arrays have more relaxed

latency requirements than in systolic arrays, hence the name.

A diastolic array has a programmable processing element

(PE) with a simple ISA, running on a fast substrate clock.

Diastolic array processors communicate exclusively through

networked First-In First-Out (FIFO) queue virtualization units

that provide hardware support to guarantee bandwidth and

buffer space for all data transfers. The architecture of diastolic

arrays enables efficient synthesis from high-level specifications

of communicating finite state machines so average throughput

is maximized.

A design is represented as multiple processing modules

(finite state machines) connected through point-to-point virtual

FIFOs. Each virtual FIFO connects a fixed source-destination

pair for one input-output pair; if two modules need multiple

connections, each connection gets its own virtual FIFO. As we

will show, virtual FIFOs provide means for efficient commu-

nication and synchronization among processing modules with

focus on average case performance. FIFO-based communica-

tion naturally supports simple synchronization through waiting

on inputs and backpressure; a processing module stalls if either

an input FIFO is empty or an output FIFO is full.

Data transfers in a diastolic array are all statically routed

and are allowed a varying number of clocks depending on the

length of, and congestion in, the transfer path comprising a se-

quence of FIFO virtualization units (FVUs). FIFOs (that have

room for more than one value) average out data-dependent

variances in each module’s execution and communication, and

the performance of the design is determined by the module

with the maximum average latency, not the worst-case input

that causes the longest latency in a module.

During synthesis to diastolic arrays, FSM modules are

assigned to processing elements (placement), “virtual” FIFOs

used for communication between modules are realized as

a sequence of FVUs (routing), modules are compiled into

instructions for processors (compilation), and the routing logic

within each PE is statically configured to implement the

correct virtual FIFO routing, while guaranteeing bandwidth

and buffer space (configuration).

A case study in Section II shows that averaging data-

dependent variances is critical to achieving high throughput for

applications such as H.264 decoding. A candidate architecture

for a diastolic array is presented in Section III. The synthesis

flow is presented in Section IV, and applied to an H.264

decoder in Section V. Related work is summarized in Section

VI. Section VII concludes the paper.

II. MOTIVATING APPLICATION

A. Example: H.264 Decoder

H.264 is widely being used for video compression. Figure 1

shows a specification of H.264 decoder; each module has data-

dependent latencies. We will examine the entropy decoder

module and inter-prediction modules and show that an archi-

tecture which targets average case latency has a performance

benefit over a conventional pipelined design that assumes the

worst case.

Entropy
Decoding

Inverse Transform
/ Quantization

Inter-
Prediction

Intra-Prediction

Off-Chip Memory

Deblocking,
Reconstruction

Fig. 1. High-level module description of H.264 decoder.

The entropy decoder module in H.264 decoder performs

context-adaptive variable length decoding (CAVLD) that uses

20 different code tables. Each image block from the input

stream requires access to different code tables and the number

of table lookups varies significantly across inputs. Because the

table lookup and following computations take up the majority

of time in entropy decoding, we can assume that the latency

of the entropy decoder module is proportional to the number

of table lookups for each input (image block). In the inter-

prediction module, the latency is dominated by the number

of pixels it reads from reference frames, which depends on

the input block’s offset from the reference block (motion

vector). Therefore, the latency of inter-prediction module is

again highly dependent on the input block and can be different

for each input. Table I shows the profiling results of both

modules for the input stream ‘toys and calendar’, illustrating

the large difference between the worst-case latency and the

average-case latency.

TABLE I

H.264 PROFILING RESULTS FOR A STANDARD INPUT STREAM.

Entropy Decoder Inter-prediction

#lookups Occurrence % Data read (bytes) Occurrence %

0˜5 43.5% 0˜239 0.01%
6˜11 38.6% 240˜399 9.3%

12˜17 14.4% 400˜559 19.6%
18˜23 3.0% 560˜719 67.5%
24˜ 0.4% 720˜ 0.4%

Average 7.56 lookups Average 589.3 bytes
Maximum 32 lookups Maximum 954 bytes

If each module is completely decoupled through infinite size

FIFOs, the average-case design on a diastolic array will have

40% to 80% lower latency (or higher throughput) compared

to the pipelined design that always performs the maximum

number of operations, i.e., performs 32 lookups in the entropy

decoder and reads the entire reference frame in the inter-

predicton module. In practice, however, the throughput could

be lower than the average case if the FIFO is not large enough

because individual module latencies vary from input to input.

III. DIASTOLIC ARCHITECTURE

This section describes a candidate diastolic array architec-

ture. The architecture provides guarantees of bandwidth and

buffer space for all data transfers through:

(1) Non-blocking, weighted round-robin transfers of packets

corresponding to different virtual FIFOs (VFIFOs) from one

FIFO virtualization unit (FVU) to a neighbor,

(2) Ratioed transfer of packets corresponding to the same

VFIFO from an FVU to its neighbors and in-order reception of

said packets at FVUs to enable composite-path data transfers

where sub-paths split and reconverge (cf. Figure 2(b)), and

(3) Allocation of FVU space to packets from particular VFI-

FOs to avoid deadlock and to maximize throughput.

A. Microarchitecture Overview

A diastolic array realizes the high-level computation model

with a grid of processing elements (PEs) each with an attached

FVU as shown in Figure 2 (a). In this architecture, all PEs

operate synchronously using a single global substrate clock.

FVUs are connected to neighboring FVUs and support many

(a) Processing Element (PE) (b) A VFIFO mapped on PFIFOs

A single�path VFIFO A composite�path VFIFO

Producer

Consumer

Producer

Consumer

PE

Data
Memory

Instruction
Memory

PFIFO
Interface

FIFO Virtualization Unit

Data
Memory

Config.
Memory

Network
Arbiter

Fig. 2. A diastolic array architecture and data propagation through the
4-nearest-neighbor interconnect. (a) The processing elements consist of a
computation unit and a FIFO. (b) A virtual FIFO can be routed using a single
path or a composite path with sub-paths that split and reconverge.

VFIFOs with synchronization mechanisms; from the PE’s

perspective, FVUs appear as many VFIFOs. In our candidate

architecture, PEs are simple MIPS-like processors and the

FVU network consists of 4 nearest-neighbor connections.

In this architecture, each FVU can take up to 5 inputs (4

neighbors and the PE) and produce up to 5 outputs in each

clock cycle. Peripheral FVUs interface with I/O pads.

Figure 2 (b) illustrates how a VFIFO is implemented

with multiple FVUs – a single-path and a composite-path

VFIFO marked by black arrows. In both examples, the VFIFO

connects the top-left PE (producer) and the bottom-right PE

(consumer). FVUs may route VFIFO packets along single- as

well as composite-path routes (cf. Section III-C). The synthesis

tool statically determines the routing and maps each VFIFO

to corresponding FVUs along possibly multiple paths where

each hop has a pre-determined flow rate (cf. Section IV-F).

B. PE and PE-to-FVU Interface

Our initial PE design is based on a MIPS-like 32-bit 5-

stage in-order processing core. The ISA for computation is

almost identical to the MIPS ISA with a branch delay slot

so that a standard MIPS compiler backend can be used to

generate efficient PE code. We use the gcc backend for MIPS

in our synthesis framework. The main difference between

the PE and a traditional MIPS core is in its support for

VFIFO mechanisms; our PE supports additional instructions

for VFIFO communication. The PE-to-FVU interface supports

either an enqueue or a dequeue in each cycle.

C. FIFO Virtualization Units (FVUs)

FVUs implement the VFIFOs and synchronization based

on backpressure. An FVU has to perform two main functions,

namely, allocate buffer space for VFIFO packets that cannot

be used by other VFIFOs, and route VFIFO packets with

appropriate rates. The routes may be single- or composite-path

routes, with the latter requiring increased FVU complexity.

When transferring data for a VFIFO, an FVU must ensure that

the receiving FVU has space available for the corresponding

VFIFO.

Each FVU has one data memory that is shared among all

VFIFOs mapped to the FVU. The synthesis tool statically

partitions a large part of this data memory among VFIFOs.

Each VFIFO assigned to an FVU has a partition size of at

least one packet and these partitions are exclusively used for

each VFIFO while the remaining data memory can be shared

by all of the VFIFOs. In this way, the synthesis tool can

guarantee that each virtual FIFO has the necessary number

of FIFO entries to avoid deadlock no matter what the traffic

pattern is. Further, the synthesis tool tries to allocate buffer

space to achieve the maximum transfer rate for each VFIFO

across the corresponding FVUs (cf. Section IV-F.2).

In each substrate cycle, an FVU can receive data from up

to 5 sources, the attached PE and 4 nearest-neighbor FVUs,

and send data to up to the same 5 destinations. The FVU-to-

FVU interface is used to forward data from the source PE to

the destination PE; in each substrate cycle, the FVU selects

one VFIFO for each subsequent hop in a weighted round-

robin fashion and forwards its data. This is done in a non-
blocking fashion; if there is no data available for a VFIFO, or

if the receiving FVU does not have an entry available for the

particular VFIFO, the next VFIFO is selected. The weights

are determined after the routing step (cf. Section IV-F) and

applied in the configuration step (cf. Section IV-G).

Each FVU has four possible neighboring FVUs. For each of

these links, a list of VFIFOs that share this link is generated

by the synthesis tool after the routing step. For each link,

a weighted round-robin send algorithm is used to schedule

packets, where the weights are given by the flow rates. A

VFIFO that does not have packets to send out or one that

does not have space available in the subsequent FVU is passed

over for the next VFIFO. If an FVU corresponds to a split

point for a composite-path route for a VFIFO, the VFIFO

is added to the list for multiple links, and the weight is the

flow rate for that link as given by the routing step. Each of

the packets of the VFIFO that come into this split FVU are

marked by a marking algorithm to go in a particular direction

in a deterministic way, in the ratios of the flow rates for the

different directions. A packet marked to go in one direction is

not sent in another. This is done so packets can be received

in order at the reconvergent or destination FVU.

At an FVU that is a reconvergent point for a VFIFO, an

acknowledgement algorithm allows an incoming packet from

multiple neighbors to come in at appropriate ratios so as to

guarantee in-order communication through this FVU, and to

ensure that deadlock due to out-of-order packets will not occur.

A later packet should not use up space in a reconvergent

FVU on a composite path and block an earlier packet. The

ratios in the acknowledgement algorithms depend on the

throughput ratios of the split and reconvergent flows and are

determined after the routing step as described in Section IV-

G. FVUs are then configured with appropriate weights for the

round-robin send algorithm and ratios for the marking and

acknowledgement algorithms.

IV. SYNTHESIS FLOW

The synthesis flow is illustrated in Figure 3. While we

described a candidate diastolic architecture in Section III,

various PE microarchitectures and FVU network topologies

can be supported with the synthesis flow described here.

Instruction
Configuration

Module
Compile

virtual�FIFO
Specification
virtual�FIFO

Specification
Module

Description
Application�

SpecificationApplication�

Virtual�
Virtual�FIFO
Specification

Module�
Group�&�
Partition

(Module�and�
virtual�FIFO�
description)

Specification
(Module�and�
virtual�FIFO�
description)

Application
Specification

PFIFO
Configuration

FIFO
Routing

Specification

PlacementModule
Placement

Profiling
Result

Profiling
Profiling

Input

Fig. 3. Synthesis Flow for Diastolic Arrays.

A. Specification

Synthesis begins from a specification of the hardware design

as finite state machine (FSM) modules described in C that

communicate via VFIFOs. The specification will also provide

minimum VFIFO sizes that ensure that the design does not

deadlock. We will assume that for VFIFO i, zi packets are

required, with pi bits in each packet.

Our specification is simpler than synchronous data flow

[1], and similar to an intermediate output of a parallelizing

compiler such as StreamIt [2] after parallelism extraction,

but could also be directly written by a designer. Minimum

requirements for FIFO sizes can be determined by compilers

such as StreamIt [3].

A high-level view of the specification of an H.264 decoder

was shown in Figure 1. The goal of synthesis is to maximize

average throughput, which requires that bandwidth and buffer

space be properly allocated to all VFIFOs.

Partitioning

Bitstream

Entropy
Decoding

C1 C2Inverse
Transform /
Quantization

C4

Reference
Pixel Loading

C5

C3

C8C7

Interpolation
A

Interpolation
B

Interpolation
C

Interpolation
D

Off-Chip Memory

Intra-Prediction Deblocking,
Reconstruction

Decoded Pixels of the Last
MB

Intra-predicted pixels

Grouping C6

Fig. 4. Some modules in the H.264 specification of Figure 1 are grouped
together, others are partitioned across PEs.

B. Profiling Modules in the Specification

Profiling the specification provides the synthesis tool with

information required for various steps. First, each module is

simulated separately on an array PE and a histogram of module

latency over different module inputs is produced, which gives

us a range of latency as well as an average. These latencies are

used in the module grouping and partitioning step (cf. Section

IV-C). Profiling is also used to compute a rate distribution and

average transfer rate di in bits per second for each VFIFO

i, which is a key measure used in the routing step. In this

step, the entire system is simulated, assuming a target system

throughput is specified, and assuming that each VFIFO has

large buffer space and does not share hardware with other

VFIFOs. Achieving the di rates becomes the goal for the

routing and the buffer allocation steps. For each VFIFO i,
a distribution of buffer size and average buffer size mi in bits

that is required for sustaining the average transfer rate di is

determined. This is derived from the variation in buffer sizes

during system simulation.

C. Module Grouping and Partitioning
Based on the profiling results, modules are grouped or

partitioned. Grouping involves assigning two or more modules

on the same PE, while partitioning involves splitting a module

across multiple PEs in order to exploit parallelism and reduce

the effective average latency.

Grouping is done if there are more modules than PEs, or if

there is tight feedback between modules. When two modules

are run on the same PE, their latencies will increase to their

sum. If the inverse of this combined latency is equal to or more

than the VFIFO rates corresponding to each of these modules,

the modules can be grouped together. Grouped modules are

executed in interleaved fashion on a PE. If a module does

not have inputs available, it cedes to the next module. After

a module execution, if there is no space available in the

PE’s FIFO for the result, the module will stall until space

is available.

If we are unable to obtain the target system throughput,

the modules whose latencies are too high are targets for

partitioning. We will not address automatic partitioning here.

An example of module grouping and partitioning for our

H.264 example is shown in Figure 4. The partitioning was

done manually, and the grouping automatically using a simple

bin-packing heuristic. After grouping and partitioning, the

profiling step is run again to determine the new module and

VFIFO rates.

D. Compilation

Modules are compiled to a generic PE in a decoupled way to

produce scheduling information and executables. Our PEs have

an ISA that is a subset of the MIPS ISA and we used a MIPS

compiler in our experiments of Section V. All communications

to other PEs are through FVUs with FIFO control, which the

compilation step is aware of only at the level of writing and

reading data values to and from the VFIFO. A PE may wait

on a given read (dequeue) instruction or a write (enqueue)

instruction because of FIFO control.

E. Placement
The primary goal of placement is to find a placement of

the modules such that a feasible route can be determined for

each of the VFIFOs. A feasible route is a route for each of the

VFIFOs that has enough bandwidth for each FIFO’s average

transfer rate di obtained through profiling, and therefore allows

the system to achieve maximum average throughput.

We need to define a notion of routability in order to generate

a good placement. A recursive graph partitioning approach can

then be used to find a placement with high routability. Cutsize-

based approaches such as the Kernighan-Lin algorithm [4] are

not directly applicable because cutsize does not represent the

total traffic of a set of modules placed in an array section. Even

if the design is partitioned into two sections with a minimum

cutsize, one of partitioned sections might have significant

internal costs that result in poor routability. By using the sum

of internal costs and external costs as a cost function rather

than cutsize, as shown below, heuristic algorithms can be used

to maximize routability of placements.

Given a set of PEs A with cardinality |A|, and a set of

modules VA placed on PEs in A, we define routability of this

(partial) placement as

R(A) =
|A|∑

vi,vj∈VA

w(i, j) +
∑

vi∈VA,vj /∈VA

(w(i, j) + w(j, i))

where {vi} is the set of modules in the design, w(i, j) is the

total demand for bandwidth from module i to module j, and

vi ∈ VA iff vi is placed on a PE included in A.

An effective heuristic to generate placements that are signif-

icantly more routable than random placements gives priorities

to PEs based on residual capacities of connecting links.

Modules with the highest total demand are iteratively placed

on PEs with the highest priorities. Since placement is done

after module grouping, at most one module is placed on

each PE. When a module is placed on a PE the capacities

of links connecting to the PE are scaled down using a

scaling parameter, and the priorities of neighboring PEs are

recomputed. This heuristic spreads modules across the array

to a degree determined by the scaling parameter. A number of

placements are generated using different scaling parameters,

and run through the rest of the synthesis process, and the best

solution is selected.

For acyclic specifications, such as stream computations

without feedback [2], [3], there are no hard requirements on

the communication latency of VFIFO packets. In the H.264

application, modules both write and read off-chip memory,

however, these two operations are so far apart in time that this

feedback can be ignored during synthesis.

If feedback across modules occurs within a few substrate

clocks, then the latency of communication paths can affect

system throughput. An example of such feedback is bypass

paths in a pipelined processor. The latency of communication

can be included in the module latency, but we wish for

other communication and the synthesis flow to not adversely

affect this latency. We will need communication paths with

minimum latency in the implementation (cf. Section IV-H),

in addition to guaranteeing bandwidth and buffer space for

all communications. In the next two sections, we assume

that we have acyclic specifications, and then generalize our

methodology in Section IV-H.

F. Routing of Virtual FIFOs

The route for each VFIFO is determined after module

placement. The routing step chooses paths for each virtual

FIFO that require multiple hops using the transfer rates for

each VFIFO. A VFIFO route can correspond to multiple paths

through the mesh network, each with the same source and

same destination. A route with multiple paths is referred to as

a split flow. The source processor sends data at pre-determined

ratios through multiple paths, and the data elements are

received and processed in order at the destination processor.

In addition, intermediate FVUs may need to collect packets

for a given VFIFO and send them out at pre-determined ratios

– the reconvergent points of Section III-C.
1) Multicommodity Flow Linear Program: We can formu-

late the search for a feasible route as a maximum concurrent

multicommodity flow problem, where the commodities corre-

spond to the data packets in each VFIFO. This problem is

solvable in polynomial time using linear programming (LP)

[5]. This formulation is slightly different from the one in

Chapter 3 of [6] which minimizes the maximum link capacity

required to support given bandwidth requirements.
Definition 1: Maximum concurrent multicommodity

flow: Given a flow network G(V,E), where edge (u, v) ∈ E
has capacity c(u, v). There are k commodities K1,

K2, . . . , Kk, defined by Ki = (si, ti, di), where si

and ti are the source and sink, respectively for commodity

i, and di is the demand. The flow of commodity i along

edge (u, v) is fi(u, v). Find an assignment of flow, i.e.,

∀(u, v) ∈ E fi(u, v) ≥ 0, which satisfies the constraints:

Capacity constraints :
k∑

i=1

fi(u, v) ≤ c(u, v)

Flow conservation :

∀i, ∀u �= si, ti
∑

(w,u)∈E

fi(w, u) =
∑

(u,w)∈E

fi(u, w)

∀i
∑

(si,w)∈E

fi(si, w) =
∑

(w,ti)∈E

fi(w, ti) ≤ di

and maximizes the minimal fraction of the flow of each

commodity to its demand:

T = min
1≤i≤k

∑
(si,w)∈E fi(si, w)

di
(1)

In our routing problem the commodities are the data ele-

ments in the VFIFOs, so k is the number of VFIFOs. The

capacities for the edges in the network are equal to the

bandwidth of the link between adjacent FVUs in the diastolic

array architecture. The link bandwidths c(u, v) are all equal to

L by default, but may be set to lower values (cf. Section IV-

H). The source for commodity i is the source processor in the

given placement for VFIFO i, and similarly the destination.

The demand di for VFIFO i is the average transfer rate for

that FIFO obtained through profiling. To accommodate bursts

in VFIFO traffic, we also maximize the minimum residual

capacity over all links, namely,

S = min
(u,v)∈E

c(u, v)−
k∑

i=1

fi(u, v).

We would like T to be 1 and S to be large. One strategy is to

run the LP maximizing x ·T +S, where x is a large constant.

2) Buffer Allocation Linear Program: We still need to

incorporate the requirements on buffer sizes for deadlock

avoidance and to achieve the di rates. After we run LP and

obtain the fi(u, v)’s, we have a flow for each VFIFO i, i.e., a

set of paths with particular rates on each link in the diastolic

array. We can run another linear program to perform buffer

allocation along each chosen VFIFO route.

We first determine the FVUs in the PE’s that correspond to

each VFIFO’s commodity flow.

∀u, ∀i iff ∃v s.t. (fi(u, v) > 0 or fi(v, u) > 0) gi(u) = 1

Note that for a given flow the gi’s are constants that are either 1
or 0, corresponding to whether or not packets from the VFIFO

will reside in the FVU corresponding to PE u.

The buffer size in PE u that we wish to allocate to VFIFO i
in terms of the number of packets is denoted li(u), and these

are the variables in the LP. The available buffering in a PE u
is b(u) bits. In our candidate architecture, these are all equal

to M bits, however, critical FIFOs (cf. Section IV-H) may be

assigned some of the buffer space prior to running the LP.

Recall that mi is the average buffer size required for VFIFO i
to sustain its transfer rate di, as obtained by the profiling step

(cf. Section IV-B), zi is the number of packets in VFIFO i
that ensures that deadlock will not occur and pi is the packet

size for the virtual FIFO packet in bits (cf. Section IV-A).

Definition 2: Optimal Buffer Allocation: For each VFIFO

i, we are given a buffer size requirement mi and a set of

FVUs gi(u) = 1 that are on the VFIFO’s route. We are given

available buffer sizes b(u) for each PE u. Find an assignment

of buffers li(u) for each VFIFO i that satisfies:

FVU Buffer Limit : ∀u
k∑

i=1

pi · li(u) ≤ b(u)

Deadlock Avoidance : ∀i, ∀u li(u) ≥ gi(u)

∀i
∑

w:gi(w)=1

li(w) ≥ zi

Allocation : ∀i pi ·
∑

w:gi(w)=1

li(w) ≤ mi

and maximizes the minimal fraction of the allocated buffers

of each commodity to its demand for buffering:

U = min
1≤i≤k

pi ·
∑

w:gi(w)=1 li(w)

mi
(2)

The deadlock avoidance requirement comes from the speci-
fication; there should be at least pi bits worth of dedicated

space available in each FVU that is used by a VFIFO to

route its packets, and further the set of FVUs implementing

the VFIFOs should provide zi packets worth of space. Since

the FVUs in the diastolic array will accept packets from

VFIFOs whose limit has not been exceeded, while possibly

rejecting packets from other VFIFOs, deadlock will not occur

in the array implementation. There is a limit on the number of

VFIFOs that can be mapped to an FVU due to the deadlock

requirement.

On top of the deadlock avoidance requirement, we would

also like to allocate enough buffer space for each VFIFO so the

transfer rates can be met, while ensuring fair allocation across

VFIFOs (cf. Eqn. 2). Note that the li(u)’s corresponding to

gi(u) = 0 can be set to zero. Of course, we need the li(u)’s
to be integers, so we will truncate or round up the values after

we obtain the solution to the LP.

Given a user-specified amount of CPU time, we choose

many solutions with corresponding maximum T for the first

LP, to maximize U . We also repeat this process for many

placements, and pick the solution with the maximum T ,

breaking ties by choosing the one with maximum U .

G. Configuration

Once we have found a feasible route, or settled on a

throughput less than the maximum, the final step is to generate

configurations for each processor and FVU. The PEs are

configured with the compiled code of the modules that will

execute on the PE.

The flow rates determined by the LP are made integral

with appropriate multiplications to keep the ratios as close as

possible in the case where an integral flow is not provided by

LP. (There is no need to round up or truncate these rates.)

Each link in each FVU is first configured with the set of

VFIFOs that share this link. Each link is configured to send

out packets in a weighted round-robin fashion over all the

VFIFOs that share this link. If an FVU is a split point for

a VFIFO, the marking algorithm for incoming packets is

configured with appropriate ratios for the different links that

this VFIFO’s packets will depart the FVU on. At reconvergent

FVUs including the destination, packets corresponding to each

VFIFO are received in order, by choosing the packets from

different links using an acknowledgement algorithm.

Consider the example of Figure 5. A FVU may split a flow

of packets two to four ways. For a three-way split in ratio

aR : bB : cT , the marking algorithm at FVU S will mark the

first a packets to the right, the next b packets to the bottom,

and the next c packets to the top, repeatedly. Note that these

a packets will contend for bandwidth in the link to the right

with other VFIFO packets, and a weighted round-robin send

algorithm will periodically send these packets out. The right

sub-flow is represented as abc indicating that the first a packets

from the source were picked, the next b packets were sent

somewhere else, etc; this pattern repeats indefinitely. The right

sub-flow is split again in FVU V in the ratio a1
T : a2

B ; the

patterns generated will be a1a2bc, and a1a2bc. At FVU Q,

the sub-flows a1a2bc and abc converge. The acknowledgement

algorithm at Q will pick a1 packets from the bottom and c
packets from the left, repeatedly. This produces a sub-flow

represented as a1a2bc. Finally, the FVU at destination R will

pick a1 packets from the top, a2 + b packets from the bottom,

and c packets from the top, repeatedly.

As a final step of configuration, buffer space constraints for

each VFIFO that is assigned to an FVU are specified.

S V

Q

D

Rabc

abc

abc

a1a2bc

a1a2bc

a1a2bc

a1a2bc

Fig. 5. Configuring Marking and Acknowledgement Algorithms for
Composite-Path Routes

H. Minimizing Latency of Virtual FIFOs

As described in Section IV-F, all VFIFOs are guaranteed

bandwidth and buffer space during synthesis, but we make

no guarantees about latency. VFIFOs with longer paths (many

hops) will have greater latency. This will not matter when there

are no tight feedback paths.

While we cannot make latency guarantees about all VFIFOs

or even a large number of VFIFOs, we can provide minimum

latencies for a few critical VFIFOs, associated with feedback

and identified during profiling whose increased latency will

directly degrade performance. The connecting module pairs

corresponding to critical VFIFOs are kept in the same partition

during the placement step (cf. Section IV-E) for as long as

possible, so VFIFO lengths are minimized. Prior to the routing

LP step, a direct route is chosen for each of these VFIFOs,

with no splits to avoid packet reordering at the destination. The

bandwidth of each of the links c(u, v) in the route is reduced

by the corresponding di, and the buffer space in each of the

n FVUs comprising the chosen VFIFO route is reduced by

max(mi/n, pi). The two LP’s are run as before to produce

routes and buffer allocations for the remaining VFIFOs.

V. RESULTS ON AN H.264 DECODER

The profiling result of the H.264 decoder shows that Inter-

Prediction occupies most of the computation time. Therefore,

modules of H.264 decoder were grouped and partitioned as

shown in Figure 4 to enhance throughput by increasing par-

allelism. Figure 6 shows throughput demands of each VFIFO

given by the profiling step assuming a 1 GHz substrate clock.

A number of candidate placements were generated using

the heuristic of Section IV-E. For each placement the capacity

and the flow conservation constraints were generated and this

LP problem was solved by ILOG CPLEX. Figure 7 provides

routing results for different link bandwidths. The throughput of

each route is indicated. When the link bandwidth is 200MB/s,

a feasible route without composite paths is found. Composite

paths allow the fulfilment of the demanded throughput with

smaller link bandwidth, such as 100MB/s (Figure 7(b)) and

60MB/s (Figure 7(c)). In Figure 7(b), for example, the route

from C4 to C9 is split because the link between them cannot

deliver more than 100MB/s. However, if the link bandwidth is

too small, the routing algorithm will determine that there is no

C1
s1(39.7MB/s)

C2

C4 C5

C3

C8C7

C9 (Off-Chip Memory Controller)

C6

s2(3.27MB/s)

s3(20.47MB/s)

s4(20.47MB/s)

s5(13.97MB/s)

s9(39.7MB/s)

s7(120.4MB/s)

s8(30.1MB/s)

s10(1.63MB/s)

s11(1.63MB/s)

s12(0.824MB/s)

s15(0.473MB/s)

s14(41.47MB/s)s13(0.824MB/s)

Fig. 6. Demand throughput of each VFIFO in H.264 decoder

feasible route, and report the best route for the given network

(Figure 7(d)).

C1 C2

C9 C4 C6 C3

C5 C7 C8

C1 C2

C9 C4 C6 C3

C5 C7 C8

C1 C2

C9 C4 C6 C3

C5 C7 C8

C1 C2

C9 C4 C6 C3

C5 C7 C8

39.7 0.473

30.13.27 39.7 20.47

0.824

1.63

0.824

13.97
13.97

1.6320.47
120.4

41.47
30.13.27 39.7 20.47

0.824

1.63

0.824

13.97
13.97

1.63

20.47

100

1.63

41.47

39.7 0.473

30.1
39.7 20.47

41.47

0.824

13.9713.97

1.63 0.824

1.63

3.27

0.4

60

39.7 0.473

60

18.13

2.34

40

39.03

0.97

29.78

10.36

25.8 3.6

15.57

10.22

3.27

1.2

0.06

15.2

0.824

39.7

14.21

22.31

0.473

0.940.824

10.36

Fig. 7. Routing results of H.264 decoder on a 4x4 array for different link
bandwidths. The bottom four PEs are not shown.

Of course, different placements result in different routes.

For example, Figure 8 illustrates how a placement can give a

better routing result than another. When there is no feasible

route as in Figure 7(d), the placement that maximizes the

minimal fraction of the throughput is chosen from amongst

the generated candidate placements (cf. Section IV-E).

The total synthesis time is very fast – a few seconds for this

example. The time required to synthesize a Verilog description

of H.264 to an FPGA is approximately 46 minutes for logic

synthesis and 52 minutes for place and route [7]. Efficient syn-

thesis is enabled because the specification deals with packets

rather than bits, because compilation to processors is fast, and

because the synthesis algorithms used here are efficient. We

note that profiling took 2 minutes for this example.

After finding a feasible or the best route, the synthesis tool

allocates buffers for VFIFOs in each FVU. Taking the route

in Figure 7 (c), Table II summarizes zi, pi and mi values as

Minimum Throughput Ratio 0.85
20 Total Paths (split path in thick and gray)

C1 C2

C6

C9 C4

C3

C5

C7C8

33.56

1.38

1.38

0.
82

0.
82

33
.5

6

1.50

0.47

2.76
17.3

17.3

6.
42

11.81 5.39

11
.8

1

40

21.78

40

6.44

33
.5

6

25
.4

4

33.56

Fig. 8. Routing results of H.264 decoder on a 4x4 array for a different
placement and with the link bandwidth of Figure 7(d).

defined in Section IV. Here mi was obtained from the profiling

step, and zi and pi from the specification. The buffer allocation

result is given in Figure 9.

TABLE II

BUFFER SIZES FOR H.264.

virtual FIFO pi (bits) mi (bits) zi (packets)

s1 128 512 1

s2 512 1536 1

s3-s6 680 2024 1

s7 768 1536 1

s8 15552 31104 1

s9 3072 6144 1

s10-s11 1024 2048 1

s12-s13 512 1024 1

s14 3072 6144 1

s15 96 384 1

C6

C1 C2

C9 C4 C3

C5 C7 C8

s2: 512
s3: 680
s4: 680
s5: 680
s6: 680
s7: 768

s8: 1552
s11: 1024
s14: 3072

s3: 680
s4: 680
s5: 680
s6: 680

s9: 3082
s10: 1024
s11: 1024
s12: 512
s13: 512
s14: 3072

s15: 96

s1: 384
s4: 680
s7: 768

s8: 28000
s14: 3072

s15: 96

s1: 128
s8: 1552
s9: 3072
s15: 192

s4: 680
s7: 768

s14: 3072

s3: 680
s10: 1024
s12: 512

s4: 680
s7: 768

s11: 1024

s4: 680
s5: 680
s6: 680

s13: 512

s5: 680
s12: 512

Fig. 9. Buffer allocation of H.264 decoder on a 4x4 array for the route of
Figure 7 (c). The bottom four PEs are not shown.

Additional architectural details and results on a processor

performance modeling benchmark [8] that includes tight feed-

back due to bypass paths can be found in [9].

VI. RELATED WORK

Systolic arrays [10] have been used to efficiently run

many regular applications such as matrix multiplication. These

SIMD processors contain synchronously-operating elements

which receive and send data in a highly regular manner

through a processor array. Data transfer timing in MIMD

diastolic arrays is more relaxed than in systolic arrays.

Dally’s virtual channels [11] allocate buffer space for virtual

channels in a decoupled way from bandwidth allocation; dias-

tolic arrays guarantee bandwidth as well as buffer space, and

implement multiple-hop, virtual composite channels. iWarp

[12] implemented virtual channels across single links.

Diastolic arrays are simpler than commercial multicores

or architectures such as Raw [13] and Tilera [14], and

also target a smaller class of throughput-sensitive, latency-

insensitive applications. Unlike Raw, diastolic arrays allow

sharing of physical FIFOs by virtual FIFOs in a non-blocking

way for data transfers. Tilera has five different networks

that interconnect tiles including a static network, whereas

diastolic arrays implement a single logically static network

that supports sharing of flows, split flows and buffer allocation.

TRIPS [15] uses significantly larger cores that are 16-issue.

Asynchronous Array of simple Processors (AsAP) [16] is a

multicore processor for DSP applications, which consists of

a 2-D array of simple processors connected through dual-

clock FIFOs in a Globally Asynchronous Locally Synchronous

(GALS) fashion. The FIFO sizes in AsAP are appreciably

smaller than those in diastolic arrays; these FIFOs are mainly

used to interface two clock domains and hide communication

latencies rather than optimizing average case performance as

in diastolic arrays.

Ambric [17] uses a circuit-switched network as opposed

to a packet-switched network, with a small amount of FIFO

buffering. Channels are set up by configuring the network

much like in an FPGA, and synthesis to the Ambric chip is

similar to FPGA synthesis, though significantly faster due to

structure provided by the designer [18].

A multi-path routing strategy is presented in [19], which

uses packet identifiers to avoid deadlock and requires multi-

paths to be non-intersecting. (The composite-path of Figure

5 is not non-intersecting due to FVU D.) A set of non-

intersecting paths is heuristically selected, and LP is run to find

flow rates for each path. In contrast, our throughput-optimal

LP determines paths and flow rates simultaneously.

VII. CONCLUSIONS AND LIMITATIONS

By focusing on throughput, by requiring the specification

to be written in a particular way, and by designing a diastolic

array architecture with appropriate hardware mechanisms, we

have developed a synthesis flow that we believe is signif-

icantly easier to implement and optimize than conventional

reconfigurable substrate synthesis flows. Implementing FIFOs

and processors using BRAM and CLBs on an FPGA is quite

expensive, and so a custom hardware implementation of a

diastolic array is necessary. We plan to more comprehensively

evaluate candidate architectures on applications such as H.264

encoding and detailed processor performance modeling, prior

to undertaking a hardware implementation. The architectural

tradeoffs corresponding to supporting composite-path routes

or only supporting single-path routes, and varying the ISA,

FIFO or memory sizes need to be explored. Since LP may

produce complex routes with highly composite paths, we

are developing heuristic methods which can be finely tuned

that use the LP formulation to determine upper bounds on

throughput, and which limit the maximum number of VFIFOs

that share a link. Finally, we need to characterize what

applications are readily and naturally expressible as finite state

machines interacting through FIFOs, and extend our synthesis

flow or the architecture to deal with applications where average

throughput varies significantly.

ACKNOWLEDGMENT

We thank Joel Emer, Vijay Ganesh, Mieszko Lis, Michael

Pellauer, Bill Thies and David Wentzlaff for useful feedback.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput-
ers, vol. 36, no. 1, pp. 24–35, 1987.

[2] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language
for Streaming Applications,” in International Conference on Compiler
Construction, 2002.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-
Grained Task, Data, Pipeline Parallelism in Stream Programs,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[4] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell System Technical Journal, vol. 49, pp. 291–
307, February 1970.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press/McGraw-Hill, 2001.

[6] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[7] K. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks,
“H.264 Decoding: A Case Study in Late Design-Cycle Changes,” in
Proceedings of the Sixth MEMOCODE Conference, 2008.

[8] M. Pellauer, M. Vijayaraghavan, M. Adler, J. Emer, and Arvind, “Quick
Performance Models Quickly: Timing-Directed Simulation on FPGAs,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS 2008), April 2008.

[9] M. H. Cho, “Diastolic Arrays: Throughput-Driven Reconfigurable Com-
puting,” Master’s thesis, Massachusetts Institute of Technology, May
2008. [Online]. Available: http://csg.csail.mit.edu/pubs/memos/Memo-
504/memo504.pdf

[10] H. T. Kung, “Why Systolic Architectures?” in Computer Magazine,
January 1982.

[11] W. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel
and Distributed Systems, vol. 03, no. 2, pp. 194–205, 1992.

[12] T. Gross and D. R. O’Hallaron, iWarp: anatomy of a parallel computing
system. Cambridge, MA, USA: MIT Press, 1998.

[13] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,” in IEEE Computer, September
1997, pp. 86–93.

[14] David Wentzlaff et al, “On-Chip Interconnection Architecture of the Tile
Processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sept/Oct 2007.

[15] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K. Kim, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP using
polymorphism in the TRIPS architecture,” in International Symposium
on Computer Architecture (ISCA), June 2003, pp. 422–433.

[16] Z. Yu, “High performance and energy efficient multi-core systems for
DSP applications,” Ph.D. dissertation, U. C. Davis, 2007.

[17] M. Butts, “Synchronization through Communication in a Massively
Parallel Processor Array,” IEEE Micro, vol. 27, no. 5, pp. 32–40,
Sept/Oct 2007.

[18] M. Butts, A. M. Jones, and P. Wasson, “A structural object programming
model, architecture, chip and tools for reconfigurable computing,” in
FCCM ’07: Proceedings of the 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2007, pp. 55–64.

[19] S. Murali, D. Atienz, L. Benini, and G. D. Micheli, “A Method for
Routing Packets Across Multiple Paths in NoCs with In-Order Delivery
and Fault-Tolerance Gaurantees,” VLSI Design, vol. 2007, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

