
1

ClosNets: a Priori Sparse Topologies for Faster DNN Training
Mihailo Isakov and Michel A. Kinsy

Adaptive and Secure Computing Systems Laboratory
Department of Electrical and Computer Engineering

Boston University, Boston, USA

Abstract— Fully-connected layers in deep neural networks (DNN) are
often the throughput and power bottleneck during training. This is
due to their large size and low data reuse. Pruning dense layers can
significantly reduce the size of these networks, but this approach can
only be applied after training. In this work we propose a novel fully-
connected layer that reduces the memory requirements of DNNs without
sacrificing accuracy. We replace a dense matrix with products of sparse
matrices whose topologies we pick in advance. This allows us to: (1)
train significantly smaller networks without a loss in accuracy, and (2)
store the network weights without having to store connection indices. We
therefore achieve significant training speedups due to the smaller network
size, and a reduced amount of computation per epoch. We tested several
sparse layer topologies and found that Clos networks perform well due
to their high path diversity, shallowness, and high model accuracy. With
the ClosNets, we are able to reduce dense layer sizes by as much as an
order of magnitude without hurting model accuracy.

I. INTRODUCTION

Training deep neural networks (DNN) is both time-consuming and
power intensive. While the bulk of the computation in applications
like image processing revolves around convolutional layers, this is
not the case for many other applications, e.g., text-to-speech process-
ing, machine translation and financial forecasting. Fully-connected
layers, i.e., dense layers, are more common in those applications
since their data exhibit more temporal correlations. Consequently,
their computation requires a much larger memory footprint, more
data movement, and longer processing time with significantly more
power [1]. Several works have attempted to decrease the size of dense
layers by pruning [1] or quantization [2]. However, most of these
methods only speed up inference and not training. In this work we
tackle the challenge of speeding up deep neural network training by
decreasing the size of these dense layers. To achieve this we break up
the dense matrices into products of sparse matrices. These products
retain full connectivity while requiring less parameters. Our work is
orthogonal to quantization and can further benefit from approaches
such as ZipML [3].

To speed up the training of dense neural networks, we investigate
the bottlenecks of accelerating dense layers. In order to determine
whether networks are computationally or memory bound, we measure
the time required for training on one epoch with varying batch sizes.
While the number of operations required to train on an epoch is
independent of the batch size, the number of times we have to load
all weight matrices is equal to the number of batches. It can be noted
in Figure 1 that the training time grows inversely with the batch size.
We attribute this effect to the system being computationally bound
for large batch sizes and memory bound for small batch sizes with
increased number of batches. To reduce the impact of this memory

Department of Electrical & Computer Engineering

Batch Sizes & Accuracy

70

75

80

85

90

95

0

50

100

150

200

250

300

350

400

1024 512 256 128 64 32

A
cc

u
ra

cy
 [

%
]

Ti
m

e
p

er
 E

p
o

ch
 [

s]

Batch Size

Time per Epoch Test Accuracy

Fig. 1: Time required to train a ResNet18 on a single epoch of the
CIFAR-10 dataset, with varying batch sizes.

wall, one can either increase the bandwidth or decrease the amount of
memory required for training. Here we focus on decreasing the DNN
memory requirements. We explore both algorithmic modifications to
the neural network structure and hardware customization techniques
to reducing the size of the dense layers.

In this work we introduce the concept of predefined topology for
sparse neural networks to enable faster inference and training, along
with lower memory requirements and power usage. This predefined
topology needs to have the following properties: (1) full connectivity,
(2) shallowness, (3) pre-determined connectivity, (4) uniform and
high path diversity, and (5) an efficient hardware implementation.

II. CLOSNETS

In the search for a structure that meets the above mentioned
properties of a predefined topology, we examine several topologies,
e.g., torus, hypercube, butterfly and mesh. Most of them do not satisfy
the (2) shallowness requirement, as they require many cascading
layers before (1) full connectivity is achieved. One topology that
grants all of these properties is Clos network. A Clos network is a
three-stage network in which each stage is composed of a number
of crossbar switches [4]. While in the networking domain a Clos
network is assumed to have the same number of input and output
nodes, we define a more general Clos network as a 5-tuple (I , O,
Ri, Rm, Ro). In this characterization, I is the number of inputs, O is
the number of outputs, Ri is the number of input routers, Rm is the
number of middle routers, and Ro is the number of output routers.
In Figure 2a we can see an example (16, 16, 4, 2, 4) Clos network.

The intuition behind Clos networks is that since each middle
router acts as a crossbar between the input and output routers, there
are as many paths between an input-output pair (i, o) as there are
middle routers. This gives the network designer a simple way of
preventing network contention by increasing the path diversity. To
map Clos networks to the DNN domain, we replace all the input
and output nodes with neurons, and each router becomes a fully-
connected network of the same size with its own hidden neurons. It
is important to note that the connections between the routers are a
simple scatter operation. These connections do not have weights (i.e.
they do not amplify or inhibit their signals), but purely permute the
positions of the activations. In Figure 2b the network from Figure 2a
is mapped to the neural network domain.

(a) A 16-input, 16-output Clos net-
work with 4 input routers, 2 mid-
dle routers, and 4 output routers.

(b) The same network from Fig-
ure 2a mapped to the neural net-
work domain.

Fig. 2: Clos in the networking and DNN domain.

ar
X

iv
:1

80
2.

03
88

5v
1

 [
cs

.L
G

]
 1

2
Fe

b
20

18

The Clos neural networks have clear benefits over the other
explored topologies. They are fully-connected and shallow. They
have a parametrizable but uniform path diversity. Furthermore, they
offer a simple hardware implementation. An added benefit of Clos
networks is that we are not restricted to having either (1) the identical
number of inputs and outputs, or (2) number of inputs/outputs being
a power of two. For a given Clos network (I , O, Ri, Rm, Ro), we
can calculate the number of parameters P in the network, and path
diversity D as:

P = Rm(I +O +RiRo), D = Rm (1)

We compare the model accuracies of different configurations of the
baseline (dense) models, low-rank models, a priori pruned models
and Clos models, with respect to the number of parameters of
each model. Figure 3 shows the test accuracy of different networks
trained on MNIST for 50 epochs with respect to their parameter
count. As we reduce the parameter count, the networks degrade in
accuracy. The performance degradation is more graceful for some
networks compared to others. Notice that the Clos networks have
comparable accuracy with the baseline networks while having 5.5×
less parameters.

Department of Electrical & Computer Engineering

Accuracy / Parameter Count

97

97.2

97.4

97.6

97.8

98

98.2

98.4

98.6

10000 20000 40000 80000 160000

Te
st

 A
cc

u
ra

cy

Parameter Count

Baseline Low Rank Sparse Clos

5.5x

Fig. 3: Accuracy vs. parameters tradeoff for different network types.

III. ARCHITECTURE

We propose a simple hardware implementation for our Clos
networks. For brevity, we will restrict ourselves to networks with the
same number of inputs and outputs, and optimize for throughput, not
area or latency. By observing Figure 2b, we can see that the network
consists of several independent fully-connected layers, connected by
a scatter operation. We can implement the fully-connected layers
with a number of processing elements connected in a ring topology.
Each processing element is calculating the value of one of the output
neurons of the dense layer, with the input neuron values circling the
ring. Once each ring has calculated the outputs of each neuron in a
single column, the torus reconfigures to a set of perpendicular rings,
one for each column in this case. Each torus node now calculates a
new neuron output from the next column from Figure 2b, while the
previous results are treated as inputs and circle the rings. We illustrate
this on a small 4× 4 Clos network as seen in Figure 4. We map this
network to the 2 × 2 torus from Figure 4 (right). This leads us to
a torus implementation as seen in Figure 5. The three router layers
(input, middle, output) then map to three ring-AllReduce operations,
a horizontal one over each row individually (green), a vertical one
over each column (yellow), and again a horizontal one over each row
(red). Notice that the positions of the neurons Ri, Rm and Ro change
when mapped to torus nodes (positions 2 and 3 swap places). This
is done to minimize data movement and allow single hop movement
of neuron outputs. From figure 5, we see that neuron outputs are
transmitted only in the east and south directions. This is true only
for inference. During training, gradients backtrack their path through

Fig. 4: (Left) A (4, 4, 2, 2, 2) Clos network with inputs I , intermediate
results Ri and Rm, and outputs Ro. (Right) A 2× 2 torus we want
to map the Clos network to.

Fig. 5: The three rings router outputs from the Clos network calcu-
lated with a ring-AllReduce operation.

the network, flowing north and west. Therefore, we implement two
router designs, one for inference – Figure 6 and the other for training
– Figure 7 to support the communication patterns described above.

Fig. 6: Inference router, accepting inputs from north and west, and
forward them east and south. Once the router computes the neuron
activation, it sends it south or east.

Fig. 7: A training router, with bidirectional links to all four directions.
The router processes both forward and backward passes.

IV. CONCLUSION

In this work we introduce a novel approach for reducing the
size of dense neural network layers. We present ClosNets - fully-
connected cascades of sparse layers with the Clos topology. We show
that ClosNets have comparable accuracy and 5.5× smaller size over
conventional fully-connected layers, and propose a simple torus-based
implementation of the network.

REFERENCES

[1] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

[2] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks
with weights and activations constrained to +1 or -1,” CoRR, vol.
abs/1602.02830, 2016.

[3] H. Zhang, K. Kara, J. Li, D. Alistarh, J. Liu, and C. Zhang, “Zipml:
An end-to-end bitwise framework for dense generalized linear models,”
CoRR, vol. abs/1611.05402, 2016.

[4] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2003.

2

	I Introduction
	II ClosNets
	III Architecture
	IV Conclusion
	References

