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Abstract—The deployment of deep neural network (DNN)
models is generally hindered by their training time. DNN
training throughput is commonly limited by the fully-connected
layers. This is due to their large size and low data reuse.
Large batch sizes are often used to mitigate some of the
effects. Increasing batch size can however hurt model accuracy,
creating a tradeoff between accuracy and efficiency. We tackle
the problem of training DNNs in on-chip memory, allowing
us to train models without the use of batching. Pruning
and quantizing dense layers can greatly reduce network size,
allowing models to fit on the chip, but can only be applied after
training. We propose a fully-connected but sparse layer that
reduces the memory requirements of DNNs without sacrificing
accuracy. We replace a dense matrix with a sparse matrix
product with a predetermined topology. This allows us to: (1)
train significantly smaller networks without a loss in accuracy,
and (2) store weights without having to store connection indices.
We therefore achieve significant training speedups due to the
fast access to on-chip weights, smaller network size, and a
reduced amount of computation per epoch.
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I. INTRODUCTION

Training deep neural networks (DNN) is both time-
consuming and power intensive. While the bulk of the
computation in applications like image processing revolves
around convolutional layers, this is not the case for many
other problems, e.g., text-to-speech processing and machine
translation. Fully-connected layers, i.e., dense layers, are
more common in applications where there is less spatial
correlation in the input data. Consequently, their compu-
tation has a much larger memory footprint, more data
movement, and a longer processing time using significantly
more power [1].

To speed up the training of dense neural networks, we
investigate the bottlenecks of accelerating dense layers. To
determine if a network is compute or memory bound, we
measure the time required for training on one epoch with
varying batch sizes. While the number of operations required
to train on an epoch is independent of the batch size, the
number of times we have to load all weight matrices is equal
to the number of batches. Note that in Figure 1 the training
time grows inversely with the batch size. We attribute this
effect to the system being computationally bound for large
batch sizes and memory bound for small batch sizes. To
reduce the impact of this memory wall, one can either
increase the memory bandwidth or decrease the amount of
memory required for training. Here we focus on decreasing
the DNN memory requirements.
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Figure 1: Time per epoch vs. batch size for a CIFAR-10
ResNet18 network trained on a NVidia Titan Xp GPU.

There are several approaches for decreasing the model
size of a neural network. Some architectures have been
shown to maintain accuracy with a fraction of the original
size using smaller layers [2]. However, these works primar-
ily target convolutional neural networks. Low-rank matrix
decomposition has been explored as an architectural choice
as well, as it allows the decoupling of the number of pa-
rameters and the number of neurons in the network. Weight
quantization has been explored as a means of decreasing
network size for inference [3], and training [4]. Pruning has
been explored in several works, with [5] removing the least
salient connections, and [1] removing the connections with
the smallest magnitude and achieving a 50× decrease in
model size.

On the hardware side, training linear models with low-
precision has been implemented on FPGAs in [6]. In
FINN [7], authors present state-of-the-art results in clas-
sification speed using an FPGA binary neural net imple-
mentation. In [8], the authors train networks with binary
activations in the forward pass and ternary errors in the
backward pass, eliminating the need for multipliers.

A majority of the works listed here only speed up
inference and not training. In this work, we tackle the
challenge of speeding up deep neural network training by
decreasing the size of these dense layers. To achieve this
we break up the dense matrices into products of sparse
matrices. By picking appropriate topologies, we make sure
that these products retain full connectivity while requiring
fewer parameters. Knowing the topology in advance allows
us to store connections efficiently. This is due to (1) the
connections being stored serially, which may not be the case
for sparse matrices, and (2) not requiring storing indices,
since we can calculate sparse matrix indices on-the-fly based
on the fixed, known topology.

II. CLOSNETS
Pruning has been shown to reduce the size of networks

by an order of magnitude without sacrificing accuracy [1].
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Figure 2: An 8-input, 8-output Clos network with 4 input,
2 middle, and 4 output routers in the networking (left) and
DNN domain (right).

However, current pruning methods only work on trained
networks, as there is no way to know which connections
will be important before training. If an untrained network
is randomly pruned, we risk the possibility of removing
connections that may turn out to be important in a later
stage. Figure 3 shows that randomly pruned networks suffer
from a significantly lower accuracy compared to dense ones.
To retain high accuracy, the network must maintain full
connectivity between input and output neurons of a layer.
To that end, we propose breaking up a large dense layer
into a product of multiple sparse layers. This is equivalent
to adding intermediate layers between layer’s inputs and
outputs, and only sparsely connecting the neurons.

We have analyzed a number of common topologies for
our sparse layers, such as meshes, toruses, hypercubes, and
butterflies. While these topologies do guarantee full connec-
tivity given enough layers, they may cause our networks
to become too deep. Indeed, splitting a 1024× 1024 dense
layer into ten sparse layers with the hypercube topology will
result in full connectivity, but the network will be so deep
that it will have trouble training. In our experiments, none
of the above-listed topologies have been able to train due to
the depth of the network and the vanishing gradient issue
described in [9].

We therefore search for a topology that offers (1) full
connectivity with (2) a small number of intermediate layers.
We call the second property shallowness and require that the
topology achieve full connectivity with only 1 or 2 middle
layers. We also want the topology to have (3) pre-determined
and calculable connectivity, i.e. not random, so that we do
not have to store indices, but instead calculate them on the
fly. Other desirable properties are (4) uniform path diversity,
where all neuron input-output pairs have an equal number
of paths between them, so that the ordering of inputs does
not impact training; (5) high path diversity, where an input
has many paths to every output neuron; and (6) an efficient
hardware implementation, minimizing data movement and
allowing high throughput.

One topology that grants all of these properties is the
Clos network. A Clos network is a three-stage network in
which each stage is composed of a number of crossbar
switches [10]. While in the networking domain a Clos
network is assumed to have the same number of input and
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Figure 3: MNIST accuracy vs. parameter count for dense,
low-rank, a priori randomly sparse, and Clos networks.

output nodes, we define a more general Clos network as a
5-tuple (I , O, Ri, Rm, Ro). In this characterization, I is
the number of inputs, O is the number of outputs, Ri is the
number of input routers, Rm is the number of middle routers,
and Ro is the number of output routers. In Figure 2 (left) we
can see an example (8, 8, 4, 2, 4) Clos network. The intuition
behind Clos networks is that since each middle router acts
as a crossbar between the input and output routers, there are
as many paths between an input-output pair (i, o) as there
are middle routers. This gives the network designer a direct
way to prevent network contention by increasing the path
diversity.

To map Clos networks to the DNN domain, we replace
all the input and output nodes with neurons, and each
router becomes a smaller fully-connected network with its
own hidden neurons, as in Figure 2 (right). Note that the
connections between the routers do not have weights, but
only permute activations. When converting a conventional
dense layer to a network of three layers with the Clos
topology, we call this group of layers a Clos cascade.

The Clos neural networks or ClosNets have clear benefits
over the other explored topologies. They are fully-connected
and shallow. They have a parametrizable but uniform path
diversity. Furthermore, they offer a simple hardware imple-
mentation. An added benefit of ClosNets is that they are not
restricted to having either (1) an identical number of inputs
and outputs, or (2) a number of inputs/outputs equal to a
power of two. For a given Clos cascade (I , O, Ri, Rm,
Ro), we can calculate the number of parameters P in the
network as P = Rm(I +O +RiRo), and path diversity D
as: D = Rm.

We compare model accuracy with respect to the number
of parameters for dense (our baseline), low-rank, a priori
randomly sparse and ClosNets. Figure 3 shows the test
accuracy of different networks trained on MNIST for 50
epochs with respect to their parameter count. As we reduce
the parameter count, the networks degrade in accuracy.
The performance degradation is more graceful for some
networks compared to others. ClosNets have comparable
accuracy with the baseline networks while having 5.5×
fewer parameters.



III. ARCHITECTURE

Mapping Clos to a Torus: We propose a simple hardware
implementation for our Clos cascade. In Figure 4, the
cascade consists of three layers (green, yellow, red). Each
layer contains two independent 2 × 2 dense layers 1 . The
layers are connected by the grey, weightless connections
that permute the inputs to the next layer 2 . While we
can create an individual processing element (PE) for each
neuron in the cascade, this would require more area and
would limit the size of networks we can train. Since higher
network layers are dependent on the activations of lower
layers, we reuse the same PEs to calculate the activations
of multiple neurons. In Figure 4, all neurons in each row
3 are mapped to a separate PE 4 . Having mapped each
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Figure 4: (left) A (4, 4, 2, 2, 2) Clos cascade with inputs I ,
intermediate results Ri and Rm, and outputs Ro. (right) A
2× 2 torus we map the Clos cascade to. Rm2 and Rm3 are
swapped so as to allow single cycle hops in Figure 5b.

neuron to a PE, we arrange the PEs in a torus topology. In
Figure 4, assigning rows 1 to 4 to nodes 11, 12, 21, and
22 respectively allows all connections to be a single hop
away, reducing latency and congestion in the network. With
this mapping of neurons to torus nodes, we observe different
layer dependencies. The first (green) layer’s output neurons
(Ri1 - Ri4) only require values from the same torus row. The
second (yellow) layer output neurons (Rm1 - Rm4) require
the values from the same column (before the values are
sent through weightless (grey) connections). The third (red)
layer again only requires connections from the same row.
We implement each smaller fully-connected layer 1 of size
m×n using n PEs connected in a ring. Each PE calculates
the value of one output neuron, with the input neuron values
initially entering the ring from the outside (Figure 5a), and
next circling the ring (Figures 5b and 5c). The outputs of
the previous layers are used as inputs to the next layer
(i.e. Ri values are used for calculating Rm values, etc.).
During the forward pass, each PE k calculates and stores
the values of Rik, Rmk, Rok. Since it also stores all the
weights connected to that neuron, the outputs and weights
are fixed to PEs, while inputs circulate the rings. During the
backward pass, delta signals propagate backwards through
the network layers (right to left in Figure 4). To calculate
the delta value of a neuron in a lower layer, we need to sum
deltas and weights stored on different neurons. We fix inputs
to PEs (higher layer deltas) and keep weights in place, while
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Figure 5: The movement of inputs and intermediate results
in a (4, 4, 2, 2, 2) Clos cascade.

rotating outputs (lower layers deltas) and have each PE add
their contribution to the output. Generalizing this approach,
a dense n2 × n2 network on a ring of n2 PEs will require
n2 cycles to compute the inference outputs. A comparable
Clos cascade on an n×n torus will only require 3n cycles,
assuming Ri = Rm = Ro = n.

System Architecture: Due to a complex scatter operation
(gray connections in Figure 2), ClosNets are more efficient
to implement on FPGAs than on GPUs. Furthermore, in
order to enable batchless training, we aim to store weights
on-chip. This approach allows efficient training as we are not
bottlenecked by DRAM bandwidth (Figure 1), and is viable
since we use both sparsity and low-precision to reduce the
size of networks.

The top level view of our architecture is presented in Fig-
ure 6 (left). The architecture loads training inputs and targets
from main memory, and stores them in separate caches. The
inputs are then fed to a pipeline of Clos cascades. Each Clos
cascade accepts layer inputs, and produces layer outputs.
Final layer’s activations are fed to an error calculator module
which computes the top layer’s delta values. These values
are propagated back through the Clos cascades, and the
appropriate weights are updated.

Main memory
Prefetcher

Input Cache Target 
Cache 

Clos Cascade 1

Clos Cascade 2

Clos Cascade N

Error Calculator

activations errors

accuracy
Clos 
Node 

FIFO 

Neuron activations 
from lower layer 

Error outputs 
to lower layer 

Error inputs 
from higher layer 

Neuron activations 
to higher layer 

Mux Demux 

Figure 6: Top level (left) and cascade (right) architecture.

A Clos cascade consists of multiplexers and demultiplex-
ers, FIFOs, and PEs arranged in a torus, as seen in Figure 6
(right). The cascade accepts neuron inputs from the left,
stores them in the FIFOs, and sends them up and to the
right (blue lines). FIFOs allow computing layers of sizes
m × n on n × n toruses, where m > n. They store the
m− n activations until the torus can accept them.

Processing Element Architecture: In Figure 7 we see
a single ClosNet processing element. This node performs
three functions in parallel: it (1) calculates the next layer’s
activations in the forward pass unit, (2) propagates errors



back though the network in the backwards pass unit, and (3)
uses current errors to make updates to the node’s weights.
Each PE stores all the weights it uses in a local block
RAM. The only values that traverse the PEs are neuron
inputs used in the forward pass, delta signals used in the
backpropagation, and previous layer activations, used for
updating the weights.

Initially, a node accepts inputs from a single training
sample. It performs a forward pass and stores the neuron
activations in the activation memory. Backpropagation starts
when the node accepts delta signals, either from an error
calculator or from a layer higher in the hierarchy, and
computes the delta of its own neurons using equation 1:

δl = ((wl+1)T δl+1)� σ′(zl) (1)

To compute the delta signal δl, a node requires both
the delta signal of the layer above δl+1, and the neuron
activation zl that this node calculated and stored during the
forward pass. The delta signals δl+1 are transmitted from the
other nodes in the ring, while the backward pass reads the
activation zl from the activation memory. Finally, in parallel
with propagating errors down the layers, the appropriate
weights are updated using the equation:

∆wl+1
ij = aliδ

l+1
j (2)

The weight wl+1
ij is stored at the PE j. To calculate the

weight update ∆wl+1
ij we require both the delta δl+1

j from
the layer above, which is stored at the PE j, and the
activation ali stored at PE i. In order to update all the weights
at node j (i.e. not just wl+1

ij ), we have to circulate not only
the delta signals, but also the activations. The activations
and deltas follow the same movement pattern.
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Figure 7: A ClosNet node calculating the next layer’s
activations, previous layer’s errors, and weight updates.

In Figure 8 we see the Forward Pass Unit (FPU). The
module accepts north or west neuron inputs 1 , multiplies
them by the weight 2 , and adds the result to the sum 3 .
The inputs are also stored in the FIFO 4 and forwarded in
the same direction they came from - north to south or west
to east. Once the FPU has processed all connections, the
neuron output sum is passed through the activation function
5 . This neuron activation is then fed back to the FPU 6

to be used as an input in the next layer. Next, the activation
is stored in the activation FIFO 7 , where it is later read by
the weight update unit and the backward pass unit.
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Figure 8: Forward Pass Unit (FPU)
In Figure 9 we see the Backward Pass Unit (BPU) and

the Weight Update Unit (WUU). The BPU accepts current
layer delta signals δl+1, and calculates the previous layer’s
delta signals δl. It begins by accepting an input from south
or east, passing it through the disabled adder and multiplier,
and storing it in the delta register 1 . Simultaneously, the
multiplexer 2 feeds a zero into the FIFO 3 . This zero
is the value of the previous layer’s delta value we are
calculating, and it circulates all PEs in the ring. Next, follow-
ing equation 1, the register value is multiplied by different
weights 4 , and the product is added to the incoming delta
sum 5 . Notice that for the FPU the sum was fixed to the
FPU, while in the BPU this sum has to circulate the ring.
This is because the weights and activations needed for the
calculation are distributed amongst the PEs. Finally, when
the all connections are processed, the sum from 5 is fed
into the multiplier 6 which multiplies it by the activation
derivative σ′(zl), and the next layer’s delta is calculated.
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Figure 9: Backward Pass and Weight Update Unit

In parallel, WUU calculates the updates from equation 2.
It multiplies the current delta value 1 with the incoming ac-
tivation 7 , and adds it to the current weight 8 . Since neuron
activations are distributed and each Clos PE contains a small
FIFO for activations, the multiplexer 9 chooses whether to
accept the local activation or to transmit the neighbor ones.
Initially, all WUUs choose their local activations, and for
the rest of the layer they circulate their neighbor updates.

IV. EVALUATION
ClosNets apply both machine learning and architecture so-

lutions to the problem of training networks more efficiently.
We evaluate accuracy separately from performance and area.
Accuracy: We evaluate the accuracy of dense neural
networks and ClosNets on the MNIST dataset. We compare
three baseline configurations of 784 inputs, 10 outputs, and
256, 128, and 64 hidden layer neurons. For ClosNets, we



use the 784-256-10 neuron configuration, and replace the
first layer with a Clos cascade since it contains 99% of the
network parameters. For simplicity, we pad the 784 inputs
with zeros so that the input size is 1024. We test four router
configurations: (1024, 256, 32, 16, 32), (1024, 256, 32, 8,
32), (1024, 256, 16, 8, 16), and (1024, 256, 16, 5, 16).
The results of the MNIST test set accuracy over epochs are
presented in Figure 10 (right). Given enough path diversity,
ClosNets perform as well as or better than dense networks.
In Figure 10 (left) we show the accuracy per FLOP during
training, which better illustrates the convergence speed. Both
Clos and dense networks use 32bit floating point operations.
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Figure 10: MNIST accuracy of dense and Clos networks.

Performance: The throughput of an l-cascade ClosNet is
limited by the slowest cascade in the pipeline. For an (I, O,
Ri, Rm, Ro) Clos cascade, the first phase will require I/Ri
cycles to complete, the second one Ri cycles, and the third
one Rm cycles. On top of this, the network may require
some cycles to move data in place before beginning. This
gives us the calculation for the number of cycles per sample
C = I/Ri + Ri + Rm. Notice that C does not depend on
the size of the output O. This is due to us mapping each
output to an individual processing element, avoiding time
multiplexing.

We compare the performance of our design with that of
a similar ring-based dense layer implementation. Here, both
designs have 1024 PEs, and all weights are stored in PEs
using them. In the case of the dense layer, PEs are arranged
in a ring, and the inputs circle all the PEs. We measure the
number of cycles it takes to perform one forward pass or one
backward pass. We assume that the weight matrices can fit
into on-chip BRAM, and have a single cycle read latency. In
Table I we show ideal and results measured on a simulation
for the number of cycles per sample. Due to a design issue,
the Clos backward pass is underperforming. The issue will
be removed in the next iteration of the design.
Area: We synthesize several torus sizes with instructions
to implement two Clos cascades on an Altera Cyclone IV
FPGA with 150k Logic Elements (LE). For all our exper-
iments, we use on chip memory for storing weights, and
embedded 9 bit, fixed-point multipliers for multiplication op-
erations. 9 bit multiplications incur a negligible accuracy loss

Cycles / sample Speedup
Ideal Measured Ideal Measured

Dense Forward 1024 1024 1x 1x
Clos Forward 96 128 10.6x 8.0x
Dense Backward 1024 1024 1x 1x
Clos Backward 96 224 10.6x 4.57x

Table I: The ideal and measured throughput for a 1024-input,
1024-output fully-connected and Clos networks.

Network Logic Element Total Block RAM 9 bit
Size Utilization Registers (Bits) Multipliers
2x2 3657 1784 0 12
4x4 10458 4872 4608 48
8x8 44278 19168 27648 192

Table II: Synthesis results for Clos networks on an Altera
Cyclone IV FPGA with 150k Logic Elements (LE).

compared to a 32 bit floating-point implementation [11], but
significantly reduce power and area requirements. Table II
shows the resource usage for 2x2, 4x4 and 8x8 toruses.

V. CONCLUSION

In this work we introduce a novel approach for reducing
the size of dense neural nets. We present ClosNets - fully-
connected cascades of sparse layers with the Clos topology.
We show that ClosNets have comparable accuracy and a 5-
10× smaller size over fully-connected layers, and propose
a simple torus-based implementation for the network.
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