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ABSTRACT
Quorum sensing in cells is a generalized framework for model-
ing and analyzing the local density of the bacterial population in a
given biological environment. It has applications in biology, medical
and therapeutic domains, e.g., cancer cell research. Software-based
simulations are generally slow and only provide a certain level of
functional faithfulness or model fidelity. In this work we introduce
a scalable open-source architecture to accelerate bacterial quorum
sensing simulations called ABAQS (Agent Based Architecture for
Quorum sensing Simulation). The presented architecture allows
researchers to create and launch new simulations by quickly incor-
porating custom cell models. The architecture is highly modular
and separates the functional model from control logic. It has a sim-
ple interface to enable users to readily connect their custom models
to the simulation platform. To illustrate the proposed architecture,
we present the implementation details and results for a small-scale
model representing up to 81 cells which we have synthesized and
configured on an FPGA. We also highlight some of the key features
to be implemented in future versions of the proposed architecture.
The open-source license of this project will allow other researchers
to contribute and improve the architecture to (a) better fit their
quorum sensing simulations and (b) give the community a flexible
simulation acceleration tool.
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1 INTRODUCTION
Quorum sensing (QS) is defined as the detection of extra-cellular
chemical signals, which, at certain levels, will alter the behavior
of a cell by activating specific genes [9]. By sensing the external
concentration of a specific chemical that other cells produce, a cell
can infer the number of surrounding cells. QS acts as a form of
indirect communication between cells and is sometimes thought of
as chemical “wires" in a broadcast communication. In QS commu-
nication, cells do not have a mechanism to directly communicate.
Instead, any communication or coordination is achieved by sensing
chemical molecules outside the cell. Figure 1 depicts several cells in
a varying concentration of chemical molecules. The concentration
of chemical molecules is proportional to the number of cells nearby.

Figure 1: Four cells surrounded by chemicalmolecules. Each
cell is sensing and outputting quantities of the chemical.
The cells on the left are in a higher concentration of chem-
ical allowing them to sense a quorum, while the cell on the
right is in a lower concentration and does not sense a quo-
rum.

Researchers are still trying to understand how many cells are
needed to reach a quorum and how close cells must be to interact
(some studies have suggested distances of no more than 10-100µm)
[9]. In addition to researching how and why QS works, recent
research has focused on a wide range of potential applications
which can leverage QS communication. These applications range
from cellular computing, where colonies of bacteria have been
grown to compute the output of two input logic gates [8], to targeted
drug delivery, where researchers investigate how cells might be
engineered to release a treatment in the presence of cancer cells [7].
Previous research has also focused on the role QS plays in biofilm
(dense clusters of cells) formation, destruction and resistance to
antimicrobial treatments [6]. By understanding how diseases use
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QS to grow and survive, researchers can develop new therapies
that work by interfering with the disease’s QS.

In order to understand how QS systems can be engineered to
solve specific problems, researchers need accurate models of these
systems and the ability to perform experiments at the relevant scale.
Often the scale of the experiments is too large for simulation or
laboratory conditions, forcing researchers to use less controllable
real world environments. The current QS simulation tools struggle
to scale beyond hundreds of micrometers in size. These simulations
are large enough to model on the order of 105 to 106 cells depending
on their complexity. While this scale is large enough to simulate
the logic gates developed in [8], simulating larger environments
will require more scalable simulation tools.

A domain specific architecture would enable researchers to ac-
celerate QS simulations, allowing them to simulate longer time
spans at a larger scale than what is feasible in the current software
frameworks. In this paper, we propose and implement a modular,
scalable and open-source architecture to accelerate QS simulations.
This open-source architecture serves as a proof of concept and can
be further improved by the community. The source code for this
project is available on the ASCS Lab website at the following URL:
http://ascslab.org/research/abc/abaqs/index.html

2 BACKGROUND AND RELATEDWORK
2.1 Quorum Sensing Applications
In the last few years, researchers have begun to understand how
QS impacts bacterial interactions by performing experiments in
the lab [9] [4]. Some experiments have been performed in more
complex natural environments (such as a live organism), but the
poor control researchers have over these environments means that
the scale and complexity of these experiments is relatively limited.

A current area of research focuses on how diseases use QS. Some
works have hypothesized that interfering with a disease’s QS could
provide a new form of treatment for antimicrobial-resistant infec-
tions. These diseases, which are resistant to current treatments,
can use QS to coordinate in a way that increases virulence (how
harmful a disease is) [9]. Treatments that interfere with QS would
not directly treat the disease, instead they would work to reduce
the virulence and limit the coordination between cells, potentially
slowing or stopping the antimicrobial resistant strains of the disease
enough for conventional therapies to be effective.

Another approach which leverages QS is described in [7], where
the authors describe their vision of targeted drug delivery, where
small doses of a treatment are embedded in nanomachines (cells
or other particles) capable of detecting the low oxygen environ-
ments preferred by cancer cells. Once these nanomachines detect
cancer cells, they would begin to release oxygen. By sensing the
concentration of oxygen, the cells can detect when a quorum of
nanomachines is present to simultaneously release their treatment.
While this type of treatment is likely decades away, it serves as an
illustration of the potential uses QS can have in developing new
treatments for diseases.

2.2 Quorum Sensing Simulations
Simulation offers a way for researchers to test their understanding
of interactions observed in natural and laboratory environments by
building mathematical models to represent a cell’s behavior. These

models can then be used to predict behavior in other environments.
Several software frameworks exist to enable researchers to quickly
build models of cells and an environment [2] [5]. Most software
frameworks take an event driven, agent based approach to model
relatively sparse populations of bacteria. This approach allows
researchers to simulate events across different time scales with
limited processing overhead.

While the agent and event based approaches work well to model
individual cells or very small quantities of chemical molecules,
chemical concentrations across a 2D or 3D space are better repre-
sented with differential equations solved by numerical methods, as
in [2]. This combination of chemical fields and agent based cells
usually leads to a hybrid simulation where the chemical field is up-
dated at fixed discrete time intervals and the cell states are updated
on events in a more continuous time scale.

In [4], the chemical fields and dense cell populations are modeled
with differential equations. The diffusion of chemical molecules
throughout space is modeled with a discrete Laplace operator
shown in Equation 1.

xt+1 = xcell +
(xn + xs + xe + xw ) − 4 ∗ xt

4 ∗ h2
∗ dt (1)

In Equation 1, xt+1 represents the quantity of chemical in the
given location at time t + 1. The variable xt is the quantity of
a chemical in given location at time t . The variable xcell is the
quantity added by the cell at the same location at time t . The values
xn , xs , xe and xw are the quantities of the chemical in the north,
south, east and west locations respectively at time t . The variable h
is equal to the physical distance between points in the simulation.
The value of dt is equal to the size of the simulation time step. Note
that the diffusion model used is meant to represent a 2D space, with
unique operations for edges and corners (not shown in Equation 1).

Most frameworks, such as BSim [2], are written in higher level
languages (like Java) which trade off efficiency for usability. These
high level languages make it easy for researchers to develop simu-
lations, but these simulations are limited in duration and scale.

2.3 FPGA Accelerated Agent Based Models
Other works have focused on accelerating similar agent based appli-
cations with FPGAs. In [1], the author uses memory interleaving to
fetch data for a cluster of points in a 2D grid. By taking advantage of
the distributed BRAMs on an FPGA, the author is able to get data for
a whole cluster in a single memory fetch. Additionally, the author
shows how to tile a 2D grid of processing elements, assigning each
to a memory bank. The number of banks is dependent on the cluster
size needed in the computation. The author of [1] uses Conway’s
Game of Life as an example agent based application. Conway’s
Game of Life uses a 3x3 cluster in each computation (a cell and
its 8 neighbors), resulting in 9 memory banks. The author shows
that they are able to get a 290x speedup compared to a software
implementation.

3 PROPOSED ARCHITECTURE
3.1 Processing Element Description
The architecturemodels a two dimensional discrete space in discrete
time. The size of the space is parameterized and user selectable. For
simplicity, the edges of the two dimensional space wrap around,
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creating a torus. This simplifies the implementation by removing the
need for unique processing elements along the edges and corners (at
the expense of chemical diffusion accuracy with the current model).
Conducting simulations with a torus rather than a 2Dmesh can help
prevent undesirable effects created by the edges of a simulation.

In the current implementation, each point in space is modeled
with a single processing element (PE) that stores a chemical concen-
tration and the status of a single cell. Separate execution units are
used to update the chemical concentration and cell state simultane-
ously.

Figure 2 shows a block diagram of the architecture. The expanded
oval depicts a single PE with a chemical execution unit (orange box)
and a cell execution unit (blue circle). Note that the connections
between the cell execution units (dashed lines) are only used to
copy state registers in the event of cell movement. Cells cannot
directly communicate in QS, instead they must influence the chemi-
cal concentration around them which will diffuse to other locations
to be sensed by nearby cells. This process is represented with the
solid lines in Figure 2.

Figure 2: A block diagram of the proposed architecture. The
expanded section shows a processing elementwith chemical
and cell execution units and the single word FIFOs between
them.

3.2 Cell Execution Unit
The cell execution unit stores the cell’s state in a set of registers.
Additional registers are used to store the type of cell present in
the PE (type 0 is used to indicate that no cell is present). The cell
execution unit is designed such that the control logic is separate
from the state update logic, allowing a user to quickly make changes
to the type of cells being modeled without the need to understand
the control signals.

Instead, the user implements a separate rulesmodulewith pipelined
state update logic. The rules module is represented as the dark blue
box in the cell execution unit in Figure 2. The interface between
the rules module and the rest of the cell execution unit is well de-
fined and constant for each simulation. The control logic makes no
assumptions about the data in the state registers, meaning the user
is free to use any representation they desire (such as fixed point or
floating point) in the custom rules module.

The depth of the pipeline can be determined by the user during
the design of the rules module with the parameter RULE_DELAY.
User selectable pipeline depths allows for complex cell models
without lengthening the critical path or unnecessarily increasing
latency.

The rules module will be different for each simulation but it
will usually be made up of several pipelines (one for each type of
cell) and a multiplexer to choose between them. The type register
controls the select signals on the multiplexer, ensuring the correct
pipeline updates the state registers. The rules module will also
output a signed quantity for the chemical execution unit to add
or subtract from the local chemical concentration, representing a
cell absorbing or secreting a quantity of chemical. Figure 3 shows a
typical cell execution unit implementation with two cell types and
a simple 10 or 0 addition to the chemical concentration.

Figure 3: An example cell execution unit with two state reg-
isters and two cell types. Note that the chemical concentra-
tion input is used in the state update logic. In this example,
the cell either secretes 10 or 0 units of chemical based on the
type registers.

The cell execution unit supports movement of cells in north,
south, east or west directions. In order for a cell to move, the rules
module must output a direction and assert the move request signal.
The control logic in the cell execution unit checks that the adjacent
PE is empty. If the PE is empty, the cell is allowed to move, its
state registers are copied to the destination PE and the local type
registers are set to zero to indicate that the cell unit is now empty. If
the neighboring PE already has a cell in it, the control logic ignores
the move request and the cell does not move.

This implementation has the potential to create deadlocks, as
an empty cell execution unit is required for a cell to move. While
there are cases where this would be the desired behavior, this may
not always be the case. Future work will eliminate this constraint
by adding more complicated movement arbitration between cell
execution units or by adding several cell execution units to each PE.
A PEwith several cell execution units can be thought of as modeling
a larger two dimensional space with a lower resolution chemical
field. A PE with multiple cell execution units would treat all cells as
being at the same position in a lower resolution space. Having more
cell modules at a discrete point in space would reduce the likelihood
of a deadlock. Sacrificing resolution in this way is tolerable because
in QS cells do not directly communicate. By placing multiple cells
in the same PE, they can be treated as if they are so close to the
adjacent cells that they will instantly sense any changes to the
chemical environment made by their neighbors.



HEART 2018, June 20–22, 2018, Toronto, ON, Canada Alan Ehret, Peter Jamieson, and Michel A. Kinsy

3.3 Chemical Execution Unit
The chemical execution unit stores the local concentration of chem-
ical at the processing element’s location in a register. Each chemical
unit is connected to its north, south, east and west neighbors as well
as the local cell unit. Two FIFOs are used to connect neighboring
execution units, one to buffer data in each direction. The FIFOs are
only a single word deep and represented as registers in Figure 2.
The discrete time simulation means that any execution unit cannot
be more than one time step ahead of its slowest neighbor, result-
ing in at most one chemical concentration being buffered between
execution units. Placing these FIFOs between each neighbor sim-
plifies arbitration and allows a module to update its internal state
even if each connected module has not read the previous state yet.
The chemical concentration is updated once all of the neighboring
modules (including the cell module) have put new data in the FIFO
for the chemical module to read. The model of chemical diffusion
is fixed for all simulations but future work will focus on creating
modular interfaces for custom chemical diffusion equations, similar
to the cell rules modules described above.

3.4 Load and Store Shift Register
To initialize a simulation and record its state, the architecture in-
cludes a shift register along each row of PEs. Figure 4 illustrates
how these shift registers are connected to the execution units. The
execution units can read or write to these shift registers when a
global read or write signal is asserted. The length of the shift regis-
ter depends on the size of the simulation (determined by the user).
Each shift register is one word wide (word size is also determined
by the user). The shift register length must be long enough to store
the state of an entire row at once, so the depth matches the num-
ber of state registers for each chemical execution unit (one) and
cell execution unit (a user selectable number of registers) in the
row. The frequency that the simulation state can be recorded is a
function of the number of state registers per PE and PEs per row.
A longer row or larger number of state registers will increase the
time needed to save the simulation state, reducing how often it
can be saved. The architecture uses shift registers along each row,
meaning the number of rows does not affect the time needed to
record the simulation state but it will determine the bandwidth
used to do so.

Figure 4: The shift registers used to initialize and record
state information. Each rowhas its own shift register. Global
load and store signals are used to read or write state infor-
mation to shift register.

3.5 Design Flow Overview
Figure 5 shows the process of building a simulation. First, researchers
must have a model of their cell. This model can be represented in

a variety of formats (equations, software, etc.) and defines the re-
quirements of the rules module. Using the cell model as a guide,
researchers can build the Verilog rules module, which typically
consists of one or more pipelines multiplexed together by the type
register. With the rules module created, the simulation parameters
can be set. Parameters include the number of state registers used
in the cell model, the depth of the rules pipeline and the size of the
simulation. After the parameters have been defined for the specific
simulation, the design can be synthesized and configured on an
FPGA to record simulation results.

Figure 5: The steps to build a simulation. Designers must
build the rules module and define the parameters for the
simulation. Each simulation must be synthesized individu-
ally. After synthesis, the simulation can be run and results
can be saved.

4 RESULTS
To test the architecture, we synthesize it for an Altera Cyclone
V FPGA with approximately 32k Adaptive Logic Modules (ALM).
Each ALM contains a fractureable 8 input look up table and 4
registers [3]. We use a simple cell model with 4 state registers.
One state register stores the local chemical concentration, another
implements a simple counter, the last two store the two previous
values of the counter. The word width for each state register (and
throughout the architecture) is 32 bits. This model is not meant to
model a real cell but instead implement the minimum functionality
to verify all of the features of the architecture. This benchmark
provides resource utilization results for the simplest models of cells
and can act as a baseline resource usage for more complex cell
models.

The architecture was synthesized with the parameters described
above at various sizes including 4x4, 5x5, 8x8 and 9x9. Table 1 shows
the resource usage for each of the sizes.

One PE requires about 300 ALMs. The worst case Fmax is 71MHz
for the 9x9 design. The architecture can compute a simulation time
step in 5 cycles, with a single cycle rules module. With 5 clock
cycles per time step and a 71MHz clock, a single time step can be
computed in 70.4ns. With QS simulation timesteps on the order of
milliseconds as in [4], this architecture will enable researchers to
quickly conduct simulations with long time spans.

This architecture separates the simulation time step size from
the time step between simulation snapshots saved with the row-
wise shift registers. This allows simulations to be conducted with
a high resolution while ensuring the amount of stored data from
the simulation is manageable. The frequency of saved simulation
states depends on the length of the shift register and the device’s
clock frequency.

The 9x9 PE architecture with 1 register in the chemical execu-
tion unit for the chemical concentration and 4 registers in the cell
execution unit for the cell state has an 45 register shift register.
With 5 cycles per simulation timestep, the simulation state can be
saved every 9 simulation time steps. Figure 6 plots the number of
simulation timesteps between each simulation snapshot for varying
numbers of registers per PE.
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Simulation Number ALM Total Device
Size of PEs Usage Registers Utilization
4x4 16 4876 9767 15%
5x5 25 7533 15229 23%
8x8 64 19190 37906 60%
9x9 81 24277 48436 75%

Table 1: Synthesis results for the proposed architecture with
4 state registers in the cell model.

Figure 6: The number of simulation timesteps between
saved simulation snapshots.With 5 registers per PE, the sim-
ulation can be saved every 9 timesteps. The timestep size can
be altered to change the simulation time between saved sim-
ulation snapshots.

5 PROJECT ROADMAP
The architecture and results presented are meant to introduce the
general framework for using reconfigurable hardware to accelerate
QS simulations and to serve as a small scale proof of concept for the
platform. Future work will focus on 1) optimizing the architecture
for speed and area, enabling larger simulations on a single FPGA,
2) implementing a multi-FPGA design, allowing researchers to
scale up simulations by adding more FPGAs, 3) improving the
architecture’s fidelity, enabling more realistic simulations, and 4)
creating a programming toolchain for non-digital designers. We
plan to release new instances of the platform every six months.
The open-source nature of this project will allow researchers to
contribute to it, developing the features most important to them.

Features such as time multiplexing the PEs would allow simula-
tions to scale beyond the number of physical PEs in the architecture.
A large simulation state could be stored in memory with parts of
it loaded onto the PEs to update small sections at a time. Memory
interleaving similar to the techniques described in [1] could be used
to leverage the FPGA’s many BRAMs. The single word FIFOs used
to connect neighboring modules work well for discrete time simula-
tions but larger FIFOswould be needed to buffer data in event driven
simulations. A parameterized FIFO depth will be incorporated into
the next version of the architecture. With the addition of times-
tamps that can be attached to the data, event driven simulations will
be possible. The addition of true multi-word FIFOs between PEs will
also separate clock domains, significantly improving the maximum
clock frequency of the design. Multi-FPGA implementation sup-
port is being developed to allow extremely large and more complex
simulations. Future work will be needed to create a communication
interface between FPGAs that can efficiently perform the chemical
diffusion computation between PEs on separate FPGAs.

The chemical diffusion model is fixed in the current architecture
for simplicity but researchers would likely want to tweak it. Placing

the diffusion logic in a separate module from the control logic will
further improve the flexibility of the architecture.We plan to include
this change in the next version of our architecture. Subsequent work
will also focus on analyzing the tradeoff between the number of cell
execution units per PE and simulation resolution. Multiple cell units
on a PE would increase the size of the physical space represented in
the simulation at the cost of resolution. Cell movement arbitration
must also be improved to avoid deadlocks. We plan to change the
arbitration between cells to allow cells to swap places.

To simplify the process of building cell rules modules, higher
level tools could be used to describe the pipelines in the rules mod-
ules. OpenCL or a C-to-gates synthesizer could be used to describe
the cell models in a way more familiar to those already using soft-
ware frameworks like BSim or Repast to develop QS simulations.
Future work could develop toolchains to create cell rules modules
from higher level languages. Additionally, a GUI to allow users to
quickly define their simulation parameters could simplify the pro-
cess of simulation building. Frequently used cell rules models could
be incorporated into a repository to serve as a starting point for
other researchers. These models could be incorporated into a GUI
tool to let researchers quickly build simulations with commonly
studied cells.
6 CONCLUSION
In this work, we presented a scalable open-source architecture to
accelerate bacterial quorum sensing simulations. The architecture is
modular and researchers can customize cell models to run different
simulations. Furthermore, the control logic is decoupled from the
cell model logic to enable researchers to build new cell models
without the need to understand the entire architecture. The fact
that this project is open-source means that researchers will be able
to share the cell models they develop, allowing others to reproduce
their results and further build on them.We have presented synthesis
results for the architecture with up to 81 processing elements on a
single FPGA. Finally, we outlined plans to improve the architecture’s
efficiency and efficacy in covering a multitude of cell models.
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