
Heracles 2.0: A Tool for Design Space Exploration
of Multi/Many-core Processors

Michel A. Kinsy and Srinivas Devadas
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, Cambridge Massachusetts 02139
Email: mkinsy, devadas@csail.mit.edu

Abstract—This paper presents Heracles, an open-source, func-
tional, parameterized, synthesizable multicore system toolkit.
Such a multi/many-core design platform is a powerful and
versatile research and teaching tool for architectural exploration
and hardware-software co-design. The Heracles toolkit comprises
the soft hardware (HDL) modules, application compiler, and
graphical user interface. It is designed with a high degree of mod-
ularity to support fast exploration of future multicore processors
of different topologies, routing schemes, processing elements or
cores, and memory system organizations. It is a component-based
framework with parameterized interfaces and strong emphasis
on module reusability. The compiler toolchain is used to map C
or C++ based applications onto the processing units. The GUI
allows the user to quickly configure and launch a system instance
for easy factorial development and evaluation. Hardware modules
are implemented in synthesizable Verilog and are FPGA platform
independent. Heracles tool is freely available under the open-
source MIT license at http://projects.csail.mit.edu/heracles/.

I. INTRODUCTION

The ability to integrate various computation components
such as processing cores, memories, custom hardware units,
and complex network-on-chip (NoC) communication protocols
onto a single chip has significantly enlarged the design space
and workload space in multi/many-core systems. The design of
these systems requires tuning of a large number of parameters
in order to find the most suitable hardware configuration, in
terms of performance, area, and energy consumption, for a
target application domain. This increasing complexity makes
the need for efficient and accurate design tools more acute.

There are two main approaches currently used in the design
space exploration of multi/many-core systems. One approach
consists of building software routines for the different system
components and simulating them to analyze system behavior.
Software simulation has many advantages: i) large program-
ming tool support; ii) internal states of all system modules can
be easily accessed and altered; iii) compilation/re-compilation
is fast; and among others iv) less constraining in terms of
number of components (e.g., number of cores) to simulate.
Some of the most stable and widely used software simulators
are Simics [2]–commercially available full-system simulator–
GEMS [3], Hornet [4], and Graphite [5]. However, software
simulation of many-core architectures with cycle and bit level
accuracy is almost time prohibitive, and many of these systems
have to trade-off evaluation accuracy for execution speed.
Although such trade-off is fair and even desirable in the
early phase of the design exploration, making final micro-
architecture decisions based on these software models over
truncated applications or application traces leads to inaccurate
or misleading system characterization.

The second approach used, often preceded by software
simulation, is register-transfer level (RTL) simulation or emu-
lation. RTL-level accuracy considerably reduces system be-
havior mis-characterization and helps avoid late discovery
of system performance problems. The primary disadvantage
of RTL simulation/emulation is that as the design size in-
creases so does the simulation speed. But this problem can
be circumvented by adopting synthesizable RTL and using
hardware-assisted accelerators–field programmable gate ar-
ray (FPGA)–to speed up system execution. Although FPGA
resources constrain the size of design one can implement,
recent advances in FPGA-based design methodologies have
shown that such constraints can be over come. HAsim [6], for
example, has shown using its time multiplexing technique how
one can model a shared-memory multicore system including
detailed core pipelines, cache hierarchy, and on-chip network,
on a single FPGA. RAMP Gold [7] is able to simulate a
64-core shared-memory target machine capable of booting
real operating systems running on a single Xilinx Virtex-
5 FPGA board. Fleming et al [8] propose a mechanism by
which complex designs can be efficiently and automatically
partitioned among multiple FPGAs.

RTL-level design exploration for multi/many-core systems
nonetheless remain unattractive to most researchers because
it is still a time-consuming endeavor to build such large
designs from the ground up and ensure correctness at all levels.
Furthermore, researchers are generally interested in one key
system area, such as processing core and/or memory organi-
zation, network interface, interconnect network, or operating
system and/or application mapping. Therefore, we believe that
if there is a platform-independent design framework, more
specifically, a general hardware toolkit, which allows designers
to compose their systems and modify them at will and with
very little effort or knowledge of other parts of the system, the
speed versus accuracy dilemma in design space exploration of
many-core systems can be further mitigated.

To that end we propose Heracles, a functional, modular,
synthesizable, parameterized multicore system toolkit. It is a
powerful and versatile research and teaching tool for archi-
tectural exploration and hardware-software co-design. Without
loss in timing accuracy and logic, complete systems can be
constructed, simulated and/or synthesized onto FPGA, with
minimal effort. The initial framework is presented in [1].
Heracles is designed with a high degree of modularity to sup-
port fast exploration of future multicore processors–different
topologies, routing schemes, processing elements or cores,
and memory system organizations–by using a library of com-

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

ponents, and reusing user-defined hardware blocks between
different system configurations or projects. It has a compiler
toolchain for mapping C or C++ based applications onto the
core units. The graphical user interface (GUI) allows the user
to quickly configure and launch a system instance for easy
factorial development and evaluation. Hardware modules are
implemented in synthesizable Verilog and are FPGA platform
independent.

II. RELATED WORK

In [9] Del Valle et al present an FPGA-based emulation
framework for multiprocessor system-on-chip (MPSoC) ar-
chitectures. LEON3, a synthesizable VHDL model of a 32-
bit processor compliant with the SPARC V8 architecture,
has been used in implementing multiprocessor systems on
FPGAs. Andersson et al [10], for example, use the LEON4FT
microprocessor to build their Next Generation Multipurpose
Microprocessor (NGMP) architecture, which is prototyped on
the Xilinx XC5VFX130T FPGA board. However, the LEON
architecture is fairly complex, and it is difficult to instantiate
more than two or three on a medium size FPGA. Clack et al
[11] investigate the use of FPGAs as a prototyping platform
for developing multicore system applications. They use Xilinx
MicroBlaze processor for the core, and a bus protocol for the
inter-core communication. Some designs focus primarly on
the Network-on-chip (NoC). Lusala et al [12], for example,
propose a scalable implementation of NoC on FPGA using
a torus topology. Genko et al [13] also present an FPGA-
based flexible emulation environment for exploring different
NoC features. A VHDL-based cycle accurate RTL model for
evaluating power and performance of NoC architectures is
presented in Banerjee et al [14]. Other designs make use
of multiple FPGAs. H-Scale [15], by Saint-Jean et al, is a
multi-FPGA based homogeneous SoC, with RISC processors
and an asynchronous NoC. The S-Scale version supports a
multi-threaded sequential programming model with dedicated
communication primitives handled at run-time by a simple
operating system.

III. Heracles SYSTEM

Heracles presents designers with a global and complete
view of the inner workings of the multi/many-core system
at the cycle-level granularity from instruction fetches at the
processing core at each node to the flit arbitration at the
routers, with RTL level correctness. It enables designers
to explore different implementation parameters: core micro-
architecture, levels of caches, cache sizes, routing algorithm,
router micro-architecture, distributed or shared memory, or
network interface, and to quickly evaluate their impact on
the overall system performance. It is implemented with user-
enabled performance counters and probes.

A. System overview

Figure 1 illustrates the general Heracles-based design flow.
Full applications–written in single or multithreaded C or C++–
can be directly compiled onto a given system instance using

Application (single or multi-threaded C or C++)

MIPS-based Linux GNU GCC cross compiler

Hardware config-aware application mapping

Processing
elements
selection

Memory
organization
configuration

Network-on-chip
Topology and
routing settings

RTL-level simulation FPGA-based Emulation

Software
Environment

 Component-based
 Hardware Design

 Evaluation
Environment

Fig. 1. Heracles-based design flow.

the Heracles MIPS-based GCC cross-compiler. The detail
compilation process and application examples are presented
in [1]. For the multi/many-core system, we take a component-
based approach by providing clear interfaces to all modules for
easy composition and substitutions. The system has multiple
default settings options to allow users to quickly get a system
running and only focus on the their area of interest. System
and application binary can be executed in an RTL simulated
environment and/or on an FPGA. Figure 2 shows two different
views of a typical network node structure in Heracles.

Processing	 Core	

Memory	 Subsystem	 	
&	

Router	

Router	 &	 network	 interface	

Memory	 System	 Wrapper	

Network	 interface	

router	

Caches	

Address	 Resolu@on	 Logic	

Memory	 System_Wrapper	

Router	 &	 network	 	
interface	

Local	 Main	
Memory	

Packe@zer	

(a)	 Expanded	 view	 of	 local	 memory	 structure	 (b)	 Expanded	 view	 of	 the	 rou@ng	 structure	

Fig. 2. Network node structure.

B. Processing Units

In the current version of the Heracles design framework,
users can instantiate four different types of processor cores,
or any combination thereof, depending on the programming
model adopted and architectural evaluation goals:

1) Injector Core: The injector core (iCore) is the simplest
processing unit. It emits and/or collects from the network
user-defined data streams and traffic patterns. Although it
does not do any useful computation, this type of core is
very handy when user is only focusing on the network on-
chip behavior. It is a good functionality to use for network
congesting evaluation where applications running on real cores
fail to produce enough data traffic to saturate the network.

2) Single Hardware-Threaded MIPS Core: There is an
integer-based 7-stage 32-bit MIPS–Microprocessor without
Interlocked Pipeline Stages–Core (sCore). This RISC architec-
ture is widely used in commercial products and for teaching

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

purposes [16]. Most users are very familiar with this archi-
tecture and its operation, and will be able to easily modify
it when necessary. Our implementation is very standard with
some modifications for FPGAs. For example, the adoption of a
7-stage pipeline, due to block RAM access time on the FPGA.
The architecture is fully bypassed, with no branch predictor or
branch delay slot, running MIPS-III instruction set architecture
(ISA) without floating point. Instruction and data caches are
implemented using block RAMs, and instruction fetch and
data memory access take two cycles. Stall and bypass signals
are modified to support the extended pipeline. Instructions are
issued and executed in-order, and the data memory accesses
are also in-order.

3) Two-way Hardware-Threaded MIPS Core: A fully func-
tional fine-grain hardware multithreaded MIPS core (dCore).
There are two hardware threads in the core. The execution
datapath for each thread is similar to the single-threaded core
above. Each of the two threads has its own context which
includes a program counter (PC), a set of 32 data registers,
and one 32-bit state register. The core can dispatch instructions
from any one of hardware contexts and supports precise
interrupt–doorbell type with limited state saving. A single
hardware thread is active on any given cycle, and pipeline
stages must be drained between context switches to avoid state
corruption. User has the ability to control the context switching
conditions, e.g., minimum number of cycles to allocate to each
hardware thread at the time, instruction or data cache misses.

4) Two-way Hardware-Threaded MIPS Core with Migra-
tion: The fourth type of core is also a two hardware-threaded
processor but enhanced to support hardware-level thread mi-
gration and evictions (mCore). It is the user’s responsibility
to guarantee deadlock-freedom under this core configuration.
One approach is to allocate local memory to contexts so
on migration they are removed from the network. Another
approach which requires no additional hardware modification
to the core, is using Cho et al [17] deadlock-free thread
migration scheme.

5) FPGA Synthesis Data: All the cores have the same
interface, they are self-containing and oblivious to the rest
of the system, therefore easily interchangeable. The cores are
synthesized using Xilinx ISE Design Suite 11.5, with Virtex-6
LX550T package ff1760 speed -2, as the targeted FPGA board.
Number of slice registers and slice lookup tables (LUTs) on
the board are 687360 and 343680 respectively. Figure 3 shows
the register and LUT utilization of the different cores. The
two-way hardware-threaded core with migration consumes
the most resources and is less than 0.5%. Figure 4 shows
the clocking speed of the cores. The injector core, which
does no useful computation, runs the fastest at 500.92MHz
where the two-way hardware-threaded core runs the slowest
at 127.4MHz.

C. Memory System Organization

The memory system in Heracles is parameterized, and
can be set up in various ways, independent of the rest of

0

1000

2000

3000

4000

5000

6000

7000

iCore sCore dCore mCore

N
u

m
b

e
r

u
se

d

Resource Utilization

Registers

LUTs

Fig. 3. FPGA resource utilization per core.

0

1

2

3

4

5

6

7

8

32 1024 miss (L1) d-miss (L1) d-miss (L2)

C
yc

le
s

(x
1

0
9)

Execution Cycles

Thread1

Thread2

0

100

200

300

400

500

600

iCore sCore dCore mCore

M
H

z

Clocking Speed

Fig. 4. Clocking speed of the cores.

the system. The key components are main memory, caching
system, and network interface.

1) Main Memory Configuration: The main memory is
constructed to allow different memory space configurations.
For Centralized Shared Memory (CSM) implementation, all
processors share a single large main memory block; the local
memory (shown in Figure 2) size is simply set to zero at
all nodes except one. In Distributed Shared Memory (DSM),
where each processing element has a local memory. The local
memory is parameterized and has two very important at-
tributes: the size can be changed on a per core-basis, providing
support for both uniform and non-uniform distributed memory,
and it can service a variable number of caches in a round-robin
fashion. The fact that the local memory is parameterized to
handle requests from a variable number of caches allows to
present to the local memory the traffic coming into a node
from other cores through the network, as just another cache
communication. This illusion is created through the network
packetizer. Local memory can also be viewed as a memory
controller. For cache coherence, a directory is attached to each
local memory and MSI protocol is implemented as the default
coherence mechanism. Remote access (RA) is also supported.
In RA mode, the network packetizer directly sends network
traffic to the caches. Memory structures are implemented in
FPGA using block RAMs. There are 632 block RAMs on the
Virtex-6 LX550T. A local memory of 0.26MB uses 64 block
RAMs or %10.

2) Caching System: User can instantiate direct-mapped
level 1 or levels 1 and 2 with the option of making level
2 an inclusive cache. The INDEX BITS parameter defines
the number of blocks or cache-lines in the cache where the
OFFSET BITS parameter defines block size. By default, cache
and memory structures are implemented in FPGA using block

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

RAMs, but user can instruct Heracles to use LUTs for caches
or some combination of LUTs and block RAMs. A single
2KB cache uses 4 FPGA block RAMs, 462 slice registers,
1106 slice LUTs, and runs at 228.8MHz. If cache size is
increased to 8KB by changing the INDEX BITS parameter
from 6 to 8, resource utilization and speed remains identical.
Meanwhile if cache size is increase to 8KB by changing
the OFFSET BITS parameter from 3 to 5, resource utilization
increases dramatically: 15 FPGA block RAMs, 1232 slice
registers, 3397 slice LUTs, and runs at 226.8MHz. FPGA-
based cache design favors large number of blocks of small
size versus small number of blocks of large size 1.

3) Network Interface: The Address Resolution Logic works
with the Packetizer module, shown in Figure 2, to get the
caches and the local memory to interact with the rest of the
system. All cache traffic goes through the Address Resolution
Logic, which determines if a request can be served at the local
memory, or if the request needs to be sent over the network.
The Packetizer is responsible for converting data traffic, such
as a load, coming from the local memory and the cache system
into packets or flits that can be routed inside the Network-on-
chip (NoC), and for reconstructing packets or flits into data
traffic at the opposite side when exiting the NoC.

4) Hardware multithreading and caching: In this section,
we examine the effect of hardware multithreading (HMT) on
system performance. We run the 197.parser application from
the SPEC CINT2000 benchmarks on a single node with the
dCore as processing unit using two different inputs–one per
thread–with five different execution interleaving policies.

• In setup 1: threads take turns to execute every 32 cycles,
on a context switch, the pipeline is drained before the
execution of another thread begins.

• For setup 2: thread switching happens every 1024 cycles.
• In setup 3: thread context swapping is initiated on an

instruction or a data miss at the level 1 cache.
• For setup 4: thread interleaving occurs only when there

is a data miss at the level 1 cache.
• In setup 5: thread switching happens when there is a data

miss at the level 2 cache.
Figure 5 shows the total completion time of the two threads (in
terms of number of cycles). It is worth noting that even with
fast fine-grain hardware context switching, multithreading is
most beneficial for large miss penalty events like level 2 cache
missing or remote data accesses.

D. Heracles network-on-chip (NoC)

To provide scalability, Heracles uses a network-on-chip
(NoC) architecture for its data communication infrastructure.
An NoC architecture is defined by its topology (the physical
organization of nodes in the network), its flow control mech-
anism (which establishes the data formatting, the switching
protocol and the buffer allocation), and its routing algorithm
(which determines the path selected by a packet to reach its
destination under a given application).

1Cache-line size also has traffic implications at the network level

0

1

2

3

4

5

6

7

8

32 1024 miss (L1) d-miss (L1) d-miss (L2)

C
yc

le
s

(x
1

0
9
)

Execution Cycles

Thread1

Thread2

0

100

200

300

400

500

600

iCore sCore dCore mCore

M
H

z

Clocking Speed

Fig. 5. Effects of hardware multithreading and caching

1) Flow control: Routing in Heracles can be done using
either bufferless or buffered routers. Bufferless routing are
generally used to reduce area and power overhead associated
with buffered routing. Contention for physical link access is
resolved by either dropping and retransmitting or temporarily
misrouting–deflecting–of flits. With flit dropping an acknowl-
edgment mechanism is needed to enable retransmission of lost
flits. With flit deflection, a priority-based arbitration, e.g., age-
based, is needed to avoid livelock. In Heracles, to mitigate
some of the problems associated with the lossy bufferless
routing, namely retransmission and slow arbitration logic,
we supplement the arbiter with a routing table that can be
statically and off-line configured on per-application basis.

The system default virtual-channel router conforms in its
architecture and operation to conventional virtual-channel
routers [18]. It has some input buffers to store flits while they
are waiting to be routed to the next hop in the network. The
router is modular enough to allow user to substitute different
arbitration schemes. The routing operation takes four steps
or phases, namely routing (RC), virtual-channel allocation
(VA), switch allocation (SA), and switch traversal (ST), where
each phase corresponds to a pipeline stage in our router.
In the buffered router the number of virtual channels per
port and their sizes are controlled through VC PER PORT
and VC DEPTH parameters. Figure 6 shows the register and
LUT utilization of the bufferless router and different buffer
configurations of the buffered router. Figure 7 shows effect of
virtual channels on router clocking speed. The key take-away
is that larger number of VCs at the router increases both the
router resource utilization and the critical path.

0

5000

10000

15000

20000

25000

Bufferless Buf-2VC Buf-4VC Buf-8VC

N
u

m
b

e
r

u
se

d

Resource Utilization

Registers

LUTs

0

100

200

300

400

500

600

700

800

900

Bufferless Buf-Arbitor1 Buf-Arbitor2 Buf-Port7

M
H

z

Clocking Speed

Fig. 6. FPGA resource utilization per router configuration.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

0	

20	

40	

60	

80	

100	

120	

Buf-‐2VC	 Buf-‐4VC	 Buf-‐8VC	

M
Hz

	

Clocking	 Speed	

Fig. 7. Effect of virtual channels on router clocking speed.

2) Routing algorithm: Algorithms used to compute routes
in network-on-chip (NoC) architectures, generally fall under
two categories: oblivious and dynamic [19]. The default routers
in Heracles primarily support oblivious routing algorithms
using either fixed logic or routing table. Fixed logic is provided
for dimension order routing (DOR) algorithms, which are
widely used and have many desirable properties. On the other
hand, table-based routing provides greater programmability
and flexibility, since routes can be pre-computed and stored in
the routing tables before execution. Both buffered and buffer-
less routers can make usage of the routing tables. Heracles
provides support for both static and dynamic virtual channel
allocation.

3) Network Topology Configuration: The parameterization
of the number of input ports and output ports on the router
and the table-based routing capability give Heracles a great
amount of flexibility and the ability to metamorphose into
different network topologies; for example, k-ary n-cube, 2D-
mesh, 3D-mesh, hypercube, ring, or tree. A new topology
is constructed by changing the IN PORTS, OUT PORTS, and
SWITCH TO SWITCH parameters and reconnecting the routers.
Figure 8 shows the clocking speed of a bufferless router, a
buffered router with strict round-robin arbiter (Buf-Arbiter1),
a buffered router with weak round-robin arbiter (Buf-Arbiter2),
and a buffered router with 7 ports for a 3D-mesh network. The
bufferless router runs the fastest at 817.2MHz, Buf-Arbiter1
and Buf-Arbiter2 run at the same speed (∼ 112), although
the arbitration scheme in Buf-Arbiter2 is more complex. The
7-port router runs the slowest due to higher arbitration logic
level.

0	
100	
200	
300	
400	
500	
600	
700	
800	
900	

Bufferless	 Buf-‐Arbiter1	 Buf-‐Arbiter2	 Buf-‐Port7	

M
H
z	

Clocking	 Speed	

Fig. 8. Clocking speed of different router types.

E. Heracles graphical user interface

The graphical user interface (GUI) called Heracles Designer
helps to quickly configure and launch system configurations.
Figure 9 shows a screen shot of the GUI. On the core tab, user
can select: (1) the type of core to generate, (2) the network
topology of the system instance to generate, (3) the number of

Fig. 9. Heracles designer graphical user interface.

cores to generate, (4) traffic type, injection rate, and simulation
cycles in the case of an injector core, or (5) different pre-
configured settings. Generate and Run buttons on this tab are
used to automatically generate the Verilog files and to launch
the synthesis process or specified simulation environment. The
second tab–memory system tab–allows user to set: (1) maim
memory configuration (e.g., Uniformed Distributed), (2) total
main memory size, (3) instruction and data cache sizes, (4)
level 2 cache, and (5) FPGA favored resource (LUT or block
RAM) for cache structures. The on-chip network tab covers
all the major aspects of the system interconnect: (1) routing
algorithm, (2) number of virtual channels (VCs) per port, (3)
VC depth, (4) core and switch bandwidths, (5) routing tables
programming, by selecting source/destination pair or flow ID,
router ID, output port, and VC (allowing user-defined routing
paths), and (6) number of flits per packet for injector-based
traffic. The programming tab is updated when user changes
the number of cores in the system, user can: (1) load a binary
file onto a core, (2) load a binary onto a core and set the
starting address for another core to point to that binary, (3)
select where to place the data section or stack pointer of a
core (it can be local, on the same core as the binary or on
another core), and (4) select which cores to start.

F. Programming models

The Heracles design tool supports the following program-
ming models:

• Executing a single program on a single core.
• Running the same program on multiple cores (program

inputs can be different), in this model the program binary
is loaded to one core and the program counter at other
cores points to the core with the binary.

• Executing one program across multiple cores.
• Running multiple programs on one core and hardware

multithread them.
• Executing multiple programs (both single threaded and

multithreaded) on multiple cores.

G. Full 2D-mesh systems

The synthesis results of five multicore systems of size: 2×2,
3×3, 4×4, 5×5, and 6×6 arranged in 2D-mesh topology

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

are summarized below. Table I gives the key architectural
characteristics of the multicore system. All five systems run
at 105.5MHz, which is the clock frequency of the router,
regardless of the size of the mesh.

Core
ISA 32-Bit MIPS
Hardware threads 1
Pipeline Stages 7
Bypassing Full
Branch policy Always non-Taken
Outstanding memory requests 1

Level 1 Instruction/Data Caches
Associativity Direct
Size variable
Outstanding Misses 1

On-Chip Network
Topology 2D-Mesh
Routing Policy DOR and Table-based
Virtual Channels 2
Buffers per channel 8

TABLE I
2D-MESH SYSTEM ARCHITECTURE DETAILS.

0	

0.2	

0.4	

0.6	

0.8	

1	

2x2	 3x3	 4x4	 5x5	 6x6*	

Pe
rc
en

ta
ge
	

2D	 Meshes	

Resource	 U3liza3on	 	

Registers	

LUTs	

Block	 RAMs	

Fig. 10. Percentage of FPGA resource utilization per mesh size.

Figure 10 summarizes the FPGA resource utilization by
the different systems in terms of registers, lookup tables, and
block RAMs. In the 2×2 and 3×3 configurations, the local
memory is set to 260KB per core. The 3×3 configuration
uses 99% of block RAM resources at 260KB of local memory
per core. For the 4×4 configuration the local memory is
reduced to 64KB per core, and the local memory in the 5×5
configuration is set to 32KB. The 6×6 configuration, with
16KB of local memory per core, fails during map and router,
due to lack of LUTs.

IV. CONCLUSION

In this work, we present the new Heracles design toolkit
which is comprised of the soft hardware (HDL) modules,
application compiler, and a graphical user interface. It is a
component-based framework that gives researchers the abil-
ity to create complete, realistic, synthesizable, multi/many-
core architecture for fast and high accuracy design space
exploration. In this environment, user can explore design
trade-offs at the processing unit level, the memory orga-
nization and access level, and the network on-chip level.

The Heracles tool is open-source and can be downloaded at
http://projects.csail.mit.edu/heracles/.

REFERENCES

[1] M. Kinsy, M. Pellauer, and S. Devadas, “Heracles: Fully synthesizable
parameterized MIPS-based multicore system,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on, sept.
2011, pp. 356 –362.

[2] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[3] W. Yu, “Gems a high performance em simulation tool,” in Electrical
Design of Advanced Packaging Systems Symposium, 2009. (EDAPS
2009). IEEE, dec. 2009, pp. 1 –4.

[4] M. Lis, P. Ren, M. H. Cho, K. S. Shim, C. Fletcher, O. Khan, and
S. Devadas, “Scalable, accurate multicore simulation in the 1000-core
era,” in Performance Analysis of Systems and Software (ISPASS), 2011
IEEE International Symposium on, april 2011, pp. 175 –185.

[5] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator
for multicores,” in High Performance Computer Architecture (HPCA),
2010 IEEE 16th International Symposium on, jan. 2010, pp. 1 –12.

[6] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “Hasim:
FPGA-based high-detail multicore simulation using time-division mul-
tiplexing,” in High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, feb. 2011, pp. 406 –417.

[7] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and
K. Asanovic and, “Ramp gold: An FPGA-based architecture simulator
for multiprocessors,” in Design Automation Conference (DAC), 2010
47th ACM/IEEE, june 2010, pp. 463 –468.

[8] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, A. Mithal, and
J. Emer, “Leveraging latency-insensitivity to ease multiple FPGA de-
sign,” in Proceedings of the ACM/SIGDA international symposium on
Field Programmable Gate Arrays, ser. FPGA ’12. New York, NY,
USA: ACM, 2012, pp. 175–184.

[9] P. Del valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias,
L. Benini, and G. Micheli, “A complete multi-processor system-on-chip
FPGA-based emulation framework,” in Very Large Scale Integration,
2006 IFIP International Conference on, oct. 2006, pp. 140 –145.

[10] J. Andersson, J. Gaisler, and R. Weigand. Next
generation multipurpose microprocessor. Available at:
http://microelectronics.esa.int/ngmp/NGMP-DASIA10-Paper.pdf.

[11] C. R. Clack, R. Nathuji, and H.-H. S. Lee. Using an FPGA as a
prototyping platform for multi-core processor applications. In Workshop
on Architecture Research using FPGA Platforms, Cambridge, MA, 2005.

[12] A. Lusala, P. Manet, B. Rousseau, and J.-D. Legat, “Noc implementation
in FPGA using torus topology,” in Field Programmable Logic and
Applications, 2007. FPL 2007. International Conference on, aug. 2007,
pp. 778 –781.

[13] N. Genko, D. Atienza, G. De Micheli, J. Mendias, R. Hermida, and
F. Catthoor, “A complete network-on-chip emulation framework,” in
Design, Automation and Test in Europe, 2005. Proceedings, march 2005,
pp. 246 – 251 Vol. 1.

[14] N. Banerjee, P. Vellanki, and K. Chatha, “A power and performance
model for network-on-chip architectures,” in Design, Automation and
Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 2,
feb. 2004, pp. 1250 – 1255 Vol.2.

[15] N. Saint-Jean, G. Sassatelli, P. Benoit, L. Torres, and M. Robert, “Hs-
scale: a hardware-software scalable mp-soc architecture for embedded
systems,” in VLSI, 2007. ISVLSI ’07. IEEE Computer Society Annual
Symposium on, march 2007, pp. 21 –28.

[16] D. Patterson and J. Hennessy, Computer Organization and Design: The
Hardware/software Interface. Morgan Kaufmann, 2005.

[17] M. H. Cho, K. S. Shim, M. Lis, O. Khan, and S. Devadas, “Deadlock-
free fine-grained thread migration,” in Networks on Chip (NoCS), 2011
Fifth IEEE/ACM International Symposium on, may 2011, pp. 33 –40.

[18] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2003.

[19] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62–76, 1993.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2012): Category 1

