
Application-Aware Deadlock-Free Oblivious Routing

Michel Kinsy, Myong Hyon Cho, Tina Wen, Edward Suh†, Marten van Dijk, Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory †Department of ECE

Massachusetts Institute of Technology Cornell University
Cambridge, MA Ithaca, NY

ABSTRACT
Conventional oblivious routing algorithms are either not
application-aware or assume that each flow has its own private
channel to ensure deadlock avoidance. We present a framework
for application-aware routing that assures deadlock-freedom under
one or more channels by forcing routes to conform to an acyclic
channel dependence graph. Arbitrary minimal routes can be made
deadlock-free through appropriate static channel allocation when
two or more channels are available. Given bandwidth estimates
for flows, we present a mixed integer-linear programming (MILP)
approach and a heuristic approach for producing deadlock-free
routes that minimize maximum channel load. The heuristic
algorithm is calibrated using the MILP algorithm and evaluated
on a number of benchmarks through detailed network simulation.
Our framework can be used to produce application-aware routes
that target the minimization of latency, number of flows through a
link, bandwidth, or any combination thereof.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network communica-
tions

General Terms
Algorithms, Design, Performance

Keywords
Systems-On-Chip, On-chip interconnection networks, Oblivious
Routing

1. INTRODUCTION
Routers can be generally classified into oblivious and adaptive

[29]. In oblivious routing, the path is completely determined by
the source and the destination address. Deterministic routing is a
subset of oblivious routing, where the same path is always cho-
sen between a source-destination pair. Thanks to its distributed na-
ture where each node can make its routing decisions independent
from others, oblivious routing such as dimension order routing [8]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

enables simple and fast router designs and is widely adopted in to-
day’s on-chip interconnection networks. On the other hand, today’s
oblivious routing algorithms can have difficulty with certain traffic
patterns, especially when flows have different bandwidth demands,
because routes are not adjusted for different applications.

In adaptive routing, given a source and a destination address, the
path taken by a particular packet is dynamically adjusted depend-
ing on, for instance, network congestion. With this dynamic load
balancing, adaptive routing can potentially achieve better through-
put and latency compared to oblivious routing. However, adap-
tive routing methods face a difficult challenge in balancing router
complexity with the capability to adapt. To achieve the best per-
formance through adaptivity, a router ideally needs global knowl-
edge of the current network status. However, due to router speed
and complexity, dynamically obtaining a global and instantaneous
view of the network is often impractical. As a result, adaptive rout-
ing in practice relies primarily on local knowledge, which limits its
effectiveness.

In this paper, we present an application-aware oblivious routing
framework that statically determines deadlock-free routes consid-
ering an application’s communication characteristics. The frame-
work supports a variety of algorithms that optimize various cost
functions, for example, maximum channel load across all links
when bandwidth demands of flows are known, or latency of (a sub-
set of) routes, or a combination thereof.

Our focus in this paper is on bandwidth-sensitive oblivious rout-
ing which produces deadlock-free routes given rough estimates of
bandwidth demands of all flows obtained through application pro-
gram analysis and/or profiling. Using these estimates, an offline
algorithm determines routes for the data transfers that maximize
satisfaction of flow demand or minimize maximum channel load,
while ensuring deadlock freedom. The network is then statically
configured prior to run-time as processing elements are loaded with
the computation code. This approach can achieve better thoughput
than traditional oblivious routing algorithms because routes are op-
timized based on the global knowledge of bandwidth demands. At
the same time, the router remains simple because the routes are
configured statically and do not change at run-time.

Application-aware oblivious routing will be particularly suitable
for long-running applications with predictable communication pat-
terns. For example, the approach is suitable for co-processing
platforms such as reconfigurable hardware, where processing el-
ements and their interconnection network can be configured much
like an FPGA to speed up a computationally-intensive task such
as video compression, processor simulation, or rendering. In re-
configurable computing, a computation is spatially partitioned into
processing elements (PEs) and the network traffic pattern remains
relatively static as each PE performs a fixed task. Our studies on

208

synthetic traffic with various patterns and the H.264 decoder ap-
plication show throughput improvements over traditional oblivious
routing.

Section 2 describes a generic network architecture for obliv-
ious routing, and the small augmentations required to support
application-aware oblivious routing. Section 3 describes our
framework for application-aware routing. Various algorithms for
bandwidth-sensitive routing are the subject of Sections 4 and 5.
Related work is summarized in Section 6. Section 7 compares
benchmark performance using our routing schemes to existing de-
terministic and oblivious routing algorithms. Section 8 concludes
the paper.

2. ROUTER ARCHITECTURE
This section discusses the impact of our oblivious routing tech-

nique on the router architecture, and compares the modified ar-
chitecture with standard routers for other oblivious routing algo-
rithms. The following discussion assumes a typical virtual-channel
router on a 2-D mesh network as a baseline. However, we note that
the proposed routing technique is largely independent of network
topology and flow control mechanisms. Therefore, the same ap-
proach to routing can be applied to other network topologies and
either packet-buffer or flit-buffer flow control.

2.1 Typical Virtual Channel Router

(a) Router architecture

VC 
Allocator 

…
 

Input 
Port 

VC state

crossbar 
switch 

Rou7ng 
Module 

Switch 
Allocator 

Input 
Port 

VC state

Output 
Port 

…
 

…
 

Output 
Port 

(b) Router: routing phases

Routing Computation
(RC)

Virtual Channel
Allocation (VA)

Switch Allocation
(SA)

Switch Traversal
(ST)

…
 

Figure 1: Typical virtual-channel router architecture. The
dark blue indicates that the modules and routing step may be
modified for our approach.

Figure 1 illustrates a typical virtual-channel router architecture
and its operation [9, 25, 34]. As shown in the figure, the datapath
of the router consists of buffers and a switch. The input buffers
store flits while they are waiting to be forwarded to the next hop.
There are often multiple input buffers for each physical channel so
that flits can flow as if there are multiple “virtual” channels. When
a flit is ready to move, the switch connects an input buffer to an
appropriate output channel. To control the datapath, the router also
contains three major control modules: a router, a virtual-channel
(VC) allocator, and a switch allocator. These control modules de-
termine the next hop, the next virtual channel, and when a switch
is available for each packet/flit.

The routing operation takes four steps or phases, namely routing
(RC), virtual-channel allocation (VA), switch allocation (SA), and
switch traversal (ST), which often represent one to four pipeline
stages in modern virtual-channel routers. When a head flit (the first
flit of a packet) arrives at an input channel, the router stores the flit
in the buffer for the allocated virtual channel and determines the
next hop for the packet (RC phase). Given the next hop, the router
then allocates a virtual channel in the next hop (VA phase). Finally,

Strategy Routing mechanics
DOR, ROMM Algorithmic: fixed logic
BSOR Table-based: source/node-table routing
BSORM Table-based: source/node-table routing

Table 1: Router architecture designs for routing algorithms.

the flit competes for a switch (SA phase) if the next hop can accept
the flit, and moves to the output port (ST phase).

For existing oblivious routing algorithms such as Dimension Or-
dered Routing (DOR) [8], ROMM [28], Valiant [41], and o1turn
[36], the next hop of a packet can be easily computed at each router
node based on the packet’s destination. Moreover, these algorithms
are fixed and commonly used for all types of applications and traf-
fic patterns. As a result, traditional oblivious routing algorithms are
implemented as dedicated logic in the RC phase of each router. For
these routing algorithms, the RC step is quite simple and the router
frequency is typically dominated by the VA step [34].

2.2 Router Architecture for Application-
Aware Oblivious Routing

The router architecture to enable application-aware oblivious
routing or static virtual channel allocation is almost identical to the
typical virtual-channel router architecture. The router uses the ex-
act datapath that is described above. The main change in our rout-
ing architecture is in its routing module, which is summarized in
Table 1, where BSOR and BSORM correspond to the algorithms
of Section 4 and 5, respectively. For simple oblivious routing al-
gorithms such as DOR, the baseline architecture implements the
algorithm with fixed logic and dynamically allocates virtual chan-
nels to a packet. To support our routing scheme with any algorithm
variant, our routing module needs table-based routing so that routes
can be configured for each application (cf. Section 2.2.1). This sin-
gle change is sufficient because our routing algorithms ensure that
there is no cyclic dependence in routes either through route selec-
tion (cf. Section 4) or through static channel allocation (cf. Section
5). We next discuss the details of the modification.

2.2.1 Programmable Routing
Our routing technique determines the routes for each flow based

on an application’s bandwidth requirements as well as its source
and destination nodes. Additionally, to maximize the throughput,
our routing algorithms can utilize any path from the source to the
destination; routes may be either minimal or non-minimal. There-
fore, the router must be programmable so that the routes for each
flow can be configured depending on the application, and be flexible
enough to support arbitrary routing paths.

In order to provide programmability and flexibility, our router
uses table-based routing where the path between a pair of nodes
is stored in a routing table. Unlike cases where a simple routing
algorithm is hardwired with fixed logic (algorithmic routing), the
routing table can be simply re-programmed with new routes before
an execution of a new application in order to update the routing.
The table-based approach also allows our routing algorithm to se-
lect almost any path from a source to a destination as long as the
route can fit into the table.

Table-based routing can be realized in two different ways: source
routing and node-table routing, and our routing technique can also
be implemented in both styles. In the source routing approach,
each node has a routing table that contains a route from itself to
each destination node in the network. The routes are pre-computed
by our routing algorithms and programmed into the tables before
the execution of an application. When sending a packet, the node
prepends this routing information to the packet. Routers along the

209

(b) Node-table routing

RC

packet

(a) Source routing

A B

C

out index
0 N 3
1 E 2
2 W 5
… … …

out index
0 E 1
1 S 6
2 N 0
… … …

out index
0 N 3
1 E 5
2 W 1
… … …

1 2

0
1

A B

C

packet

… N N E

B

… N N

N

…

RC

RC

Figure 2: The table-based routing architecture. (a) Source
routing. (b) Node-table routing.

path can determine the output port simply by looking up the routing
flits. Figure 2(a) illustrates source routing where a packet is routed
through node A, B, and C. The route corresponds to East, North,
and North, which is reflected in the routing flits in the packet.

The source routing approach simplifies the router design because
the routing phase (RC step) in the router now only needs to read
the output port from the flit without any computation. Effectively,
source routing eliminates the routing step in the router and can po-
tentially reduce the number of pipeline stages, or clock period in
case of an unpipelined router. In fact, thanks to its speed and sim-
plicity, source routing has been widely used in many router designs
including the IBM SP1 [39] and SP2 [38] and the Avici TSR [7].
On the other hand, source routing results in longer packets contain-
ing routing flits as compared to the case where the route is com-
puted for each hop.

Instead of carrying the entire route with every packet, the nodes
along the path can be programmed with routing information for rel-
evant flows. In this node-table routing approach, the routing mod-
ule of a node contains a routing table that has the output port for
each flow that is routed through the node. To determine which ta-
ble entry corresponds to each packet, the packet carries an index
field for the current node and the routing table provides the new
index for the next hop. To set up the route, our routing algorithm
computes a route for each flow and configures the routing tables ac-
cordingly. Upon receiving a packet, a router reads its routing table
to determine the proper output port and forwards the packet with
the new index field from the table.

Figure 2(b) shows an example of node-table routing when a
packet is routed through the same path with the source routing ex-
ample. As shown in the figure, the incoming packet to node A con-
tains the table index of 1. To route this packet to B (East), the entry
(1) in A’s routing table is set as (East, 2), indicating that the packet
should be routed to East with the new index of 2. In the same way,
the packet looks up the second entry in node B for routing.

The router architecture for node-table routing replaces the fixed
logic in the RC phase of the baseline router with a table look-up.
While the table look-up can take longer than evaluating the rout-
ing logic for simple deterministic routing such as DOR, it will not
change how fast a router can operate because the router’s clock fre-
quency is most often dominated by other routing phases or external
factors such as a processor’s frequency. A previous study shows
that the latency of a pipelined virtual-channel router is dominated
by virtual-channel allocation, which takes 15-20 FO4 [34]. Even
if we conservatively assume that each routing table has 256 entries
(256 flows), the table only takes a couple of KB; an entry needs 2
bits to represent the output port in a 2-D mesh and 8 bits for the
next table index (256 entries). Therefore, a routing table will be

easily accessible within a single cycle without impacting the clock
frequency.

In practice, both table-based routing techniques place a restric-
tion on the maximum number of flows that can be supported de-
pending on the size of a routing table. In source routing, flows
with an identical source-destination pair will have to share the same
route unless the routing table has multiple entries for each destina-
tion. Similarly, in node-table routing, the size of each routing table
limits the number of flows that can be routed through a node. Our
routing algorithm can include restrictions enforced by the router
hardware.

We have described two routing module designs, namely source
routing and node-table routing, that can support bandwidth-
sensitive oblivious routing. Both routing methods are widely
known and have been implemented in multiple routers [39, 38, 7,
13]. In other words, the proposed routing approach can be real-
ized with standard routing hardware without new specialized mech-
anisms. Also, our routing approach will not have noticeable impact
on the latency or the organization of the router pipeline.

2.3 Static Virtual-Channel Allocation
If the routing algorithm statically allocates a virtual channel to

each flow, the VC allocation step of the baseline router can be sim-
plified. In this case, instead of dynamically allocating virtual chan-
nels using arbiters, the routing algorithm specifies a virtual channel
at each link along the path for a flow. Then, the router can obtain
the static allocation in the same way that it obtains the static route
for the packet. In the source routing approach, a packet carries its
virtual channel number for each hop along with its route. In the
node-table routing approach, an entry in the routing table is aug-
mented to have the virtual channel number for the flow. Therefore,
the router can obtain both the output port and the next VC number
at the end of the routing (RC) phase. Now, the primary complexity
in the VA phase is in the arbitration amongst packets; two or more
packets may request the same virtual channel simultaneously, and
arbitration is required to determine which packet will be transferred
first. This requires P · V to 1 arbitration for each virtual channel
where packets from P physical channels with V virtual channels
each vie for the same virtual channel. On the other hand, dynamic
allocation requires P · V to V arbitration. A previous study indi-
cates that the P · V to 1 arbitration is about 20% faster than P · V
to V arbitration (11.0 FO4 vs. 13.3 FO4 with 8 VCs) [34].

Static allocation can potentially result in worse utilization of
available virtual channels because it does not consider dynamic be-
havior. For example, statically allocating VC0 to flow A and VC1
to flow B may not be efficient when, for example, flow A is idle,
because then different packets in flow B can potentially use both
virtual channels. On the other hand, static allocation may enhance
throughput through the separation or isolation of flows.

When virtual channels are dynamically allocated, we require the
set of routes to conform to an acyclic CDG, which, for example,
could correspond to a turn model [15] (cf. Section 3 and 4). Static
allocation enables a routing algorithm to potentially choose a dif-
ferent set of routes compared to the dynamic allocation case by
separating flows (cf. Section 5.3).

3. DEADLOCK-FREE ROUTING

3.1 Definitions and Framework
We first give standard definitions of flow networks and channel

dependence graphs.

210

DEFINITION 1. Given a flow graph G(V, E), where an edge
(u, v) ∈ E has capacity c(u, v). The capacities c(u, v) are the
available bandwidths on the edge. There is a set of k data transfers
or flows K = {K1, K2, . . . , Kk}. Ki = (si, ti, di), where si

and ti are the source and sink, respectively, for connection i, and
di is the demand. We assume si 6= ti. We may have multiple flows
with the same source and destination. The flow variable i along
edge (u, v) is fi(u, v). A route is a path pi from si to ti for a flow
i. Edges along this path will have fi(u, v) > 0, other edges will
have fi(u, v) = 0.

If fi(u, v) > 0, then route pi will use both bandwidth and buffer
space on the edge (u, v). The value of fi(u, v) indicates how much
of the edge’s bandwidth is being used by flow i. We will assume
flit-buffer flow control in this paper, though our framework can be
applied to other flow control schemes as well.

DEFINITION 2. A channel dependence graph (CDG)
D(V ′, E′) is derived from the flow network G as follows.
Each vertex in V ′ is an edge in G. There is an edge from v1 ∈ V ′

to v2 ∈ V ′ if a packet can flow from the edge in G associated with
v1 into the edge associated with v2, without traversing any other
edges. That is, the edges are consecutive in G.

Figure 3 shows a bi-directional 3 × 3 mesh and its associated
CDG. BC and CB are edges in opposite directions from B to C and
C to B, respectively. They correspond to separate vertices in the
CDG. Note that the CDG has cycles.

Application-aware oblivious routing follows the framework of
Figure 4.

FRAMEWORK(Flows Transfers K)
1. Create (new) acyclic CDG DA by deleting some edges from D.
2. Transform DA into a flow network GA, with flows K.
3. Perform application-aware routing of flows in GA.
4. If desired, go to Step 1.
5. Select the best set of routes found.

Figure 4: Offline Application-Aware Oblivious Routing Frame-
work

3.2 Creating Acyclic Channel Dependence
Graphs

We need to ensure that the routes selected are deadlock-free, and
this is done by creating an acyclic CDG DA (Step 1), deriving a
flow network GA (Step 2) and generating routes by selecting paths
on GA (Step 3). We can explore different acyclic CDG’s by delet-
ing different edges from the cyclic CDG to create different DA’s
(Step 4). The best set of routes according to our cost function is
chosen (Step 5).

Our framework assumes that the underlying network has been
made deadlock-free. For example, a torus is made deadlock-free
by applying dateline classes to each dimension [9]. Nothing needs
to be done for other networks, such as meshes.

Assuming a single virtual channel per link, if packets follow
routes that conform to an acyclic channel dependence graph, then
network deadlock will not occur [8]. This is also a necessary condi-
tion provided false resource dependences do not exist [35]. There-
fore, we have to restrict routing by breaking all the cycles in the
CDG D associated with the network. This can be done in many
ways; the turn model [15] provides a few systematic ways. While
the turn model was developed to enable adaptive routing, we use
it to choose routes in an offline fashion for oblivious routing. For
example, for the 3 × 3 mesh, using the North-Last model to break

cycles implies removing the dotted edges in Figure 3(b), and pro-
duces the acyclic CDG of Figure 5(a). Cycles can also be broken
in an ad hoc or random fashion as shown in Figure 5(b). Typi-
cally, a larger number of dependences need to be removed to ob-
tain an acyclic CDG but after route selection under this type of
CDG, we may obtain a better result. We can use any acyclic CDG
to drive an application-aware oblivious routing algorithm. Given
that different CDG’s may result in different qualities of routes, we
can perform route selection under many different CDG’s and select
the best result. To generate deadlock-free routes that conform to
a given acyclic CDG, a flow network is derived from the CDG, as
described next.

3.3 Deriving a Flow Graph from an Acyclic
CDG

Given source and destination network nodes si and ti respec-
tively, for each flow i, we derive a flow graph or network GA from
an acyclic CDG DA. We can then run our route selection algorithm
on GA, to find the “best” routes for the flows (cf. Section 4). This
will have the effect of running route selection on the original flow
network G corresponding to the interconnection network, but with
the route conforming to DA. If the routes for all flows conform to
DA, deadlock freedom is assured.

GA is derived from DA as follows. DA is copied over to GA.
We add “dummy” vertices to GA corresponding to si and ti, for
each i. We add edges from si to all vertices in GA that have si

as the source node of the corresponding link. For example, if si is
network node A in the 3×3 mesh shown in Figure 3(a), then edges
are added from si to AB and AF . For each vertex in GA that has
ti as the destination node of the corresponding link, we add an edge
from the vertex to ti. For example, if ti is network node I in the
3 × 3 mesh shown in Figure 3(a), then edges are added from FL
to ti and from HL to ti. These dummy vertices are primarily for
convenience and are not necessary. They avoid having to find the
best route from multiple vertices in GA to one of several possible
destination vertices. In our example, we want to find the best route
in GA starting with either AB or AF and ending at either FL or
HL.

Figure 5(c) shows a flow network derived from the acyclic CDG
of Figure 5(b), given source-destination pairs A, L and E, G.

4. BANDWIDTH-SENSITIVE OBLIVIOUS
ROUTING (BSOR) ALGORITHMS

It is widely known that a linear programming formulation can
determine a lower bound on the maximum channel load [9, 40].
However, the routes given by linear programming may not be re-
alizable on standard routers since a packet flow may need be split
across multiple paths to achieve the maximum throughput. Fur-
ther, these routes may result in deadlock under a single virtual
channel. A routing in which each commodity flows along a single
path is called an unsplittable flow. Unfortunately, the unsplittable
flow problem is NP-hard even for single sources [22], requiring
the use of approximation algorithms or heuristics for large prob-
lems. Mixed integer-linear programming (MILP) can produce an
optimal result either minimizing maximum channel load, or max-
imizing throughput, for problems of small size (cf. Section 4.1).
We will use Dijkstra’s weighted shortest-path algorithm [6] in Step
3 of Figure 4 to heuristically select good routes for large problems
(cf. Section 4.2).

211

(a)

LH

HG

HE

LF FE

FA
GD

HL

ED
EF

EB

GH

DE

DC

EH

FL
AB

DG

BC

BACB

BE AF

CD

(b)

Figure 3: (a) 3× 3 mesh (b) Channel Dependence Graph without 180◦ turns.

LH

HG

HE

GD

EDEF EB

LF

FE

FA

EH

AB

DE

DC

HL

DGFL

BCBA

GH

CB

BE

CDAF

(a)

LH

HG

HE

GD

EF

EB

LF

FE

DEHL

FL

BCBA

GH

FA

AB

BE

ED

DG

EH

DC

CB

AF

CD

(b)

LH

HG

HE

GD

EF

EB

LF

FE

DG

GH

DE HL

FL

BCBA

FA

AB

BE

ED EH

DC

CB

AF

CD

s
2

s
1

d
2

d
1

(c)

Figure 5: (a) North-Last Routing CDG without 180◦ turns: 32 edges removed. (b) Ad Hoc CDG without 180◦ turns: 36 edges
removed. (c) Flow network from acyclic CDG of (b) with source-destination pairs A, L and E, G.

4.1 Mixed Integer-Linear Programming
The capacity of an edge in GA is the capacity of the link/vertex

that the edge is incident on. For example, the edge from si to AB
will be assigned the capacity of link/vertex AB. An edge from AB
to BC will be assigned the capacity associated with link/vertex BC.
Edges into destination nodes di have infinite capacity.

DEFINITION 3. Assume the specification of Definition 1. Find
an assignment of flow in GA, i.e., ∀i, ∀(u, v) ∈ E fi(u, v) ≥ 0,
which satisfies the constraints:
Capacity :

∀(u, v) ∈ E h(u, v) =

kX
i=1

fi(u, v) ≤ c(u, v)

Flow conservation :
∀i, ∀u 6= si, ti

X
(w,u)∈E

fi(w, u) =
X

(u,w)∈E

fi(u, w)

∀i
X

(si,w)∈E

fi(si, w) =
X

(w,ti)∈E

fi(w, ti) = gi

Unsplittable flow :

∀i, ∀(u, v) ∈ E fi(u, v) ≤ bi(u, v) · di

∀i, ∀u
X

(u,v)∈E

bi(u, v) ≤ 1

Hop Count :

∀i
X

(u,v)∈E

bi(u, v) ≤ hopi

and maximizes the total throughput, given as

maximize S =

kX
i=1

gi (1)

or maximizes the minimal fraction of the flow of each commodity to
its demand:

maximize T = min
1≤i≤k

gi

di
(2)

or minimizes the maximum channel load:

minimize U = max
(u,v)∈E

h(u, v) (3)

The variables bi(u, v) are Boolean variables, i.e., they can take on
values of 0 or 1 only. They enforce the restriction that a flow i
can only take a single path from source si to destination ti. They
also enforce path length restrictions. hopi is a specified constant

212

that can be set to be equal to the minimal path length between si

and ti. This will imply that only minimal paths will be considered.
hopi should be incremented by 2 or more to allow for non-minimal
routing. The fi(u, v) variables can take on any positive value less
than or equal to the demand di.

There are several interesting cost functions. If the flows are
uncorrelated as in synthetic benchmarks, we can maximize total
throughput given by

Pk
i=1 gi. In most applications, flows are cor-

related, i.e., throttling one flow will affect the throughput demand
of another. In this case, one possibility is to maximize the minimum
fraction of flow demand satisfaction min1≤i≤k

gi
di

as in Eqn. 2. We
focus on finding the minimum maximum channel load (MCL) as in
Eqn. 3 because this can be done regardless of network capacity,
and only knowing the relative demands of flows. The capacity con-
straints are dropped; instead, we set gi = di, for all flows i. The
MILP is run once for each acyclic CDG.

We note that our MILP formulation is over the CDG GA rather
than the original network G. This ensures deadlock freedom with
a single virtual channel unlike schemes that formulate linear pro-
grams over G (e.g., [26]).

4.2 Weighted Shortest-Path-Based Algorithm
We select a route for each flow that heuristically minimizes the

number of congested links using Dijkstra’s weighted shortest-path
algorithm. The flows are ordered in terms of decreasing bandwidth
demand.

We run Dijkstra on a weighted version of GA, deriving the
weights from the residual capacities of each link/vertex. Consider
a link e in the original network G (e.g., AB) which is a vertex in
GA. This link has a capacity c(e). We create a variable for each
link c̃(e) which is the current residual capacity of link e. Initially,
it is equal to the capacity c(e), and is set to be a constant C. If a
flow i is routed through this link e, we will subtract the demand di

from the residual capacity. Residual capacity is always checked to
see whether it is enough to supply the demand for the flow during
routing. If there is not enough capacity, then the algorithm never
chooses the link. Therefore, the residual capacity c̃(e) will never
be negative.

For the weighting function, we use the reciprocal of the link
residual capacity which is similar to the CSPF metric described by
Walkowiak [42]. The weighting function w(e) = 1

c̃(e)−di
, except

if c̃(e) ≤ di, then w(e) = ∞, and the algorithm never chooses
the link. The constant C is set to be the smallest number that can
provide us with routes for all flows without using∞-weight links.
The maximum channel load (MCL) from XY or YX routing gives
us an upper bound for C, but in most cases, we can set C lower
and still find a solution. The MILP gives us a lower bound for C.
A lower C makes the algorithm more aggressively avoid congested
links due to their higher weight.

The algorithm as described above assumes weights on the edges
in GA; however, the links of G which have capacities become ver-
tices in GA. As with the capacity, the weight of an edge in GA is
merely the weight of the link/vertex that the edge is incident on.
The edges incident on ti are always assigned a weight of 0 (they
had infinite capacities in the MILP). Figure 5(c) showed a flow net-
work derived from the acyclic CDG of Figure 5(b). Weights are
assigned to the edges (not shown), and we run Dijkstra’s algorithm
on the weighted GA to find a minimum-weight path from A to L, or
in general from an si to a ti. Then, the weights are updated, and a
new source-destination pair is selected to be routed. This continues
until all flows are routed.

We run the same procedure for all acyclic CDGs. For each CDG,
we reduce C from the XY MCL to the MILP MCL or until we can-

not obtain a set of routes, storing the routes obtained for each value
of C. We pick the set of routes with lowest MCL amongst all the
computed routes, across all CDGs. We also compute the conges-
tion corresponding to the product of the average excess bandwidth
demand over all links times the average number of flows competing
for each link, and use the congestion as a tiebreaker when two sets
of routes have the same MCL.

4.3 Multiple Virtual Channels
In modern routers, there are many virtual channels per link.

Many virtual channel routers dynamically allocate virtual channels
to packets in flows. As in the single channel case, cycles in the
CDG imply that the network might deadlock. It is possible to have
cycles in the CDG if an escape path is provided [11, 12]; this im-
plies adaptive routing and we do not consider that in this paper.
Therefore, our routing strategy remains unchanged for dynamic al-
location of virtual channels; we guarantee routes that conform to
an acyclic CDG. However, if we can statically allocate channels to
flows, we can choose a more diverse set of routes, as we describe
in the next section.

5. STATIC VIRTUAL CHANNEL
ALLOCATION

We assume the router design described in Section 2 and that
static allocation of virtual channels is supported as described in
Section 2.3. We show how deadlock freedom can be assured
through static virtual channel allocation subsequent to route selec-
tion. The material in this section first appeared in [37].

5.1 Turn Model

(a) (b)

Figure 6: (a) Turns allowed (solid) and disallowed (dotted) un-
der the West-First turn model (b) Turns allowed and disallowed
under the North-Last turn model.

The turn model [15] is a systematic way of generating deadlock-
free routes, as mentioned earlier. Figure 6 shows two different turn
models that can be used in a 2-dimensional mesh. Each model
disallows two out of eight turns. If a set of routes conform to one of
the turn models, then deadlock freedom is assured with any number
of virtual channels, and we use that in our framework of Section 3.
The third turn model Negative-First is not shown.1

5.2 Deadlock-Free Minimal Routing with 2
virtual channels

We now show how any set of minimal routes produced using
any routing method can be made deadlock-free through appropri-
ate static virtual channel allocation. Our argument for deadlock
freedom invokes the turn models of Figure 6. An arbitrary set of
minimal routes may cause deadlock, since they do not necessarily
conform to a particular acyclic CDG or turn model. However, if
the number of available virtual channels is ≥ 2 we can perform a

1We have ignored the Negative-First turn model because it does
not induce a flow partition (and a resultant channel allocation strat-
egy) in combination with either of the other two turn models (cf.
Theorem 1). This is true even when rotations are used.

213

static virtual channel assignment that ensures deadlock freedom by
partitioning the flows across 2 (or more) virtual channels.

1. 2. 3. 4.

5. 6. 7. 8.

(a) (b)

Figure 7: (a) The eight different two-turn minimal routes on
a 2-dimensional mesh. (b) The four (out of a possible eight)
different one-turn routes on a 2-dimensional mesh that conform
to both the West-First and North-Last turn model.

THEOREM 1. Given a router with ≥ 2 virtual channels, and
an arbitrary set of routes over an n × n mesh, where each route
is minimal, it is possible to statically allocate virtual channels to
each flow to ensure deadlock freedom.

Proof: Without loss of generality consider the case of 2 virtual
channels. Figure 7(a) shows the eight possible minimal routes that
use two different turns each. Of course, minimal routes that use a
single turn or having no turns may also be included in the given
arbitrary set of routes, but these can be ignored as special cases of
the two-turn routes for the subsequent analysis. Looking at Figure
6, it is easy to see that minimal routes 3, 4, 5 and 8 conform to the
West-First turn model (but violate the North-Last model as illus-
trated by the boxes on the violating turns), and minimal routes 1,
2, 6 and 7 conform to the North-Last turn model (but violate the
West-First turn model as indicated by the circles on the violating
turns). Therefore, given an arbitrary set of routes, we can partition
the routes into two sets: the first set conforms to the West-First turn
model, and the second to the North-Last turn model. Note that the
four one-turn minimal routes shown in Figure 7(b) can be placed
in either set, as can routes with zero turns. The four other one-turn
routes (not shown) will be forced to one of the sets. If we assign
virtual channel 1 to the first set and virtual channel 0 to the second
set, we are assured freedom from deadlock. 2

The proof of Theorem 1 points us toward a static virtual chan-
nel allocation strategy. We derive minimal routes using an MILP
strategy or using a Dijkstra-based algorithm as we will describe in
Section 5.3. Given a route for each flow, we create three sets of
flows:

1. Flows with two-turn and single-turn routes that conform to
the West-First turn model,

2. Flows with two-turn and single-turn routes that conform to
the North-Last turn model, and

3. Flows with single-turn or no-turn routes that conform to both.

We simply assign the flows in the third set to either of the first
two sets, appropriately balancing the bandwidths and number of
flows across the two sets. For each flow in the third set,

1. the flow is assigned to the set which has fewer flows that
share links with the flow; however,

2. if the number of flows that share links with the given flow is
same for both sets, the flow is assigned to the set with fewer
flows.

We will not describe the allocation strategy for more than 2 vir-
tual channels; it is described in [37]. Our experiments in this paper
primarily focus on 1 and 2 virtual channels.

5.3 Bandwidth-Sensitive Oblivious Routing
with Minimal Routes (BSORM)

The BSORM scheme works directly on the flow graph G(V, E)
corresponding to the network, not the flow network GA derived
from an acyclic CDG DA as do the BSOR algorithms of Section 4.
We do not need to constrain the routes in BSORM to conform to an
acyclic CDG, but we require them to be minimal.

In the MILP formulation of Section 4.1, the hop count con-
straints are appropriately set to only allow minimal routing. Note
that the MILP is formulated over G and not GA.

In the Dijkstra formulation, we select a minimal route for each
flow that heuristically minimizes the maximum channel load using
Dijkstra’s weighted shortest-path algorithm in a similar manner to
Section 4.2. We elaborate below.

We run Dijkstra on a weighted version of G, deriving the weights
from the residual capacities of each link as before. Dijkstra finds a
minimum-weight path for a chosen flow i from an si to a ti. The
algorithm we use also keeps track of the number of hops and finds
the minimum-weight path with minimum hop count. (Given our
weight function, it is possible that the smallest weight path is non-
minimal, but the algorithm will not generate such a path.) We check
to see if the minimum-weight path can be replaced by one of the
XY/YX routes of Figure 7(b). This replacement is made only if the
XY/YX routes have minimum weight. This is done to minimize the
number of turns in the selected routes and to give greater freedom
to the flow partitioning step. Then, the weights are updated, and a
new flow is selected to be routed. This continues until all flows are
routed.

6. RELATED WORK

6.1 Routing and Bandwidth Allocation
A basic deterministic routing method is dimension-ordered rout-

ing (DOR) [8] which becomes XY routing in a 2-D mesh. Neces-
sary and sufficient conditions for deadlock-free deterministic rout-
ing were given in [8] assuming no false resource dependences. We
use this condition to determine if a set of routes is deadlock-free in
our oblivious routing scheme.

ROMM [28] and Valiant [41] are classic oblivious routing al-
gorithms, which are randomized in order to achieve better load
distribution. In o1turn [36], Seo et al show that simply balanc-
ing traffic between XY and YX routing can guarantee provable
worst-case throughput. A weighted ordered toggle (WOT) algo-
rithm that assumes 2 or more virtual channels [14] assigns XY and
YX routes to source-destination pairs in a way that reduces the
maximum network load for a given traffic pattern. The previous
oblivious routing algorithms are either indifferent to the traffic pat-
tern (DOR, ROMM, Valiant, o1turn) or limited to simple minimal
paths (WOT). Here, we are concerned with optimizing throughput
for specific applications utilizing both minimal and non-minimal
paths. We compare our scheme to several oblivious algorithms in
Section 7.

Classic adaptive routing schemes include the turn routing meth-
ods [15] and odd even routing [3]. In [19] a scheme that switches
between deterministic and adaptive modes depending on the appli-
cation is presented, where local FIFO information is used to adapt
routes. Duato (e.g., [11, 12]) gives necessary and sufficient condi-
tions for adaptive routing in wormhole networks. While our algo-
rithms are not adaptive, as described in Section 4, we use the turn

214

model to derive an acyclic channel dependence graph that drives
our oblivious routing scheme. However, our scheme additionally
allows ad hoc derivation of acyclic dependence graphs.

There has been significant effort in designing and utilizing
Network-on-Chip (NoC) interconnect; see [1] for a recent survey.
Many works on mapping of applications onto NoC architectures
have considered the routing problem during the NoC design phase
(e.g., [18], [27], [17]). Our framework is significantly different
from these works in its iterative use of shortest path algorithms on
channel dependence graphs as opposed to the original network to
avoid deadlock, and its applicability to standard router architec-
tures. The NoC networks are designed and built for specific appli-
cations.

Given an application, a heuristic method to improve initial routes
obtained using dimension-order routing is presented in [43]. This
method maintains deadlock freedom by checking to see if re-
routing introduces cycles. Palesi et al [31, 32] provide a framework
and algorithms for application-specific bandwidth-aware deadlock-
free adaptive routing. Given a set of source-destination pairs, cy-
cles are broken in the CDG to minimize the impact on the average
degree of adaptiveness. Bandwidth requirements are taken into ac-
count to spread traffic uniformly through the network. Towles et al
[40] give a multicommodity flow linear programming formulation
for router algorithm design. When the linear program is optimized,
deterministic algorithms that are worst case or average case optimal
fall out as solutions. The routes generated can correspond to split
flows. In our oblivious routing schemes, given any application, we
break cycles in many different ways using the turn model or ad hoc
schemes, perform bandwidth-sensitive route selection on modified
acyclic CDGs, and select the routes (and associated acyclic CDG)
that best satisfy bandwidth constraints.

Cho et al describe bandwidth-aware routing for diastolic arrays
[4] and avoid deadlock by assuming that each flow has its own pri-
vate channel. Our approach is more general in that it can be used
even in the case of a single virtual channel.

6.2 Virtual Channels and Router Design
Dally’s virtual channels [10] allocate buffer space for virtual

channels in a decoupled way from bandwidth allocation. iWarp
[16] implemented virtual channels across single links. Many de-
signs of virtual channel routers have been proposed (e.g., [25], [2],
[21], [30]). Recently, express virtual channels have been proposed
which skip routers along multiple-hop paths to enhance perfor-
mance in a dynamic routing scheme [23]. Support for multicast
channels has been proposed [20]. Our virtual channel router de-
sign is fairly standard (cf. Section 2). however, in one realization,
virtual channels are allocated to flows statically, rather than dynam-
ically.

6.3 Network Reconfiguration and Adaptivity
In this paper, we assume that the network is reconfigured prior to

running the application. It is possible to integrate dynamic recon-
figuration methods (e.g., [24], [33]) into the network architecture at
the cost of increased hardware complexity. The new routes should
satisfy deadlock freedom properties.

7. RESULTS AND COMPARISONS
This section evaluates the performance of our heuristic

bandwidth-sensitive oblivious routing algorithms BSOR and
BSORM. Through simulation experiments, we compare our rout-
ing scheme with dimension-order routing (DOR), and with routing
schemes such as ROMM [28], and Valiant [41].

Traffic XY YX ROMM Valiant BSOR BSORM
transpose 175 175 200 175 75* 75*
bit-comp 100 100 400 200 100* 125
shuffle 100 100 150 200 75* 75*
H.264 214 365 336 352 124 174

Table 2: Comparison of Maximum Channel Load (MCL) in
MB/second presented by various routing algorithms.

7.1 Benchmarks
We use a set of standard synthetic traffic patterns, namely trans-

pose, bit-complement, and shuffle, in our experiments, as well
as an application benchmark corresponding to H.264 decoding,
which has significantly different bandwidth demands for flows. The
synthetic patterns provide basic comparisons between our routing
scheme and other oblivious algorithms as they are widely used to
evaluate routing algorithms. In the synthetic benchmarks, all flows
have the same average bandwidth demands. H.264 is a set of flows
that correspond to the traffic pattern of an H.264 decoder, with the
bandwidths of the flows derived through profiling.

7.2 Results for Maximum Channel Load
We first present results on the maximum channel loads (MCL’s)

of various routes in Table 2.
For BSOR, we used flow networks GA’s corresponding to 12

different acyclic CDGs DA’s; there are three different turn models,
North-Last, West-First and Negative-First, each with 4 rotations.
We disallow 180◦ turns. For each benchmark, a single route cor-
responding to the lowest MCL and congestion (cf. Section 4.2)
was chosen and simulated; this route’s MCL is reported in Table
2 where a * indicates that the value is minimum as determined by
the MILP on GA. For BSORM, we use the original flow network
G and the Dijkstra algorithm of Section 5.3. BSORM is run 4
times; once for each rotation of the route set of Figure 7(b). The
only difference in these runs is that once a minimum-weight path
is obtained for a flow, we check to see if it can be replaced by an
equivalent minimum-weight single-turn path in the (rotated) set.
We choose a single routing for each benchmark, corresponding to
the smallest MCL across the 4 runs. Again, a * value indicates that
the value is minimum as determined by the MILP on G with min-
imum hop constraints. Route selection requires on the order of a
minute for these benchmarks.

7.3 Simulator Details
A cycle-accurate network simulator is used to estimate the

throughput of each flow in the application for various oblivious
routing algorithms. The simulator models the router microarchi-
tecture from Section 2.1. As discussed in Section 2, our routing
scheme only requires minor changes in the router microarchitec-
ture. Therefore, we assume an identical clock frequency for all
routing algorithms. We use an 8×8 2-D mesh network with 1, 2, 4
or 8 virtual channels per port. The simulator is configured to have
a per-hop latency of 1 cycle, and the flit buffer size per VC of 16
flits. For each simulation, the network was warmed up for 20,000
cycles and then simulated for 100,000 cycles to collect statistics,
which was enough for convergence.

7.4 Single Virtual Channel
Figure 8 compares the BSOR Dijkstra algorithm to XY and YX

for the four benchmarks. Varying the injection rate implies that the
bandwidth demands change in absolute terms, but not in relative
terms. Our algorithm outperforms existing oblivious routing algo-

215

0 2 4 6 8 10 12

1

1.5

2

2.5

3

3.5

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Transpose 1VC

XY
YX
BSOR

(a)

0 2 4 6 8 10 12
0.6

0.8

1

1.2

1.4

1.6

1.8

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Bitcomp 1VC

XY
YX
BSOR

(b)

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Shuffle 1VC

XY
YX
BSOR

(c)

0 5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

H264 1VC

XY
YX
BSOR

(d)

Figure 8: Load-throughput graphs for benchmarks on a router with 1 virtual channel. Each graph shows the saturation throughput
for various oblivious routing algorithms. (a) transpose. (b) bit-complement. (c) shuffle. (d) H.264.

rithms in transpose and shuffle. For these benchmarks, there are
multiple routes with the same minimal MCL. We employ the con-
gestion metric of Section 4.2 as a tiebreaker to select a set of routes
for each benchmark. XY-ordered and YX-ordered routes are ideal
for the perfect symmetry in the bit-complement benchmark; BSOR
converges to the same routes as in YX routing.

In H.264, the BSOR algorithm performs better than DOR routes
under moderate traffic load. Its load-balancing properties help to
prevent bandwidth demands, assigned to a link, from reaching link
capacity prematurely while large portions of the network remain
unused or underutilized. However, when network capacity is too
small the throughput can show instability if the routes have many
flows going through one or more links. This is because, when vir-
tual channels are dynamically allocated, flow arbitration can be un-
fair and one flow may block other flows on its path. Unfairness
causes greater performance degradation when more flows converge
at nodes. The bandwidth demands of the flows are largely irrelevant
when network capacity is very small. Therefore, the throughput of
BSOR routes becomes lower than XY and YX routes when lots of

links are congested. If network capacity is highly restricted, we
should instead focus on the number of flows that go through each
link. This corresponds to ignoring bandwidth demands. Figure 9
shows an alternative set of BSOR routes (BSOR2) which has higher
performance than XY and YX routes at high injection rates.

If flow arbitration is fair the throughput of BSOR routes does not
degrade under heavy traffic load. Static allocation of virtual chan-
nels improves fairness of flow arbitration [37], and Figure 10 shows
that the BSOR set of routes with the lowest MCL consistently per-
forms better than other oblivious routing algorithms when virtual
channels are statically allocated. The routes are the same as those
used in Figure 8(d).

Figure 11 shows how performance varies when the bandwidth
demands change both in absolute and relative terms. For the ex-
ample transpose, for the same set of routes as those used in Fig-
ure 8(a), we show results when the bandwidth of each individual
flow changes by ±10% and ±50% in a random fashion. Thus, one
bandwidth demand could be halved from the value that was used to
compute the route, while another’s could increase by 1.5X . BSOR

216

0 5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

H264 1VC (different CDGs)

XY 1VC
YX 1VC
BSOR1 1VC
BSOR2 1VC

Figure 9: Load-throughput graphs for H.264 of BSOR from
different CDGs.

0 5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

H264 8VC Static

XY 8VC
YX 8VC
BSOR 8VC

Figure 10: Load-throughput graphs for H.264 using static VC
allocation (with 8 virtual channels).

continues to outperform the other algorithms since it spreads the
load across the network better.

7.5 Multiple Virtual Channels
We compare BSOR with XY, YX, ROMM and Valiant under

dynamic virtual channel allocation with 2 virtual channels in Fig-
ure 12. Note that ROMM and Valiant need to switch virtual chan-
nels in order to ensure deadlock-freedom. We also compare BSOR
with BSORM. Note that BSORM requires static channel alloca-
tion, though the allocation, for the most part, is forced by the turns
in the routes when there are only two virtual channels available.
The routes produced by BSOR and BSORM are similar; however,
BSORM performs better than BSOR because static allocation mit-
igates head-of-line blocking [37]. BSORM for bit-complement has
a higher MCL than BSOR, and worse performance. The BSORM
heuristic did not produce the minimum MCL YX routing for bit-
complement.

The performance improvement shown, using BSOR or BSORM
routing, over other oblivious routing algorithms, is relatively con-

0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Bandwidth Variation

XY 10%
XY 50%
YX 10%
YX 50%
BSOR 10%
BSOR 50%

Figure 11: Load-throughput graphs for transpose (1 virtual
channel) when bandwidths change by ±10% and ±50% after
route computation.

sistent for virtual channels greater than 2 (not shown). A more de-
tailed comparison of static and dynamic virtual channel allocation
can be found in [37].

8. CONCLUSIONS
We have proposed an offline strategy to compute routes, based

on knowledge of the application’s data transfers, to arrive at an
application-aware oblivious routing framework that does not re-
quire significant modification to standard routers. We have shown
that estimates of the bandwidth demands of an application’s data
transfers can help improve application performance.

In the case of BSOR, a useful next step is a strategy for simulta-
neous acyclic CDG and route selection. We attempted to obtain a
minimum channel load set of routes using the BSORM algorithm,
without placing any restrictions on turns used, but placing restric-
tions on the minimality of the routes. It is worthwhile to investigate
strategies that can eliminate the restriction of minimality, while en-
suring deadlock freedom.

The primary feature of our approach is also its limitation; we
need some knowledge of the application. This does not have to nec-
essarily be bandwidth demands, though we have focused on band-
width in this paper. It could be knowledge of data transfers whose
latency is critical to performance. These transfers can be forced
to have minimal routes. Alternately, we can simply minimize the
maximum number of flows sharing a link without knowing band-
widths.

To handle bursty flows, we have proposed bandwidth-adaptive
networks that contain adaptive bidirectional links and can im-
prove the performance of conventional oblivious routing methods
[5]. Ongoing work includes evaluating BSOR and BSORM on a
bandwidth-adaptive network.

Acknowledgement: We thank Derek Chiou, Joel Emer, Li-
Shiuan Peh, Mieszko Lis, and David Wentzlaff for interesting dis-
cussions throughout the course of this work. We would like to ac-
knowledge the support of Intel Corporation for providing some of
the workstations used in conducting this research.

217

0 2 4 6 8 10 12

1

1.5

2

2.5

3

3.5

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Transpose 2VC

XY
YX
BSOR
ROMM
Valiant
BSORM

(a)

0 2 4 6 8 10 12

0.8

1

1.2

1.4

1.6

1.8

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Bitcomp 2VC

XY
YX
BSOR
ROMM
Valiant
BSORM

(b)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

Shuffle 2VC

XY
YX
BSOR
ROMM
Valiant
BSORM

(c)

0 5 10 15 20 25

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Offered Injection Rate (packets/cycle)

T
ot

al
 T

hr
ou

gh
pu

t (
pa

ck
et

s/
cy

cl
e)

H264 2VC

XY
YX
BSOR
ROMM
Valiant
BSORM

(d)
Figure 12: Load-throughput graphs for benchmarks on a router with 2 virtual channels. Each graph shows the saturation through-
put for various oblivious routing algorithms. (a) transpose. (b) bit-complement. (c) shuffle. (d) H.264.

9. REFERENCES
[1] Tobias Bjerregaard and Shankar Mahadevan. A survey of

research and practices of network-on-chip. ACM Computing
Surveys, 38(1), 2006.

[2] Tobias Bjerregaard and Jens Sparsø. Virtual channel designs
for guaranteeing bandwidth in asynchronous
network-on-chip. In Proceedings of the IEEE Norchip
Conference (NORCHIP 2004). IEEE, 2004.

[3] Ge-Ming Chiu. The odd-even turn model for adaptive
routing. IEEE Trans. Parallel Distrib. Syst., 11(7):729–738,
2000.

[4] M. H. Cho, C-C. Cheng, M. Kinsy, G. E. Suh, and
S. Devadas. Diastolic Arrays: Throughput-Driven
Reconfigurable Computing. In Proceedings of the Int’l
Conference on Computer-Aided Design, November 2008.

[5] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and
S. Devadas. Oblivious routing in on-chip bandwidth-adaptive
networks. Technical Report CSAIL-TR-2009-011
(http://hdl.handle.net/1721.1/44958), Massachusetts Institute
of Technology, March 2009.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms. MIT
Press/McGraw-Hill, 2001.

[7] William J. Dally, P. P. Carvey, and L. R. Dennison. The Avici
terabit switch/router. In Proceedings of the Symposium on
Hot Interconnects, pages 41–50, August 1998.

[8] William J. Dally and Charles L. Seitz. Deadlock-Free
Message Routing in Multiprocessor Interconnection
Networks. IEEE Trans. Computers, 36(5):547–553, 1987.

[9] William J. Dally and Brian Towles. Principles and Practices
of Interconnection Networks. Morgan Kaufmann, 2003.

[10] W.J. Dally. Virtual-channel flow control. IEEE Transactions
on Parallel and Distributed Systems, 03(2):194–205, 1992.

[11] José Duato. A new theory of deadlock-free adaptive routing
in wormhole networks. IEEE Trans. Parallel Distrib. Syst.,
4(12):1320–1331, 1993.

[12] José Duato. A necessary and sufficient condition for
deadlock-free adaptive routing in wormhole networks. IEEE
Trans. Parallel Distrib. Syst., 6(10):1055–1067, 1995.

[13] Mike Galles. Scalable pipelined interconnect for distributed
endpoint routing: The SGI SPIDER chip. In Proceedings of

218

the Symposium on Hot Interconnects, pages 141–146,
August 1996.

[14] Roman Gindin, Israel Cidon, and Idit Keidar. NoC-Based
FPGA: Architecture and Routing. In First International
Symposium on Networks-on-Chips (NOCS 2007), pages
253–264, 2007.

[15] Christopher J. Glass and Lionel M. Ni. The turn model for
adaptive routing. J. ACM, 41(5):874–902, 1994.

[16] Thomas Gross and David R. O’Hallaron. iWarp: anatomy of
a parallel computing system. MIT Press, Cambridge, MA,
USA, 1998.

[17] Zvika Guz, Isask’har Walter, Evgeny Bolotin, Israel Cidon,
Ran Ginosar, and Avinoam Kolodny. Efficient link capacity
and qos design for network-on-chip. In DATE ’06:
Proceedings of the conference on Design, automation and
test in Europe, pages 9–14, 2006.

[18] J. Hu and R. Marculescu. Exploiting the Routing Flexibility
for Energy/Performance Aware Mapping of Regular NoC
Architectures. In Proc. Design, Automation and Test in
Europe Conference, 2003.

[19] Jingcao Hu and Radu Marculescu. DyAD: Smart Routing for
Networks on Chip. In Design Automation Conference, June
2004.

[20] Natalie Enright Jerger, Li-Shiuan Peh, and Mikko Lipasti.
Virtual circuit tree multicasting: A case for on-chip hardware
multicast support. In ISCA ’08: Proceedings of the 35th
annual international symposium on Computer architecture,
2008.

[21] N. K. Kavaldjiev, G. J. M. Smit, and P. G. Jansen. A virtual
channel router for on-chip networks. In IEEE Int. SOC Conf.,
Santa Clara, California, pages 289–293. IEEE Computer
Society Press, September 2004.

[22] Jon Michael Kleinberg. Approximation algorithms for
disjoint paths problems. PhD thesis, Massachusetts Institute
of Technology, 1996. Supervisor-Michel X. Goemans.

[23] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha.
Toward ideal on-chip communication using express virtual
channels. IEEE Micro, 28(1):80–90, 2008.

[24] Olav Lysne and José Duato. Fast dynamic reconfiguration in
irregular networks. In ICPP ’00: Proceedings of the
Proceedings of the 2000 International Conference on
Parallel Processing, page 449, 2000.

[25] Robert D. Mullins, Andrew F. West, and Simon W. Moore.
Low-latency virtual-channel routers for on-chip networks. In
Proc. of the 31st Annual Intl. Symp. on Computer
Architecture (ISCA), pages 188–197, 2004.

[26] Srinivasan Murali, David Atienz, Luca Benini, and
Giovanni De Micheli. A Method for Routing Packets Across
Multiple Paths in NoCs with In-Order Delivery and
Fault-Tolerance Gaurantees. VLSI Design, 2007.

[27] Srinivasan Murali and Giovanni De Micheli. Sunmap: a tool
for automatic topology selection and generation for nocs. In
DAC ’04: Proceedings of the 41st annual conference on
Design automation, pages 914–919, 2004.

[28] Ted Nesson and S. Lennart Johnsson. ROMM routing on
mesh and torus networks. In Proc. 7th Annual ACM
Symposium on Parallel Algorithms and Architectures
SPAA’95, pages 275–287, 1995.

[29] Lionel M. Ni and Philip K. McKinley. A survey of wormhole
routing techniques in direct networks. Computer,
26(2):62–76, 1993.

[30] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman
Kim, Narayanan Vijaykrishnan, Mazin S. Yousif, and
Chita R. Das. ViChaR: A dynamic virtual channel regulator
for network-on-chip routers. In Proc. of the 39th Annual Intl.
Symp. on Microarchitecture (MICRO), 2006.

[31] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. A
methodology for design of application specific deadlock-free
routing algorithms for NoC systems. In Proc. Intl. Conf. on
Hardware-Software Codesign and System Synthesis, Seoul,
Korea, October 2006.

[32] M. Palesi, G. Longo, S. Signorino, R. Holsmark, S. Kumar,
and V. Catania. Design of bandwidth aware and congestion
avoiding efficient routing algorithms for networks-on-chip
platforms. Proc. of the ACM/IEEE Int. Symp. on
Networks-on-Chip (NOCS), pages 97–106, 2008.

[33] Li-Shiuan Peh and William J. Dally. Flit-reservation flow
control. In In Proc. of the 6th Int. Symp. on
High-Performance Computer Architecture (HPCA), pages
73–84, January 2000.

[34] Li-Shiuan Peh and William J. Dally. A Delay Model and
Speculative Architecture for Pipelined Routers. In Proc.
International Symposium on High-Performance Computer
Architecture (HPCA), pages 255–266, January 2001.

[35] Loren Schwiebert. Deadlock-free oblivious wormhole
routing with cyclic dependencies. In SPAA ’97: Proceedings
of the ninth annual ACM symposium on Parallel algorithms
and architectures, pages 149–158, 1997.

[36] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and
Mithuna Thottethodi. Near-optimal worst-case throughput
routing for two-dimensional mesh networks. In Proceedings
of the 32nd Annual International Symposium on Computer
Architecture (ISCA 2005), pages 432–443, 2005.

[37] K. S. Shim, M. H. Cho, M. Kinsy, T. Wen, M. Lis, G. E. Suh,
and S. Devadas. Static Virtual Channel Allocation in
Oblivious Routing. In Proceedings of the 3rd ACM/IEEE
International Symposium on Networks-on-Chip, May 2009.

[38] Craig B. Stunkel and Peter H. Hochschild. SP2
high-performance switch architecture. In Proceedings of the
Symposium on Hot Interconnects, pages 115–121, August
1994.

[39] Craig B. Stunkel, Dennis G. Shea, Don G. Grice, Peter H.
Hochschild, and Michael Tsao. The SP1 high-performance
switch. In Proceedings of the Scalable High Performance
Computing Conference, pages 150–157, May 1994.

[40] Brian Towles, William J. Dally, and Stephen Boyd.
Throughput-centric routing algorithm design. In SPAA ’03:
Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pages 200–209, 2003.

[41] L. G. Valiant and G. J. Brebner. Universal schemes for
parallel communication. In STOC ’81: Proceedings of the
thirteenth annual ACM symposium on Theory of computing,
pages 263–277, 1981.

[42] Krzysztof Walkowiak. New algorithms for the unsplittable
flow problem. In ICCSA (2), volume 3981 of Lecture Notes
in Computer Science, pages 1101–1110, 2006.

[43] Xiaoxiong Zhong and Virginia Mary Lo.
Application-specific deadlock free wormhole routing on
multicomputers. In PARLE ’92: Proceedings of the 4th
International PARLE Conference on Parallel Architectures
and Languages Europe, pages 193–208, 1992.

219

