
Adaptive Manycore Architectures for Big Data Computing
Special Session Paper

Janardhan Rao Doppa
School of Electrical Engineering and Computer Science

Washington State University
jana@eecs.wsu.edu

Ryan Gary Kim
Department of Electrical and Computer Engineering

Carnegie Mellon University
rgkim@cmu.edu

Mihailo Isakov and Michel A. Kinsy
Department of Electrical and Computer Engineering

Boston University
mihailo@bu.edu,kinsy@bu.edu

HyoukJun Kwon and Tushar Krishna
School of Electrical and Computer Engineering

Georgia Institute of Technology
hyoukjun@gatech.edu,tushar@ece.gatech.edu

ABSTRACT
This work presents a cross-layer design of an adaptive manycore ar-
chitecture to address the computational needs of emerging big data
applications within the technological constraints of power and reli-
ability. From the circuits end, we present links with reconfigurable
repeaters that allow single-cycle traversals across multiple hops,
creating fast single-cycle paths on demand. At themicroarchitecture
end, we present a router with bi-directional links, unified virtual
channel (VC) structure, and the ability to perform self-monitoring
and self-configuration around faults. We present our vision for
self-aware manycore architectures and argue that machine learning
techniques are very appropriate to efficiently control various config-
urable on-chip resources in order to realize this vision. We provide
concrete learning algorithms for core and NoC reconfiguration; and
dynamic power management to improve the performance, energy-
efficiency, and reliability over static designs to meet the demands
of big data computing. We also discuss future challenges to push
the state-of-the-art on fully adaptive manycore architectures.

CCS CONCEPTS
• Computer systems organization → Interconnection archi-
tectures; Fault-tolerant network topologies; • Hardware → Power
and energy; • Computing methodologies→Machine learning;

KEYWORDS
Adaptive manycore architectures, Big data computing, Interconnect
networks, Power management, Machine learning.
ACM Reference format:
Janardhan Rao Doppa, Ryan Gary Kim, Mihailo Isakov and Michel A. Kinsy,
and HyoukJun Kwon and Tushar Krishna. 2017. Adaptive Manycore Archi-
tectures for Big Data Computing. In Proceedings of NOCS ’17, Seoul, Republic
of Korea, October 19–20, 2017, 8 pages.
https://doi.org/10.1145/3130218.3130236

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4984-0/17/10. . . $15.00
https://doi.org/10.1145/3130218.3130236

1 INTRODUCTION
Computing systems design is at an inflection point today. Emerging
big data applications such as machine learning, graph processing,
image processing, databases, etc. are oftenmassivelymulti-threaded
with extremely high computation demands. This has led to the
emergence of many-core architectures with hundreds to thousands
of cores [1, 4, 7, 9]. On the technology end, however, chips today
are highly power-constrained (due to the end of Dennard voltage
scaling) and face reliability and process variation challenges (due
to sub-nm technology nodes).

To address the performance, energy-efficiency, and reliability
needs of big data computing systems, we envision self-aware many-
core architectures that automatically adapt their behavior to accom-
modate the dynamic needs of applications/users, performance and
energy constraints, and resource availability. This adaptivity can
span all theway from the application (e.g., taskmapping/scheduling)
to the core (e.g., DVFS/power-gating) to the interconnect fabric (e.g.,
DVFS/routing). We argue that machine learning techniques can
be leveraged to reason about and manage the on-chip resources to
achieve the desired performance, energy, and reliability trade-offs.

To achieve this vision, we need (a) a highly adaptive and config-
urable microarchitecture substrate that exposes control knobs to
system software, and (b) machine learning algorithms that enable
the system software to learn how to vary these control knobs to
achieve system-level goals. Together, this can enable manycore
systems to adapt to conditions seen during run-time (e.g., applica-
tion characteristics, process-variations, aging components), while
accommodating dynamic user constraints.

This paper brings together three bodies of work spanning cir-
cuits, microarchitecture, and machine learning algorithms to realize
the vision of adaptive manycore architectures:

• First, in Section 2, we present the microarchitecture of a
highly configurable router called RAIN that provides fine-
grained control of its resources (VC buffers and links) for
efficiency, while providing protection against faults with
mechanisms for self-monitoring and self-configuring to cre-
ate deadlock-free routes around unreliable components of
the chip.

• Second, in Section 3, we present novel link circuits called
SMART that provide fine-grained control of link repeaters, to
enable the creation of single-cycle long-range on-chip links

https://doi.org/10.1145/3130218.3130236
https://doi.org/10.1145/3130218.3130236


NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea J. R. Doppa et al.

on demand. This helps reduce latency. Running SMART links
at lower frequencies also helps reduce energy.

• Finally, in Section 4, we present our vision for self-aware
manycore architectures and argue that machine learning
techniques are very appropriate to efficiently control various
configurable on-chip resources to realize this vision. We
provide concrete algorithms for NoC reconfiguration and
dynamic power management to improve the performance
and energy-efficiency over static designs.

We demonstrate the benefits of these adaptive schemes over base-
line static schemes, making a case for adaptive self-aware manycore
architectures. We also discuss exciting open research problems in
this space in Section 5.

2 CONFIGURABLE ROUTER MICRO
ARCHITECTURE FOR ADAPTIVE
ROUTING

Adaptive manycore systems require on-chip networks that can
dynamically reconfigure themselves to application traffic needs,
e.g., high-bandwidth and user-specified constraints, e.g., hard real-
time. Furthermore, these NoCs should make every effort to avoid
compute resource from becoming disconnected, or deadlocks, due
to defective routers and faulty links.

To this end, we propose RAIN (Resilient Adaptive Intelligent
Network-on-Chip). RAIN makes conventional NoC routers highly
configurable and resilient by augmenting conventional wormhole
routers with four additional features: (1) bidirectional physical links,
(2) a common pool of virtual channels (VCs), (3) a routing cost ta-
ble that keeps track of latencies associated with previous routing
decisions, and (4) an intelligence unit which contains a monitoring
module (Mo) and a reconfiguration module (Re). Figure 1 shows
the RAIN router architecture. RAIN is able to accommodate user-
specified constraints and coordination across traffic paths. We also
develop algorithms for fault resiliency at the on-chip network level
through self-monitoring and self-configuration.

Routing	
Cost	Table

VC	Pool

Bandwidth
Allocatorpressure pressure

direction

Switch 
Allocation

VC 
Allocation

Route
Computation

Crossbar

...VC

...VC

nop

nop

nop
… ……

nop

nop

nop

… ……

Switch 
Allocation

VC 
Allocation

Route
Computation

... ...Input ports
Output ports

...

Crossbar

...VC

...VC

Routing 
Table

Neural Network Module Routing Cost Table
Router
States 

Monitor

w1

wg

lj

ID S Sel N SWED

        

02 A I W inf 4.1 inf 7.6

1

2 3 4

Mo	 Re	

1
2

3 4

1

4

2

3

Figure 1: Resilient Adaptive Intelligent Network-on-Chip
Micro-Architecture

2.1 RAIN Architecture Design Approach
Bidirectional physical links for efficient high-performance
In [16], Cho et al. introduced a bandwidth-adaptive network where
the link bisection bandwidth can adapt to changing network condi-
tions using local state information. The general design approach

for bandwidth-adaptive networks is to merge unidirectional links
between network node pairs into a set of bidirectional links. Each
new bidirectional link can be configured to deliver packets in either
direction. The links can be driven from any one of the nodes con-
nected to it. There are local arbitration logic and tristate buffers to
ensure that two nodes do not simultaneously drive the same wire.
Figure 2 illustrates how the egress buffers’ occupancy rate can be
used to locally arbitrate the link bandwidths. First, there is sensing,
followed by a reconfiguration step.

Bandwidth	Arbiter
pressure pressure

3 1
Bandwidth	Arbiter

pressure pressure
3 1

Figure 2: Local bandwidth arbitration using egress buffer
pressures

The main problem with local decision making in a bidirectional
link router system is the susceptibility to head-of-line-blocking ef-
fects. Figure 3 depicts a 2D-mesh network case using XY dimen-
sional order routing on four flows (A, B, C, and D). Based on the
pressure between nodes (1, 0) and (1, 1), a local decision is made
to allocate three links from (1, 0) to (1, 1). Yet, due to the sharing
of the bandwidth resources among flows A, C and D between (1,
2) and (1, 3), only one third of the allocated bandwidth between (1,
0) and (1, 1) can reach DestinationA. This local greedy approach
can lead to the throttling or starvation of other flows, in this case
flow B.

Destination
A

Destination
C

Source
A

Source
B

Destination
B

Source
C

Source
D

Destination
D

(1,0) (1,1) (1,2) (1,3) (1,4)

(0,2) (0,3)

(1,2)

Figure 3: Illustration of head-of-line effect due to local deci-
sion making.

The RAIN architecture counters the head-of-line-blocking effects
by allowing the coordination of direction changes and the collective
arbitration of multiple links. Figure 4 illustrates the coordinated
scheme. The regional information is used to biased the local deci-
sion to enable complementary effects of the distributed bandwidth
adaptation. It is worth noting that this part of the approach does
not require a separate network. The inter-arbiter communication
logic consists of an additional three bits and can be bundled with
the credit wires of the original bidirectional link architecture. The
RAIN design uses two networks for resiliency.
Unified Virtual Channel Structure
Instead of having a set of virtual channels strictly associated to
a given port as seen in the conventional router, the RAIN router
has a pool of virtual channels that can be shared among the ports.
It follows the unified virtual channel structure approach of the
ViChaR [5] router architecture.With this approach, virtual channels
are not statically partitioned and fixed to input ports, rather they are
communal resources dynamically managed by the reconfiguration
module. This approach prevents a faulty buffer from impacting
any particular port or rendering a port unusable. Furthermore,



Adaptive Manycore Architectures for Big Data Computing NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea

VC	PoolVC	Pool

Bandwidth
Allocatorpressure pressure

direction

Switch 
Allocation

VC 
Allocation

Route
Computation

Crossbar

...VC

...VC

nop

nop

nop

… ……

Switch 
Allocation

VC 
Allocation

Route
Computation

Crossbar

...VC

...VC

nop

nop

nop

… ……VC	Pool

Bandwidth
Allocatorpressure pressure

direction

Switch 
Allocation

VC 
Allocation

Route
Computation

Crossbar

...VC

...VC

nop

nop

nop

… ……

Switch 
Allocation

VC 
Allocation

Route
Computation

Crossbar

...VC

...VC

nop

nop

nop

… ……VC	Pool

Bandwidth
Allocatorpressure pressure

direction

Mo	 Re	 Mo	 Re	 Mo	 Re	

Routing	
Cost	Table

Routing	
Cost	Table

Routing	
Cost	Table

Routing	
Cost	Table

Figure 4: Autonomous globally state aware polymorphism

the unified VC design lends itself extremely well to the use of
the bidirectional links in the architecture. It allows for the link
direction switching to be coupled with buffer space reallocation.
With more available VCs to select from, link direction switching is
more efficient.
Self-monitoring and Self-reconfiguration
The RAIN router monitors its: (1) routing costs of packets, (2) buffer
allocation and utilization, and (3) link and buffer operating states.
First, there is a learning phase where the router collects network
state information, then learns and forecasts communication pat-
terns. Second, there is a monitoring phase to validate the informa-
tion learned in the first phase. In the final phase, routing tables
are updated. The collection of network state information uses an
augmented credit message format. Besides the conventional credit
information (CR), free buffer spaces (FB), header flit arrival time
(AT), route computation latency (RC), virtual channel allocation
latency (VA), and switch allocation latency (SA) information on
downstream routers are sent back [15]. Figure 5 shows the infor-
mation pieces added to the credit message. Instead of sharing the
network link bandwidth with program data, a secondary bufferless
network is created to route the augmented credit messages [29].
This credit network sends two types of messages: one contains the
credit information when the header and the body flits are passing
through the router and the second has the routing state informa-
tion when the tail flit passes through the router. Tables shown in
Figure 5 are stored in the Routing Cost Table. The secondary non-
interfering bufferless network adds extra resiliency to the router. It
guarantees that the network is monitored and state information are
collected when in the presence of main network failures. A router
can identify a faulty buffer, link, or router by examining FB, AT, RC,
VA, and SA collected data against expected values.

ID
02
…
04

ST RC VA SA ST
08
…
04

0C
…
08

04
…
06

01
…
01

1004
…

100C

AT

{CR,	FB,	ID,	RC,VA,	SA}

FB
06

CR
VC0 02
VC1 04

Figure 5: Augmented credit message.
The reconfiguration is done in three places: the routing cost table,

physical link direction, and virtual channel association to physical
links. To ensure a deadlock-free network reconfiguration, a topol-
ogy checker algorithm is run in the intelligence unit (cf., Figure 1
(4)) to determine if a change in link direction or node availability
will affect a cut-element. a cut-element is an element whose removal
breaks network connectivity and an element may be a vertex or an

edge. The intelligence unit builds a network connectivity map and
marks all cut-elements using a fully distributed depth-first search
algorithm [18, 19]. This approach assumes that the on-chip network
has been initially converted to a channel dependency graph [13]
even with link direction changes.

2.2 Experimental Results

0

100

200

300

400

500

600

0 .05 0 .1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0 .7 0 .75

Conv

Pool

Local

ML

Injection	Rate	(flits/node/cycle)

Av
er
ag
e	
La
te
nc
y	
(c
yc
le
s)

Figure 6: Transpose benchmark saturation results.

Injection	Rate	(flits/node/cycle)

Av
er
ag
e	
La
te
nc
y	
(c
yc
le
s)

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2 2.5 3 3.5

Conv

Pool

Local

ML

Figure 7: Synthetic Aperture Radar (SAR) saturation results.

To test the efficiency of our router design, flows from both syn-
thetic benchmarks and real applications (e.g, Shuffle and SAR Image
formation) are used. Synthetic Aperture Radar (SAR) is a radar tech-
nique for emulating the effects of a large-aperture physical radar,
whose construction is not feasible, with a smaller aperture (an-
tenna) radar. The 2-D FFT image formation algorithm in SAR is
computationally very demanding and generally classified as a high-
performance computing application. The application was profiled
and the inter-module communication was simulated. Injection rate
is correlated to image size. The network is an 8 × 8 2D-Mesh. The
router has a pool of 32 virtual channels and 4 slots per virtual chan-
nel. The Heracles [14] RTL simulator is used for all the experiments.
Heracles’ injector cores are used to create network traffic. Figures



NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea J. R. Doppa et al.

6 and 7 show the Transpose and the SAR benchmarks latency re-
sults, respectively. For the conventional router (Conv), the unified
virtual channel design (Pool), and the unified virtual channel plus
bidirectional physical links with local decision making (Local), the
Adaptive Dimensional Order Routing (AD-DOR) is used for routing.
For the globally-aware design, the neural network based predictive
routing [15] is used (ML).

3 CONFIGURABLE LINKS CIRCUITS FOR
ADAPTIVE CONNECTIONS

The fundamental equation for the latency of a packet in a NoC is
as follows [17]

TP = H · (tr + tw ) +Ts +
H∑
h=1

tc (h) (1)

It has a fixed component for router (tr ) + link (tw ) delay, which
gets multiplied by the number of hops H ; a constant serialization
delay Ts for multi-flit packets equal to the number of flits minus
one, i.e., (⌈L/b⌉ − 1), where L is the packet length and b is the link
bandwidth; and a variable delay depending on contention at every
hop (tc (h)).

A decade of research in NoCs [3, 10, 23] coupled with technology
scaling, has enabled microarchitectures with single-cycle routers
(i.e., tr=1) and single-cycle links connecting adjacent routers (i.e.,
tw=1). This is the state-of-the-art today. However, network latency
still goes up linearly with H . As core counts increase, H inevitably
increases (linearly with k in a k × k mesh). As we add hundreds to
thousands of cores on a chip [1, 4, 7, 9] for the big-data era, high hop
counts will lead to horrendous on-chip network traversal latency
and energy creating a stumbling block to core count scaling.

We propose to design NoCs with adaptive link circuits, that can
reconfigure to create single-cycle connections between any two
cores. In this section, we first present an analysis of multi-mm link
circuits to demonstrate why this is feasible from a circuit point of
view. Next, we present the micro-architecture of our configurable
interconnect fabric called SMART [25] that enables single-cycle
traversals across multiple-hops. We then present a flow control
scheme to setup SMART paths dynamically. Finally, we demonstrate
how SMART can be leveraged to perform efficient on-chip power
management.

0	  

5	  

10	  

15	  

20	  

25	  

30	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	  

En
er
gy
	  (f
J/
bi
t/
m
m
)	  

Length	  (mm/ns)	  

45nm	  (Place-‐and-‐Route)	  
32nm	  (Projected)	  
22nm	  (Projected)	  

Figure 8: Delay of RepeatedWires. Repeater Spacing = 1mm,
Wire Spacing ∼3.DRCmin

3.1 Single-Cycle Multi-mm On-Chip Links
On-chip wires are laid out as multi-bit buses between a driver
(single/multi-stage inverter) and a receiver (clocked latch/flip-flop).

Wire delay depends on the effective resistance (R) times capacitance
(C) values. Both R and C go up linearly with the wire’s length. The
C includes capacitance to ground, and capacitance between wires
(i.e., coupling capacitance).

We did a design-space exploration on wire-delay using a com-
mercial 45nm technology node and commercial CAD tools to see
how fast on-chip wires are. We observed that wires can enable 13
mm signaling at a GHz by adding repeaters (inverters or buffers) at
regular intervals and increasing wire spacing to (to reduce coupling
capacitance), as shown in Figure 8. This length can be increased
further if custom repeaters were to be designed [6] or circuit tech-
niques like crossover and shielding used to lower crosstalk [30].
Moreover, though wires are not becoming any faster, since on-chip
clock frequencies have plateaued, and chip sizes remain fairly con-
stant due to yields, we can conclude that wires are fast enough
to provide single-cycle communication between any two cores in
today’s and future technologies.

Router 0 Router 1 Router 2 Router 3

Router 0 Router 1 Router 2 Router 3
(a) Cycle 1: Control Path

(b) Cycle 2: Data path (No Contention) 
(Single-cycle Multi-hop Traversal) 

bufferbypassbypass

Router 0 Router 1 Router 2 Router 3
(c) Cycle 2: Data path (With Contention) 

bufferbypassbuffer

Figure 9: SMART Control Path and Datapath.

3.2 Datapath: Reconfigurable Repeaters
Though on-chip wires are fast enough for single-cycle communica-
tion, laying out dedicated all-to-all wires on-chip is infeasible due
to area and power constraints. Instead, many-core architectures use
a NoC with short-distance links, each controlled by a router. We
propose to create single-cycle long-distance wires by connecting
multiple short-distance links with reconfigurable repeaters. Each
repeater either operates in a buffer mode, latching the incoming
signal like a conventional clocked receiver, or in a bypass mode, for-
warding it to the next repeater without latching like a conventional
repeater. Thus we can send signals multiple-mm on-chip by setting
intermediate repeaters to act in bypass modes, and the destination
to act in a buffer mode. The micro-architecture of our proposed
single-cycle multi-hop datapath is shown in Figure 9(b). We call



Adaptive Manycore Architectures for Big Data Computing NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea

this SMART (Single-cycle Multi-hop Asynchronous Repeated Tra-
versal) [6, 25]. The reconfigurable repeaters are embedded within
each router.

3.3 Control Path: Single-cycle Reconfiguration
SMART paths can be setup in myriad ways. If the application’s
communication pattern is completely known in advance, SMART
paths can be circuit-switched and created by configuring the re-
peaters right before running the application [6]. If the application’s
communication pattern is dynamic, SMART paths can be setup over
additional control wires, which are shown in Figure 9(a). In the
first cycle, the winner of the switch at Router R0 requests a SMART
path of length 3 over its control wires. If there is no contention, it
gets the full-path, and can perform a 3-hop traversal in the next
cycle, as shown in Figure 9(b) for the blue flit. In case of contention,
however, each router prioritizes its own local flits over bypassing
flits, and sets the repeater to buffer mode, and sends its own flit out
instead. This is shown in Figure 9(c) where the blue flit has to stop,
and the pink flit uses the link between Routers 1 and 2 in Cycle 2.

0	  
0.2	  
0.4	  
0.6	  
0.8	  
1	  

1.2	  

)
	  

lu
	  

nl
u	  

ra
di
x	  

w
at
er
-‐n
sq
	  

w
at
er
-‐s
pa
9a

l	  

bl
ac
ks
ch
ol
es
	  

ca
nn

ea
l	  

flu
id
an
im

at
e	  

sw
ap
9o

ns
	  

x2
64

	  

AV
ER

AG
E	  

SPLASH-‐2	   PARSEC	  

Full-‐state	  Directory	  

N
or
m
al
iz
ed

	  A
pp

lic
a/

on
	  R
un

/m
e	  

BASELINE	  (tr=1)	   IDEAL	  (tr=1)	   SMART-‐8_1D	  
SMART-‐8_2D	   SMART-‐15_2D	   IDEAL	  (Tn=1)	  

r
N

r

Figure 10: Performance of SMART with a Shared L2 Design.

SMART paths are thus opportunistic. This is because the under-
lying datapath does not have all-to-all connections. Thus flits may
get partial bypass paths in case of contention. However, most mod-
ern applications do not have heavy traffic over the NoC, as most
memory requests get filtered by L1 caches. Figure 10 thus shows
that SMART provides 49-52% latency reduction on average with
PARSEC applications over a shared distributed L2 design (which is
highly sensitive to NoC latency).

In summary, SMART optimizes network latency as follows:

TP = ⌈(H/HPC)⌉ · (tr + tw ) +Ts +
H∑
h=1

tc (h) (2)

where HPC stands for number of Hops Per Cycle, and depends on
contention. We reduce the effective number of hops to ⌈(H/HPC)⌉.
The maximum value of HPC, is known as HPCmax and depends
on the wire delay, tile size, and clock frequency.

3.4 SMART with DVFS
As discussed above, the maximum distance (in hops) that SMART
can achieve is HPCmax . SMART can provide an additional runtime
knob for reducing energy without any loss of performance - reduce
the clock frequency. In conventional DVFS, this helps lower energy,
but at the cost of increased latency. In SMART, however, a lower

Router Router

CLK

Router

High 
Frequency (a)

Router Router Router Router Router

CLK
Low 
Frequency (b)

Frequency

En
er

gy
-D

el
ay

 
Pr

od
uc

t

(c)

(a) Low HPCmax

(b) High HPCmax

(c) Optimal EDP (d) Delay vs. 
Energy

Figure 11: SMART NoC with DVFS - Adaptive HPCmax .

clock frequency can help increase HPCmax which can reduce la-
tency in cycles, countering the overall increase in clock period [28].
Figure 11(a)-(c) illustrates this idea. There would be an optimal
frequency that can provide an overall reduction in EDP. We sweep
the design-space with different values of link frequency and plot
the overall NoC delay vs. energy in Figure 11(d). The number next
to each configuration represents the frequency multiplier. Tradi-
tional DVFS (MESH-F2) lowers energy but increases delay. Uniform
frequency scaling associated with router voltage scaling (SMART-
R2L2 and SMART-R4L4) improves energy, however increases delay.
Running the router (R) at a high-frequency, and links (L) at a lower
frequency (SMART-R1L2 and SMARTR1L4), enable 14% reduction
in latency and 52% reduction in energy. We can leverage application
level behavior, as we discuss later in Section 4, to enhance the DVFS
policy further.

4 MACHINE LEARNING FOR ADAPTIVE
CONTROL

In this section, we first describe our vision for self-aware manycore
architectures and associated challenges. Subsequently, we provide
some candidate machine learning solutions to realize this vision
and a concrete instantiation for dynamic power management to
illustrate the main ideas.

4.1 Self-Aware Manycore Architectures Vision
In today’s manycore systems, the behavior of the system relies on
many control knobs that control different aspects of the processor.
Through careful manipulation of these knobs, we can dynamically
adapt different components of the manycore system depending
on the situation at hand. We envision that manycore computing
systems should automatically adapt their behavior to accommo-
date the dynamic needs of applications/users, performance and
energy constraints, and resource availability. To achieve this goal,
we need online learning algorithms that enable the system to learn
how to vary these control knobs so that the system can adapt to
conditions seen during run-time (e.g., application characteristics,
process-variations, and aging) while accommodating dynamic user
constraints.



NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea J. R. Doppa et al.

Core Adaptation
We can dynamically adapt the voltage and frequency associated
with each core using learned power management policies to opti-
mize the energy consumption subject to performance constraints.
Similarly, we can reconfigure the cores/accelerators depending on
the workload to improve the performance.
Interconnect Adaptation
We can dynamically adapt the voltage and frequency of network el-
ements to optimize the energy consumption subject to performance
constraints. Similarly, we can reconfigure the interconnection net-
work on-the-fly to improve the performance and energy-efficiency
of the system.
Application Adaptation
Task mapping and task scheduling will directly impact the per-
formance and energy consumption of the system. Therefore, it is
important to learn policies that can score different types of cores
and accelerators based on their suitability for a given task. Addi-
tionally, task scheduling policies should optimally consider and use
all available resources.

4.2 Candidate Machine Learning Solutions
Core and NoC Reconfiguration
The space of physically feasible core and NoC reconfiguration de-
signs is combinatorial in nature. Our goal is to find the design that
minimizes a given cost function O . Machine-learning techniques
can enable the problem-solver (a computational search procedure)
to make intelligent search decisions to achieve computational ef-
ficiency for finding (near-) optimal solutions over non-learning
based algorithms [8]. The STAGE algorithm [2] is very appropriate
to solve this problem. STAGE learns an evaluation function based
on the data of already explored designs, which is used to guide the
search towards high-quality designs. The main advantage of STAGE
over popular algorithms such as simulated annealing (SA) and Inte-
ger Linear Programming is that it tries to learn the structure of the
solution space, and uses this information in a clever way to improve
both convergence time and the quality of the solution. As the sys-
tem size increases, this aspect of STAGE is very advantageous to (1)
improve the design-validate cycle before mass manufacturing; and
(2) dynamically adapt the designs for new application workloads.

69

71

73

75

77

79

0 10 20 30 40 50

Be
st

 C
os

t, 
O

be
st

Time in minutes

STAGE SA GA

Figure 12: Performance comparison among STAGE, SA, and
GA for 3D NoC design optimization.

In a recent work, we undertook a comparative performance anal-
ysis between STAGE, SA, and genetic algorithm (GA) to design

a TSV-enabled 3D NoC architecture [22]. Fig. 12 shows the com-
munication cost of the optimized network from the STAGE, SA,
and GA algorithms as a function of time. We can see that STAGE
uncovers high-quality designs very fast (within 5 minutes). On the
other hand, SA and GA reach Obest more gradually compared to
STAGE, and even after 50 minutes, their respective Obest does not
reach the same solution as STAGE. We conjecture that with the
increase in the design space due to large system sizes and emerging
technologies (e.g., Monolithic 3D integration), STAGE will be even
more efficient than SA and GA.
Adaptive Control
Reinforcement Learning (RL) and Imitation Learning (IL) are two
popular machine learning approaches for learning control policies
[27]. IL is considered to be an exponentially better framework than
RL for learning sequential decision-making policies, but assumes
the availability of a good Oracle (or expert) policy to drive the
learning process. At a very high-level, the difference between IL
and RL is the same as the difference between supervised learning
and exploratory learning. In the supervised setting, the learner is
provided with the best action for a given state. In the exploratory
setting, the learner only receives weak supervision in the form of
immediate costs and needs to explore different actions at each state,
observe the corresponding costs, and learn from past experiences
to figure out the best action for a given state. From a complexity
perspective, when it is possible to learn a good approximation of
the expert, the amount of data and time required to learn an expert
policy is polynomial (quadratic or less) in the time horizon (i.e.,
number of decision steps). However, near-optimal RL is intractable
for large state spaces. For large system sizes where the state space
grows exponentially with the number of cores, RL methods may
not scale well.

To efficiently create control policies offline for different appli-
cation workloads, IL is a better choice if we can construct a good
oracle policy. We provide a concrete IL methodology for dynamic
power management and show its effectiveness [21]. RL formula-
tions can be employed for online learning, but we advocate the use
of more recent algorithms that take a policy search view instead of
Q-learning [27].

4.3 Dynamic Power Management: A Case Study
Problem Description
The design of high-performance manycore chips is dominated by
power and thermal constraints. Voltage-Frequency Islands (VFI) has
emerged as an efficient and scalable power management strategy
[26]. In such designs, effective VFI clustering techniques allow cores
and network elements (routers and links) that behave similarly to
share the same Voltage/Frequency (V/F) values without significant
performance penalties. Naturally, with time-varying workloads, we
can dynamically fine-tune the V/F levels of VFIs to further reduce
the energy dissipation with minimal performance degradation. For
applications with highly varying workloads, machine learning (ML)
methods are suitable to fine-tune the V/F levels within VFIs.
Optimization Objective
Consider a manycore system with n cores. Without loss of general-
ity, let us assume that there exist k VFIs. The dynamic VFI (DVFI)



Adaptive Manycore Architectures for Big Data Computing NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea

control policy π , at each control epoch t (where N is the total num-
ber of epochs), takes the current system state st and generates the
V/F allocation for all k VFIs:

π : st → {V1/F1,V2/F2, · · · ,Vk/Fk } (3)

Given a VFI-enabled manycore architecture, an application, and a
maximum allowable performance penalty, our objective is to create
a DVFI control policy π∗ that minimizes the energy dissipation
within the user-specified maximum allowable performance penalty.
Imitation Learning Methodology
For our DVFI control problem, the expert corresponds to an Oracle
controller that provides the supervision on how to make good
control decisions for V/F tuning. There are three main challenges in
applying the IL framework to learn DVFI control policies: 1) Oracle
construction, 2) fast and accurate decision-making, and 3) learning
robust control policies. We discuss and provide the corresponding
solutions below.

a) Oracle Construction. In traditional IL, expert demonstrations
are used as the Oracle policy in the IL process. Unfortunately, we
don’t have any training data for the DVFI control problem. For
DVFI-enabled systems, we define the Oracle policy as the controller
that selects the V/F level for each VFI that minimizes the overall
power consumption within some performance constraint. Since the
learning process is offline, we access the future system states and
perform a look-ahead search to find the best joint V/F allocation
for all VFIs. This is accomplished by running the application with
different V/F assignments to optimize the global performance (i.e.,
EDP of the system). To overcome the computational challenge and
closely approximate optimality, our key insight is to perform local
optimization followed by aggregation for global optimization. First,
we compute the optimal V/F (which minimizes EDP) for each VFI, at
each control epoch, form different execution time penalties (e.g., 0%,
5%, and 10% form=3). This gives usm different V/F assignments for
each control epoch. Second, for every n control epochs, we compute
the best V/F decisions by performing an exhaustive search over all
possible combinations of local optima from the first step (mn ). Note
that it is easy to find a smallm that works well in practice, but both
the quality and computation time of the Oracle depends on n.

Traffic 
Interaction

𝟏 𝟐

𝒌

𝟏 𝟏

DVFI Policy

Structured 
Input Graph

Structured 
Output Graph

… … 𝟐 𝟐

𝒌 𝒌

Figure 13: Illustration of DVFI decision-making as a struc-
tured prediction task

b) Fast and Accurate Decision-Making.We formulate the problem
of DVFI control decision-making as a structured output prediction
task [11, 12]. This is the task of mapping from an input structured
object (a graph with features on the nodes and edges) to an output
structured object (a graph with labels on the nodes and edges).
Figure 13 illustrates the structured prediction task corresponding
to the DVFI control decision-making. The structured input graph

contains a node for each VFI and edges corresponding to inter-
VFI traffic density. The structured output graph captures the V/F
allocation (node labels) for each VFI and the structural dependencies
between different input and output variables.

The main challenge in DVFI control is to choose the best V/F
from the large space of all possible V/F assignments (Lk , where k
is the number of VFIs and L is the number of V/F levels for each
VFI). This is especially challenging in our DVFI control problem:
we are trying to predict the joint V/F allocation for all VFIs to save
energy, but it is useless if the computation for making the prediction
consumes more energy than the energy saved. Therefore, we want
a fast and accurate predictor whose energy overhead is miniscule
when compared to the overall energy savings due to DVFI control.

To address the above-mentioned challenge, we learn pseudo-
independent structured controllers to achieve efficiency without los-
ing accuracy. Specifically, we learn k controllers, one controller for
each VFI. These controllers are pseudo-independent in the sense
that each controller predicts the V/F allocation for only a single
VFI but has the context of previous predictions from all controllers
and the structural dependency information of the other VFIs when
making predictions. Intuitively, the different controllers are trying
to help each other by supplying additional contextual information.

. . .

Add ( , ( ) )

Aggregate
Training Data

Learning
Algorithm

Learned
Controller

( )

If ( ) ≠ ( )

( )

Figure 14: Illustration of Learning with DAgger

c) Learning Robust Control Policies. Our goal is to learn a con-
troller that closely follows the Oracle in terms of V/F allocation.
Unlike standard supervised learning problems that assume IID
(Independent and Identically Distributed) input examples, our con-
troller learning problem is Non-IID because the next state depends
on the decision of the controller at the previous state. Therefore,
controllers learned via exact imitation can be prone to error propa-
gation: errors in the previous state may result in a next state that is
very different from the distribution of states the learner has seen
during the training, and contributes to more errors. To address the
error-propagation problem associated with exact imitation training,
we can employ an advanced imitation learning approach called
DAgger [24]. The key idea behind DAgger is to generate additional
training data so that the learner is able to learn how to recover from
mistakes (see Figure 14).
Experimental Results
In a recent work, we showed the effectiveness of the above IL
methodology when compared to the prior approaches for power
management [21]. Fig. 15 shows the computational overhead for
learning each DVFI policy and the full-system energy dissipation
for IL, RL, and a feedback-based (FB) DVFI control policy [20].
Here, each RL and FB marker represents the results of a benchmark
normalized with respect to IL. The IL policy is able to outperform
every benchmark while requiring significantly less computational
overhead than RL. Since there is no learning involved in FB, the



NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea J. R. Doppa et al.

 

0.95
1

1.05
1.1

1.15
1.2

1.25

0 1 2 3 4

Fu
ll-

Sy
st

em
 E

n
er

gy
 

D
is

si
p

at
io

n
 w

.r
.t

. I
L

Computational Overhead w.r.t. IL

IL RL FB

Figure 15: Comparison of several DVFI policies (IL, RL, and a
feedback-based controller (FB)) in computational overhead
to learn the policy and full-system energy dissipation.

computation time is negligible. The performance gap between IL
methodology relative to other approaches will growwith the system
size and complexity of decision-making.

5 CONCLUSIONS AND FUTURE
CHALLENGES

In this work, with the focus on the on-chip network, we present an il-
lustrative design methodology for adaptive manycore architectures
to address the computational needs of emerging big data applica-
tions and the technological constraints of power and reliability. It is
a cross-layer design approach that spans circuits, microarchitecture,
and machine learning algorithms for intelligent and autonomous
runtime adaptation.

Although the research community has made progress in ex-
ploring self-aware adaptive architectures, many important research
questions remain open. Ultimately, the design of adaptive manycore
architectures requires a hardware-software co-design approach for
maximum benefits. In the future, adaptivity should not only expand
to all components of the manycore architecture, but also operate
in a holistic manner to achieve the global objectives of the system.
This will involve not only highly adaptable components across the
entire system (much like the ones presented in this paper), but also a
detailed understanding of how each control decision or joint control
decisions (e.g., DVFI, communication routing, task management,
resource allocation) affects any of the system-level objectives (e.g.,
power, energy, latency, execution-time, and reliability constraints).

Some important research gaps include (1) dynamic allocation and
reconfiguration of computing resources depending on the needs
of program (e.g., the amount of parallelism in the program); (2)
automatic hardware-level approximation to meet both program
and system goals (e.g., execution time budget, power constraints,
and resiliency) without the programming complexity of current
manycore systems; (3) methodologies to enable programmers to
succinctly specify the execution context along with the computa-
tional/algorithmic components of programs; and (4) innovations
in control and learning techniques to handle this large complex
state-action space under dynamically changing constraints with
negligible computational overhead.

REFERENCES
[1] [n. d.]. Sunway TaihuLight. https://www.top500.org/system/178764. ([n. d.]).
[2] Justin A. Boyan and Andrew W. Moore. 2001. Learning Evaluation Functions

to Improve Optimization by Local Search. JMLR 1 (Sept. 2001), 77–112. https:
//doi.org/10.1162/15324430152733124

[3] Amit Kumar et al. 2007. Express Virtual Channels: Towards the Ideal Intercon-
nection Fabric. In ISCA ’07. 150–161. https://doi.org/10.1145/1250662.1250681

[4] Boris Grot et al. 2011. Kilo-NOC: AHeterogeneous Network-on-chip Architecture
for Scalability and Service Guarantees. In ISCA ’11. 401–412. https://doi.org/10.
1145/2000064.2000112

[5] Chrysostomos A. Nicopoulos et al. 2006. ViChaR: A Dynamic Virtual Channel
Regulator for Network-on-Chip Routers. In MICRO 39. 333–346. https://doi.org/
10.1109/MICRO.2006.50

[6] Chia-Hsin O. Chen et al. 2013. SMART: A single-cycle reconfigurable NoC for
SoC applications. In DATE ’13. 338–343. https://doi.org/10.7873/DATE.2013.080

[7] Daniel Johnson et al. 2011. Rigel: A 1,024-Core Single-Chip Accelerator Architec-
ture. IEEE Micro 31, 4 (July 2011), 30–41. https://doi.org/10.1109/MM.2011.40

[8] F.A. Rezaur Rahman Chowdhury et al. 2017. Select-and-Evaluate: A Learning
Framework for Large-Scale Knowledge Graph Search. JMLR 80 (2017).

[9] George Kurian et al. 2010. ATAC: A 1000-core Cache-coherent Processor with
On-chip Optical Network. In PACT ’10. 477–488. https://doi.org/10.1145/1854273.
1854332

[10] Hiroki Matsutani et al. 2009. Prediction router: Yet another low latency on-chip
router architecture. In HPCA ’09. 367–378. https://doi.org/10.1109/HPCA.2009.
4798274

[11] Janardhan R. Doppa et al. 2014. HC-search: A Learning Framework for Search-
based Structured Prediction. JAIR 50, 1 (May 2014), 369–407.

[12] Janardhan R. Doppa et al. 2014. Structured Prediction via Output Space Search.
JMLR 15, 1 (Jan. 2014), 1317–1350.

[13] Michel A. Kinsy et al. 2009. Application-aware Deadlock-free Oblivious Routing.
In ISCA ’09. 208–219. https://doi.org/10.1145/1555754.1555782

[14] Michel A. Kinsy et al. 2013. Heracles: A Tool for Fast RTL-based Design Space
Exploration of Multicore Processors. In FPGA ’13. 125–134. https://doi.org/10.
1145/2435264.2435287

[15] Michel A. Kinsy et al. 2017. PreNoc: Neural Network Based Predictive Routing
for Network-on-Chip Architectures. In GLSVLSI ’17. 65–70. https://doi.org/10.
1145/3060403.3060406

[16] Myong Hyon Cho et al. 2009. Oblivious Routing in On-Chip Bandwidth-Adaptive
Networks. In PACT ’09. 181–190. https://doi.org/10.1109/PACT.2009.41

[17] Natalie E. Jerger et al. 2017. On-Chip Networks, Second Edition. Synthesis Lectures
on Computer Architecture (2017).

[18] Pengju Ren et al. 2016. A Deadlock-Free and Connectivity-Guaranteed Method-
ology for Achieving Fault-Tolerance in On-Chip Networks. IEEE TC 65, 2 (Feb.
2016), 353–366. https://doi.org/10.1109/TC.2015.2425887

[19] Pengju Ren et al. 2016. Fault-Aware Load-Balancing Routing for 2D-Mesh and
Torus On-Chip Network Topologies. IEEE TC 65, 3 (March 2016), 873–887.
https://doi.org/10.1109/TC.2015.2439276

[20] Ryan G. Kim et al. 2016. Wireless NoC and Dynamic VFI Codesign: Energy
Efficiency Without Performance Penalty. IEEE TVLSI 24, 7 (2016), 2488–2501.

[21] Ryan G. Kim et al. 2017. Imitation Learning for Dynamic VFI Control in Large-
Scale Manycore Systems. IEEE TVLSI 25, 9 (Sept 2017), 2458–2471. https://doi.
org/10.1109/TVLSI.2017.2700726

[22] Sourav Das et al. 2017. Design-Space Exploration and Optimization of an Energy-
Efficient and Reliable 3-D Small-World Network-on-Chip. IEEE TCAD 36, 5 (May
2017), 719–732. https://doi.org/10.1109/TCAD.2016.2604288

[23] Sunghyun Park et al. 2012. Approaching the theoretical limits of a mesh NoC
with a 16-node chip prototype in 45nm SOI. In DAC ’12. 398–405.

[24] Stéphane Ross et al. 2011. A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning. In AISTATS ’11, Vol. 15. Fort Lauderdale,
FL, USA, 627–635.

[25] Tushar Krishna et al. 2013. Breaking the on-chip latency barrier using SMART.
In HPCA ’13. 378–389. https://doi.org/10.1109/HPCA.2013.6522334

[26] Umit Y. Ogras et al. 2009. Design and Management of Voltage-frequency Island
Partitioned Networks-on-chip. IEEE TVLSI 17, 3 (2009), 330–341.

[27] Hwisung Jung and Massoud Pedram. 2010. Supervised Learning Based Power
Management for Multicore Processors. IEEE TCAD 29, 9 (Sept. 2010), 1395–1408.

[28] Monodeep Kar and Tushar Krishna. 2017. A Case for Low Frequency Single
Cycle Multi Hop NoCs for Energy Efficiency and High Performance. In ICCAD
’17. IEEE.

[29] Michel A. Kinsy and Srinivas Devadas. 2014. Low-overhead hard real-time aware
interconnect network router. In HPEC ’14. 1–6. https://doi.org/10.1109/HPEC.
2014.7040976

[30] Jan M. Rabaey and Anantha Chandrakasan. 2002. Digital Integrated Circuits: A
Design Perspective. Prentice Hall Pub.

https://www.top500.org/system/178764
https://doi.org/10.1162/15324430152733124
https://doi.org/10.1162/15324430152733124
https://doi.org/10.1145/1250662.1250681
https://doi.org/10.1145/2000064.2000112
https://doi.org/10.1145/2000064.2000112
https://doi.org/10.1109/MICRO.2006.50
https://doi.org/10.1109/MICRO.2006.50
https://doi.org/10.7873/DATE.2013.080
https://doi.org/10.1109/MM.2011.40
https://doi.org/10.1145/1854273.1854332
https://doi.org/10.1145/1854273.1854332
https://doi.org/10.1109/HPCA.2009.4798274
https://doi.org/10.1109/HPCA.2009.4798274
https://doi.org/10.1145/1555754.1555782
https://doi.org/10.1145/2435264.2435287
https://doi.org/10.1145/2435264.2435287
https://doi.org/10.1145/3060403.3060406
https://doi.org/10.1145/3060403.3060406
https://doi.org/10.1109/PACT.2009.41
https://doi.org/10.1109/TC.2015.2425887
https://doi.org/10.1109/TC.2015.2439276
https://doi.org/10.1109/TVLSI.2017.2700726
https://doi.org/10.1109/TVLSI.2017.2700726
https://doi.org/10.1109/TCAD.2016.2604288
https://doi.org/10.1109/HPCA.2013.6522334
https://doi.org/10.1109/HPEC.2014.7040976
https://doi.org/10.1109/HPEC.2014.7040976

	Abstract
	1 Introduction
	2 Configurable Router Micro architecture for Adaptive Routing
	2.1 RAIN Architecture Design Approach
	2.2 Experimental Results

	3 Configurable Links Circuits for Adaptive Connections
	3.1 Single-Cycle Multi-mm On-Chip Links
	3.2 Datapath: Reconfigurable Repeaters
	3.3 Control Path: Single-cycle Reconfiguration
	3.4 SMART with DVFS

	4 Machine Learning for Adaptive Control
	4.1 Self-Aware Manycore Architectures Vision
	4.2 Candidate Machine Learning Solutions
	4.3 Dynamic Power Management: A Case Study

	5 Conclusions and Future Challenges
	References

