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Abstract—In this paper we present the HAsim FPGA-
accelerated simulator. HAsim is able to model a shared-
memory multicore system including detailed core pipelines,
cache hierarchy, and on-chip network, using a single
FPGA. We describe the scaling techniques that make this
possible, including novel uses of time-multiplexing in the
core pipeline and on-chip network. We compare our time-
multiplexed approach to a direct implementation, and
present a case study that motivates why high-detail simu-
lations should continue to play a role in the architectural
exploration process.

Index Terms—Simulation, Modeling, On-Chip Networks,
Field-Programmable Gate Arrays, FPGA

I. INTRODUCTION

Gaining micro-architectural insight relies on the archi-

tect’s ability to simulate the target system with a high

degree of accuracy. Unfortunately, accuracy comes at the

cost of simulator performance—the simulator must em-

ulate more detailed hardware structures on every cycle,

thus simulated cycles-per-second decreases. Naturally,

there is a temptation to reduce the detail of the model in

order to facilitate efficient simulation. Typical simulator

abstractions include ignoring wrong-path instructions, or

replacing core pipelines with abstract models. While

such low-fidelity models can help greatly with initial

pathfinding, the best way for computer architects to

convince skeptical colleagues remains a cycle-by-cycle

simulation of a realistic core pipeline, cache hierarchy,

and on-chip network (OCN).

While parallelizing the simulator can recover some

performance, parallel simulators have found their perfor-

mance limited by communication between the cores on

the OCN, and have been forced to reduce fidelity in the

OCN in order to achieve reasonable parallelism [1], [2],

[3]. In this paper we advocate an alternative approach—

hosting the simulator on a reconfigurable logic platform.

This is facilitated by an emerging class of products that

allow a Field Programmable Gate Array (FPGA) to be

added to a general-purpose computer via a fast link such

as PCIe [4], HyperTransport [5], or Intel Front-Side Bus

[6]. On an FPGA, adding detail to a model does not

necessarily degrade performance. For example, adding a

complex reorder buffer (ROB) to an existing core uses

more of the FPGA’s resources, but the ROB and the rest

of the core will be simulated simultaneously during a tick

of the FPGA’s clock. Similarly, communication within an

FPGA is fast, so there is great incentive to fit interacting

structures like cores, caches, and OCN routers onto the

same FPGA.

In this paper we present HAsim, a novel FPGA-

accelerated simulator that is able to simulate a multicore

with a high-detail pipeline, cache hierarchy, and detailed

on-chip network using a single FPGA. HAsim is able

to accomplish this via several contributions to efficient

scaling that are detailed in this paper. First, we present

a fine-grained time-multiplexing scheme that allows a

single physical pipeline to act as a detailed timing-model

for a multicore. Second, we extend the fine-grained mul-

tiplexing scheme to the on-chip network via a novel use

of permutations. We generalize our technique to any pos-

sible OCN topology, including heterogeneous networks.

We compare HAsim’s time-multiplexing approach to a

direct implementation on an FPGA. Finally, we use

HAsim to study the degree that realism in the core model

can affect OCN simulation results in a shared-memory

multi-core, an argument for the continued value of high-

detail simulation in the architectural exploration process.

This paper only considers a single FPGA accelerator.

A complementary technique for scaling simulations is

to partition the model across many FPGAs. However

we do not consider this a limitation, as in order to

maximize capacity of the multi-FPGA scenario we must

first maximize utilization of an individual FPGA.
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Fig. 1. (A) CAM Target (B) Simulating the CAM with a RAM and
FSM over multiple FPGA cycles.

Fig. 2. (A) Large Cache Target (B) Simulating the cache using a
memory hierarchy.

II. TECHNIQUES FOR SCALING

FPGA-ACCELERATED SIMULATION

A. Background: FPGAs as Simulation Accelerators

Using FPGAs to accelerate processor simulation re-

volves around the realization that one tick of the FPGA

clock does not have to correspond to one tick of the

simulated machine’s clock. The goal is not to configure

the FPGA into the target hardware, but into a perfor-
mance model that accurately tracks how many model
clock cycles the operations in the target are supposed to

take. This allows the model to simulate FPGA-inefficient

structures using FPGA-efficient components, while using

a separate mechanism to ensure their simulated timings

match the target circuit.

For example, a Content-Addressable Memory (CAM)

would be inefficient to implement directly on an FPGA,

resulting in high area and a long critical path. However

we can simulate a CAM using a single-ported Block

RAM and an FSM that sequentially searches the RAM,

as shown in Figure 1. The FSM may take more or fewer

FPGA cycles to search the RAM, depending on occupa-

tion. However the model clock cycle is not incremented

until the search is complete. Taking more or fewer FPGA

cycles affects the rate of simulation, but does not affect

the results. Thus the simulator architect is able to trade

increased time for decreased utilization—if this tradeoff

improves the FPGA clock rate and the FPGA-cycle-to-

Model-cycle Ratio (FMR) remains favorable then this

tradeoff is worth making. Detailed discussions of these

techniques are given in [7], as well as Chiou [8],[7], Tan

[9], and Chung [10].

Separating the model clock from the FPGA clock also

allows the simulator to leverage the large amount of

system memory in the host platform, even though the

sizes and latencies may be radically different than those

being simulated. In Figure 2 the simulator is run on

a platform that has three levels of memory: on-FPGA

Block RAM, on-board SRAM, and DRAM managed by

the OS running on the host processor. The simulator

wishes to use this hierarchy to simulate a 5 MB last-level

cache. It can accomplish this by allocating space in the

Block RAM, the SRAM, and host DRAM—essentially

using 3 caches in place of a single large cache. To

simulate an access of the target cache the FPGA first

checks if the line is resident in the Block RAM. If it is,

the simulator can quickly determine if the access hit or

missed. Otherwise, it must access the SRAM or DRAM,

and possibly add the response to the BRAM. In this case,

in the rate of simulation will be slower, dependent on the

distance of the memory where the line resides. But note

that the level of physical memory accessed affects only

the rate of simulation, and is orthogonal to whether or

not the simulated 5MB cache hit or missed. To facilitate

interfacing the simulator with the host system, HAsim

uses the LEAP virtual platform [11], [12].

An FPGA-accelerated simulator is composed of many

parallel modules, each of which can take an arbitrary

number of FPGA cycles to simulate a model cycle.

The problem now becomes connecting them together

to form a consistent notion of model time. In HAsim

this is done by representing the model using a port-
based specification [7], as shown in Figure 3A. In such a

specification the model is represented as a directed graph

of modules connected by ports. In order to simulate a

model cycle each module reads all of its input ports,

computes local updates, and writes all of its output ports.

If a module does not wish to transmit a message then

it sends a special NoMessage value. Since each port

has a message on it for every model cycle, the messages

themselves can be thought of as tokens that enumerate

the passage of model time. Port-based specifications pre-

date FPGA implementation [13], but are a natural fit as

they allow individual modules to make a local decision

about whether to simulate the next cycle, without the

need for global synchronization.
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Fig. 3. (A) Port-based model of a processors’ PC Resolve stage. (B) Time-multiplexing between 4 virtual instances.

Functional Timing Time Num Core OCN
Model Model Multiplexed Cores Detail Comments

Liberty [14] N/A No 16 * No *Uses hard PowerPCs on FPGA.
ProtoFlex [10] FPGA Software Yes 16 * No *SMARTS-style functional/timing split.

UT-FAST [8], [15] Software FPGA No 16 Yes No Software feeds trace to FPGA, which
adds timing and may rollback software.

RAMP Gold [16] FPGA FPGA Yes 64 No No Focuses on efficient simulation of cache models
with abstract cores and no network.

HAsim FPGA FPGA Yes 16 Yes Yes Model generalized cores, including
out-of-order, superscalar.

Fig. 4. Comparison of FPGA-based processor simulators.

HAsim also employs a timing-directed approach,

whereby the simulator is partitioned into a functional
and timing model [17]. As in a traditional software

simulator, the functional model is responsible for cor-

rect ISA-level execution, while the timing model adds

micro-architecture specific timings such as branch pre-

dictions [18]. This technique is also employed by FPGA-

accelerated simulators Protoflex [10], UT-FAST [8], and

RAMP Gold [9]. In each case, the details of the parti-

tioning schemes are different, as shown in Figure 4. The

goal of the partitioning is to reduce the development

effort associated with FPGAs: the functional model is

written once, verified, optimized, and used across many

different timing models.

B. Fine-Grained Time-Multiplexed Simulation

Separating the model clock from the FPGA clock

can help with scaling specific structures within a target

circuit, but experience has shown that it does not save

enough space to allow duplicating high-detail cores,

caches, and routers into a multicore configuration on a

single FPGA.

Given this, time-division multiplexing is a technique

that can help enable scaling our models to larger multi-

cores. In such a scheme a single physical core is used

to sequentially simulate several virtual instances that

flow through the pipeline in sequence. Internal core state

such as the program counter (PC) or register file (RF) is

duplicated, but the combinational logic used to simulate

each pipeline stage is not.1 The disadvantage to time-

multiplexing is that it can reduce simulation rate, as a

single physical pipeline is being used sequentially to do

the work of many.

The time-multiplexing approach was first used in the

Protoflex simulator [10]. Protoflex multiplexes a func-

tional model between 16 threads, but does not support

any timing model on the FPGA. RAMP Gold [16] is

another FPGA-accelerated simulator that uses a coarse-

grained approach whereby a scheduler chooses a virtual

instance to simulate, and performs the functional emu-

lation of that instance without adding any timing model

of the core. RAMP Gold does support timing models

of caches, but does not currently support simulations of

on-chip networks.

A contribution of HAsim is to extend previous mul-

tiplexing schemes to detailed timing models of core

pipelines, while simultaneously minimizing any per-

formance reduction from sequential time-multiplexing.

HAsim accomplishes this by using the ports between

modules to implement time-multiplexing: at simulator

startup the ports are initialized with message tokens

from each virtual instance, as shown in Figure 3B.

1This kind of multiplexing bears a resemblance to multi-threading
in real microprocessors, but it is important to distinguish that this is
a simulator technique, not a technique in the target architecture. The
cores being multiplexed may or may not support multi-threading.
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Fig. 5. (A) Target multicore with uni-directional ring network. (B) Multiplexed core connected to ring-network via sequential de-multiplexing.

In this scheme each stage of the core pipeline can

be simulating a separate virtual core. For instance, the

Fetch stage may be simulating Core 3 while the Decode

stage simulates Core 2. Furthermore, modules that are

implemented using multiple FPGA cycles per model

cycle may themselves be pipelined.

This fine-grained time multiplexing minimizes impact

on simulation rate by improving the utilization of the

physical execution units. For example, if the CAM from

Figure 1 were connected to the cache from Figure 2 then

we would expect the rate of simulation to be limited

by off-chip accesses in the cache, and during this time

the CAM would mostly be idle. If this simulator were

time-multiplexed, then the CAM module will not go idle

until it has simulated all of the other virtual instances.

Thus in many instances N -way time-multiplexing of a

module does not slow the module’s simulation rate by

N . In fact, the simulation rate will not be affected at

all until N grows beyond the current rate-limiting step.

A study detailing the sub-linear slowdown of HAsim’s

scaling is presented in Section V-C.

Note that time-multiplexing scheme is possible only

because the state of the different cores being simulated

is independent. That is, the Register File of Core 0

cannot directly affect the Register File of Core 1. Only

by going through the OCN can the various cores affect

each other’s simulation results. Because of this cross-
instance communication, traditional time-multiplexing is

insufficient for modeling the OCN—different techniques

are needed that can take the interaction into account

while still exploiting fine-grained parallelism.

III. TIME-MULTIPLEXED SIMULATION OF ON-CHIP

NETWORKS VIA PERMUTATIONS

A. First Approach: De-multiplexing

The previous section established that time-

multiplexing the core works well because it improves

both scaling and utilization. Now, the problem

becomes attaching a single physical (time-multiplexed)

core to an on-chip network. Consider the ring

network shown in Figure 5A. Each router has 4

ports that communicate with the core/cache: msgIn,
creditIn, msgOut, and creditOut. Additionally
each router has 4 more ports that communicate with

adjacent routers: msgToNext, creditFromNext,
msgFromPrev, creditToPrev.

A baseline approach to simulating this target is to

fully replicate the routers, and synthesize an on-chip

network directly. The messages from the cores are then

sequentially de-multiplexed and sent to the appropriate

router. Each router can now simulate its next model

cycle when data arrives. Responses are re-multiplexed

and returned to the cores. This situation is shown in

Figure 5B. In this figure and throughout the paper we

represent sequential de-multiplexing by augmenting a

de-multiplexor with a sequence denoting where each

sequential arrival is to be sent. In this case the first arrival

is sent to router 0, the second to router 1, and so on.

While this scheme is functionally correct, it presents

many practical challenges. Most significantly, the phys-

ical core is now no longer adjacent to any particular

router. Thus the FPGA synthesis tools are presented

with the difficult problem of routing the de-multiplexed

signals to the individual routers. Second, the routers

themselves are under-utilized: at any given FPGA cycle

only a small subset of routers are actively simulating

the next model cycle—most are waiting for their cor-

responding virtual core to the produce data for a given

model cycle. HAsim solves these problems by extending

the time-multiplexing to the OCN routers themselves via

a novel use of permutations.
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Fig. 6. Time-Multiplexing the ring is complicated by the cross-router
ports/dependencies.

Fig. 7. Connecting the credit ports to each other, and the message
ports to each other, and applying permutations to the messages.

Fig. 8. Simulating a model cycle for ring network via permutations.

B. Time-Multiplexed Ring Network via Permutation

If we wish to time-multiplex the ring, observe that

the simulation of router n is complicated by the com-

munication from routers n− 1 and n + 1. As shown in

Figure 6, it is the ports that cross between routers that

present a challenge to time-multiplexing, as they express

the fact that the differing virtual instances’ behaviors are

not independent. How can we ensure that each cross-
virtual instance port’s messages are transmitted to the

correct destination?

The key insight, as shown in Figure 7, is that we can

connect these ports to themselves. That is, the output

from msgToNext is fed into msgFromPrev, and

creditFromNext produces creditToPrev. This

makes sense intuitively: messages leaving one router are

the input to the next router. However, simply making

the connection is not sufficient: router n produces the

message for router n + 1, not for router n.
One way to solve this would be to store cross-router

communication in a RAM. The index of the RAM to be

read and written by each virtual index would be calcu-

lated by accessing an indirection table. This approach is

similar to the way a single-threaded software simulator

simulates an on-chip network. The disadvantage is that

a random-access memory is overkill, as the accesses

are actually following a static pattern determined by the

topology.

HAsim’s insight is that the communication pattern can

be represented by a small permutation. For the msg port

the output from router 0 is the input for router 1 (on

the next model cycle), 1 is for 2, and so on to N − 1,
which is for 0. For the credit port 0 goes to N −1, 1
to 0, 2 to 1, and so on. The advantage of this approach

is that these permutations can be represented using two

queues: a main queue and a side buffer. A small FSM

determines which queue will be enqueued to, and which

queue will be dequeued from.

Formally, given N cores the permutation σ for the xth
input of each port is as follows:

• σmsg(x) = x + 1 mod N
• σcredit(x) = x− 1 mod N

In this paper we will express the permutations as

shown in Figure 7: a concrete table showing that the

output for core 0 is sent to core 1, and so on, until

core 5’s output is sent to core 0. This table is then

supplemented with a generalized formula that scales the

permutation to any number of routers.

Given these permutations, Figure 8 shows a complete

example of simulating a model cycle in the ring network.

In 8A the messages are in their initial configuration.

The router simulates the next model cycle, consuming
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Fig. 9. Time-multiplexing a torus network. Cores/caches are not pictured. Credit ports are omitted as they use the same permutations.

Fig. 10. Simulating a grid network using the same permutations as the torus and sending NoMessage messages on non-existent edges.

N inputs and producing N new outputs, resulting in

the state shown in 8B. After the permutation is applied

we can confirm that the resulting configuration in 8C is

correct: on the next model cycle router 0 will receive the

message from router 3, and the credit from 1. Router 1

will receive the message from router 0, and credit from

router 2, and so on. Although we present this execution

as happening in three separate phases, on the FPGA we

can overlap the execution.

C. Time-Multiplexed Torus/Grid

Let us extend the permutation technique to

another topology, the 2D torus shown in Figure

9A. Here each router has ports going to/from 4

directions: msgFromNorth, msgFromEast,
msgFromSouth, msgFromWest and so on, as

well as ports/to from the local core. As shown in

Figure 9B the msgToEast port is connected to the

msgFromWest port and so on, as expected. However,

compared to the ring network the permutation is

different to reflect the width of the torus. In order to

simulate the cores in numeric order, the permutation for

the East/West ports for a network of width w is:

• σmsgFromEast(x) = x + 1 mod w
• σmsgFromWest(x) = x− 1 mod w

Similarly the permutation for the North/South port

must take into account the width of the network (not

the height):

• σmsgFromNorth(x) = x + w mod N
• σmsgFromSouth(x) = x− w mod N

Note that these permutations mean that the

output from router 0 will be sent to routers

σmsgFromNorth(0) = 3, σmsgFromEast(0) = 1,
σmsgFromSouth(0) = 6, and σmsgFromWest(0) = 2.
Similarly router 0 will receive messages from

σmsgFromNorth(6) = 0, σmsgFromEast(2) = 0,
σmsgFromSouth(3) = 0, σmsgFromWest(1) = 0,
corresponding exactly to the original target.

Once we have a torus model it is straightforward

to alter this model to simulate a grid topology such

as the one shown in Figure 10. We will not do this

by altering the permutations or physical ports of our

network, but rather by just altering the routing tables

to send NoMessage (Section II-A) along the links that

do not exist in the grid network. For instance, router 0, in

the Northwest corner, will only send NoMessage West

or North. If other routers obey similar rules then it will

only receive NoMessage from those directions as well.
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Fig. 11. Building permutations for an arbitrary network.

The permutations given in this section assume that

the first processor that should be simulated (core 0) is

located in the upper left-hand corner of the topology. If

the architect desired a different simulation ordering they

could accomplish this by changing the permutation —

analogous to a sequential software simulator of a grid

changing the order of indexing in a for-loop.

IV. GENERALIZING THE PERMUTATION TECHNIQUE

The permutations described earlier correspond to pick-

ing the simulation order of the routers in the network

and properly routing the data between them, similar

to how a sequential software simulator cycles through

nodes in sequence. It is always possible to create a

sequential simulator for any valid OCN topology. In

this section we demonstrate that it is similarly always

possible to construct a set of permutations to allow any

valid topology to be time-multiplexed.

A. Permutations for Arbitrary Topologies

Assume that the target OCN has been expressed as a

port-based model: a digraph G = (M,P ) where M is

the modules in the system and P is the ports connecting

them. Label the modules M with a valid simulation

ordering [0, 1, .., n] such that 0 is the first node simulated

and n is the last. Note that if the graph contains zero-

latency ports then not all simulation orderings will be

valid. However if the graph represents valid hardware

then there is guaranteed to exist at least one valid

simulation ordering.

Once the simulation ordering is picked we must

combine the ports into as few time-multiplexed ports

as possible. To do this we divide the edges P into the

minimum number of sets P0, P1..Pm such that each set

Pm obeys the following properties:

• ∀{s, d} ∈ Pm,¬∃{s′, d′} ∈ Pm.s = s′

• ∀{s, d} ∈ Pm,¬∃{s′, d′} ∈ Pm.d = d′

In other words, no two ports in any given set can

share the same source, or share the same destination.

Each set Pm corresponds to a permutation that we

must construct in our time-multiplexed model. Ensuring

that no source or destination appears twice ensures that

we will construct a valid permutation. We construct

permutations σ0..n : M → M using the following rule:

• ∀{s, d} ∈ Pm, σm(s) = d

The remaining range of σm represent “don’t-care” val-

ues and so may be chosen in any way that creates a valid

permutation. (It is possible that certain permutations will

be cheaper to implement on an FPGA than others.)

Finally, each permutation should be associated with a

port of the physical module. This module can be time-

multiplexed using standard techniques (Section II-B),

with one additional restriction: the time-multiplexed

module should ensure that NoMessages are sent on

port m for undefined values in the range of σm. This

represents the fact that these output ports do not exist for

a particular virtual instance. The torus/grid discussion in

Section III-C is an example of this phenomenon.

Figure 11 shows an example applying this process to

an arbitrary, irregular topology. First a desired simulation

order is selected (11A). The ports are arranged into

three sets (11B), the fewest possible for this example.

These sets then form the basis of permutations (11C).

The don’t-care values of the permutations can be can be

resolved in any way that creates a legal permutation. The

router is time-multiplexed across 6 virtual instances, and

the virtual instances are arranged to send NoMessage
values on non-existent ports. For example, instance 0

will send NoMessages on two of the output ports, as

the original router 0 only had one output port.

The meaning of undefined values in the permutations

can clearly be seen when we apply the technique to a

star network topology (Figure 12). The resulting time-

multiplexed network has the same number of physical

ports as the grid network, but the permutations them-

selves are different. Each leaf node only contains a subset

of nodes of the hub, and thus will send NoMessage
on ports that do not exist for them. Given this, the

undefined values in the permutations can be filled in

using straightforward modular arithmetic.
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Fig. 12. Multiplexing a star topology results in many undefined values representing non-existent ports.

Fig. 13. A heterogeneous grid, where routers connect to
different types of nodes.

Fig. 14. Time-multiplexing the heterogeneous network via interleaving.

B. Heterogeneous Network Topologies

Thus far we have presented OCNs where all of the

routers are connected to homogeneous cores. This has

kept the examples pedagogically clear, but is unrealistic.

Architects often wish to study multicores such as those

shown in Figure 13, a 3x3 grid that contains a memory

controller, 2 last-level caches, and 6 cores. The cores

and caches will be simulated using time-multiplexing.

How then can we connect them to our permutation-

based grid? The answer is to sequentially multiplex

the streams together, pass them to the time-multiplexed

OCN, and de-multiplex the responses (Figure 14). Unlike

the original de-multiplexing approach presented in Sec-

tion III-A this imposes no difficult routing problem on

the synthesis tools, as the modules being connected are

time-multiplexed physical cores. A key advantage of this

technique is that it requires no changes to the individual

modules—they can be time-multiplexed independently

using established techniques.

This same technique allows for efficient time-

multiplexing of indirect network topologies such as

butterflies, omitted for space considerations.

V. ASSESSMENT

A. Time-Multiplexing versus Direct Implementation

In this section we compare HAsim’s time-multiplexed

approach to Heracles [19], a traditional direct imple-

mentation of a shared-memory multicore processor on

an FPGA. Heracles aims to enable research into routing

schemes by allowing realistic on-chip-network routers

to be paired with caches and cores, and arranged into

arbitrary topologies. Heracles emphasizes parameteri-

zation in an effort to fit in many different existing

FPGA platforms. A comparison of a typical Heracles

implementation and a typical HAsim model is shown in

Figure 15.

We synthesized both configurations using Xilinx ISE

11.5, targeting a Nallatech ACP accelerator [6], which

connects a Xilinx Virtex 5 LX330T FPGA to a host-

computer via Intel’s Front-Side Bus protocol. The result-

ing FPGA characteristics are shown in Figure 16. Her-

acles is specifically made for efficiency, but the FPGA

synthesis tools still have a problem scaling a complete

system with core, cache, and router. This is because

duplicating Heracles’ caches exceeds the FPGA’s Block
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Heracles HAsim
Core

ISA 32-Bit MIPS 64-Bit Alpha
Multiply/Divide Software Hardware
Floating Point Software Hardware
Pipeline Stages 7 9
Bypassing Full Full
Branch policy Stall Predict/Rollback
Outstanding
memory requests 1 16
Address Translation None Translation Buffers
Store Buffer None 4-entry

Level 1 I/D Caches
Associativity Direct Direct
Size 16KB 16 KB
Outstanding Misses 1 16

Level 2 Cache
Size None 256 KB
Associativity None 4-way
Outstanding Misses None 16

On-Chip Network
Topology Grid Grid
Routing Policy X-Y DO X-Y DO

Wormhole Wormhole
Virtual Channels 2 2
Buffers per channel 4 4

Fig. 15. Component features of Heracles and HAsim.

Registers Lookup Tables BlockRAM
Heracles

2x2 44,512 (21%) 33,555 (16%) 328 (101%)
3x3 65,602 (31%) 59,394 (28%) 738 (227%)
4x4 DNF DNF DNF

HAsim (16-way multiplexed)
4x4 120,213 (57%) 165,454 (79%) 88 (27%)

Fig. 16. Scaling a direct implementation versus the multiplexing
approach.

RAM capacity. The synthesis tool was able to complete

even in the presence of overmapping for the 2x2 and 3x3

configurations, but ran out of memory for the 4x4 case.

We estimate that cache sizes would have to be reduced

by a factor of 16 in order to successfully fit onto this

FPGA.

In contrast, despite HAsim’s significantly increased

level of detail, we are easily able to fit a 4x4 multicore

with L1 and L2 caches onto the same FPGA. This is

due to four factors discussed earlier: First, separating the

model clock from the FPGA clock allows efficient use of

FPGA resources (Section II-A). Second, use of off-chip

memory allows large memory structures like caches to be

modeled using few on-FPGA Block RAM (Section II-A).

Third, using a partitioned simulator allows HAsim to

reduce the detail necessary in the timing model (Section

II-A): it is well-known that timing models of caches need

to store tags and status bits, but not the actual data. Most

significantly, the HAsim 4x4 model is actually a single

physical core, single cache, and single router that has

been time-multiplexed 16 ways (Section III).

HAsim is an example of a space-time tradeoff. These

techniques allow us to fit much more detail onto a single

FPGA, paying for scaling by reducing simulation rate.

Since at most one virtual instance can complete the

physical pipeline per FPGA cycle, it takes a minimum

of 16 FPGA cycles to simulate one model cycle. As the

FPGA is clocked at 50 MHz, this gives HAsim a peak

performance of 50/16 = 3.125 MHz, multiple orders

of magnitude faster than software-only industry models

that are comparable levels of detail [8], [13].

B. Case Study: Effect of Core Detail on OCN Simulation

It is not uncommon for architects who wish to study

an OCN topology to reduce the level of detail in the

core pipeline for the sake of efficient simulation. In

such a situation the architect is hoping that the ability to

run an increased variety of benchmarks will offset the

increased margin of error of each run. It our hope that

FPGA-accelerated simulators will present an alternative

to reducing fidelity. This idea is particularly appealing if

the FPGA means that the extra detail has minimal impact

on simulation rate.

In order to evaluate the impact core fidelity can

have on both simulation results and simulation rate, we

modeled 2 multicore systems that differed only in the

core pipelines. The first is a 1-IPC “magic” core running

Alpha ISA that stalls on cache misses, similar to an ar-

chitectural model. The magic core will never have more

than one instruction in flight, and thus never produce

more than one simultaneous cache miss. The second is

the 9-stage pipeline described in Figure 15. This core

does not reflect any particular existing architecture, but

rather is representative of the general result of adding a

higher-level of detail to the simulator.

Each core was then connected to the cache hierarchy

described in Figure 15 and arranged into 4 different grid

configurations: 1x1, 2x2, 3x3, and 4x4. In each case one

of the nodes was occupied by the memory controller, so

the 4x4 configuration consisted of 15 core/cache pairs

and 1 memory controller.

It is well-known that adding more cores to a shared-

memory multicore can degrade the average IPC of each

individual core, as contention on the OCN increases.

This phenomenon represents a typical concern that an

architect would like to characterize for a proposed OCN

topology. We used HAsim to characterize the reported

IPC of the individual cores running a variety of integer

benchmarks, ranging from microkernels like Towers of

Hanoi and vector-vector multiplication, to SPEC 2000

benchmarks gzip, mcf, and bzip2.
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The results are given in Figures 17-19. They demon-

strate that the reported IPC of a particular core varies

0.16-0.48 between the two models. The most variation

was shown by core (1,0) in the 4x4 model—the core

directly south of the memory controller. This is because

in the detailed model the cores south and east of this

core generate more OCN traffic, due to simultaneous

outstanding misses. The dimension-order routing scheme

overwhelms core (1,0)’s ability to serve its local traffic.

In the undetailed model the reduced contention allows

(1,0) to sufficiently warm up its caches to run without

network accesses. An architect studying the detailed

model might conclude to move the memory controller, or

institute a different routing policy—insights that might

be missed when using the magic core.

All in all, these results indicate that high-detail simula-

tion will remain a useful tool in the computer architect’s

toolbox.

C. Scaling of Simulation Rate

Now let us examine how HAsim’s simulation rate

scales as we add cores to the system. The time-

multiplexing scheme means that simulating N processors

has a best-case overall FPGA-cyle-to-Model-cycle Ratio

(FMR) of N , with a best-case per-core FMR of 1.

As a baseline, a single-core model of our processor

takes an average of 19.7 FPGA cycles to simulate a

model cycle across a range of SPEC benchmarks. At first

glance this seems to indicate that simulating N cores

will reduce the FMR to N ∗ 19.7. (FMR would scale

linearly with the number of cores.) However, as noted in

Section II-B, HAsim’s fine-grained multiplexing at the

port granularity means that the modules themselves are

implemented in a pipelined fashion. This pipelining can

lower the impact of time-multiplexing. In the best-case

scenario the FMR of 19.7 would mean that we could

simulate 19 virtual cores without impacting FMR at all,

as we could finish the simulation of a core per FPGA

cycle.

Unfortunately the situation is not so simple. Adding

more virtual cores to the system impacts the per-core

FMR of individual cores. This is because:

• Virtual cores increase cache pressure on the on-chip

BRAM used to model the caches (Section II-A).

This can reduce the FMR of the cores (though

note that it has no impact on the simulation results

themselves).

• The round-robin nature of the multiplexing scheme

described in Section II-B means that when a partic-

ular virtual instance stalls for an off-chip access, the

amount of work the rest of the system can perform

300
FPGA�Cycle�Model�Cycle�Ratio�(FMR)

250

200

1x1

100

150 1x1
2x2
3x3

50

100 3x3
4x4
Linear

0
slow�
down

Fig. 20. Impact on FMR of scaling inorder core to multicore. The
diamonds represent linear slowdown compared to the FMR of a single
core.

Min Max Average
FMR

Overall 16 218 80
Per-Core 5 27 11

Simulation Rate
Overall 160 KHz 3.2 MHz 625 KHz
Per-Core 1.84 MHz 9.5 MHz 4.54 MHz

Fig. 21. Comparing overall simulation rate to per-core rates.

is limited. For example, if we are simulating a 4-

core system and Core 0 has an off-chip access then

we can only simulate Core 1, 2, and 3 before we

are back to 0 and cannot proceed.

Thus in the worst-case simulation rate could actually

scale worse than linearly with the number of cores.

To test this phenomenon we used the time-multiplexed

inorder core scaling between 1x1 and 4x4, as described

in the previous section.

The results of this scaling are shown in Figure 20.

There are several interesting features of this graph that

are worth exploring. First, note that when we scale from

1x1 to 2x2, the performance impact is quite minimal.

In fact, in the case of the wupwise benchmark HAsim

actually achieves the best-case scenario of not reducing

FMR at all. This is because wupwise has a small

working set that exerts very little cache pressure. On

average the additional cache pressure slows the 2x2

simulation by 46% over the baseline. On average, this

is significantly better than linear a slowdown of 300%,

which is indicated by the diamonds on the graph. The

fine-grained pipelining offsets the increased cache pres-

sure, but not completely.

As we scale to 8 and 16 cores the increased cache

pressure begins to have a greater impact. Although on

aggregate we are still scaling better than linear slow-
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down, the difference is clearly reduced. One interesting

case is wupwise, which goes from having the best 2x2

simulator performance to having the worst at 4x4. It

seems that once this benchmark’s working set no longer

fits in the on-chip cache the impact is quite extreme.

A breakdown of per-core FMR and simulation rate

is given in Figure 21. It demonstrates that although the

fastest simulator runs at 3.2 MHz, the average is 625

KHz. However, this rate is because we are simulating so

many cores. The per-core simulation rate averages 4.54

MHz, peaking at 9.5 MHz in the best case.

As simulation rates are almost entirely limited by off-

chip accesses, current research is focused on improving

hit rates in the host memory hierarchy, either by an

improved cache algorithms, or using a hardware platform

with larger on-board DRAMs, or providing faster access

to host memory. An alternative approach would be to

loosen the round-robin multiplexing in order to keep

the FPGA busy longer when off-chip accesses occur.

Currently, no scheme is known that results in better

performance at an acceptable hardware cost.

VI. CONCLUSION

Time-multiplexed simulation of detailed multicores

using FPGAs represents a new tool in the architect’s

toolchest of simulation techniques. By trading space-

savings for sequentialized simulation, it allows the pos-

sibility to free up substantial FPGA area. This critically

limited resource can then be utilized to increase fidelity

without negatively impacting simulation rate.

Alternatively, a natural extension of the techniques

presented in this paper is to store the state of the vir-

tual instances off-chip. Careful orchestration of memory

accesses should be able to bury much of this latency

and keep the physical pipeline busy. Currently we are

aiming to use the techniques discussed here to model a

thousand-node on-chip network using only a single time-

multiplexed FPGA.
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