
1

FASHION: Fault-Aware Self-Healing Intelligent
On-chip Network

Pengju Ren, Member IEEE , Michel A. Kinsy, Member IEEE , Mengjiao Zhu, Shreeya Khadka, Mihailo Isakov,
Aniruddh Ramrakhyani, Tushar Krishna Member IEEE and Nanning Zheng, Fellow IEEE

Abstract—To avoid packet loss and deadlock scenarios that arise due to faults or power gating in multicore and many-core systems, the network-on-
chip needs to possess resilient communication and load-balancing properties. In this work, we introduce the Fashion router, a self-monitoring and
self-reconfiguring design that allows for the on-chip network to dynamically adapt to component failures. First, we introduce a distributed intelligence
unit, called Self-Awareness Module (SAM), which allows the router to detect permanent component failures and build a network connectivity map.
Using local information, SAM adapts to faults, guarantees connectivity and deadlock-free routing inside the maximal connected subgraph and keeps
routing tables up-to-date. Next, to reconfigure network links or virtual channels around faulty/power-gated components, we add bidirectional link and
unified virtual channel structure features to the Fashion router. This version of the router, named Ex-Fashion, further mitigates the negative system
performance impacts, leads to larger maximal connected subgraph and sustains a relatively high degree of fault-tolerance. To support the router, we
develop a fault diagnosis and recovery algorithm executed by the Built-In Self-Test, self-monitoring, and self-reconfiguration units at runtime to provide
fault-tolerant system functionalities. The Fashion router places no restriction on topology, position or number of faults. It drops 54.3∼55.4% fewer
nodes for same number of faults (between 30 and 60 faults) in an 8x8 2D-mesh over other state-of-the-art solutions. It is scalable and efficient. The
area overheads are 2.311% and 2.659% when implemented in 8x8 and 16x16 2D-meshes using the TSMC 65nm library at 1.38GHz clock frequency.

F

1 INTRODUCTION

With advances in semiconductor technology, continued scal-
ing and integration of transistors have allowed more system
functions to be implemented on chip. The current state-
of-the-art in computer architecture design is multicore and
many-core systems. A growing number of these systems is
being built with 48 [1], 64 [2], 80 [3], 100 [4], 256 [5]
and 4096 [6] cores. In these architectures, processing cores
are connected together using a variety of fabric interconnect
technologies. Network-on-chip (NoC) has emerged as the de
facto communication fabric in large multicore and many-core
architectures [7] [8], primarily due to the lack of scalability
associated with bus-based communication infrastructures [9].
The modular structure of NoCs supports more concurrent
communications and makes them more flexible for different
application communication demands, quality of service (QoS)
guarantees and resiliency constraints [10].

As technology scales to the 10-nm regime, the extreme
shrinking of transistor feature size and diminishing supply
voltage are making circuits more sensitive to manufacturing
process and environmental variations [11] [12]. These new
semiconductor devices are highly susceptible to early manu-
facturing defects, and also to latent defects because of time-

• Pengju Ren, Mengjiao Zhu and Nanning Zheng are with the
Xi’an Jiaotong University, Xi’an, Shaanxi, P.R.China, 710049. E-mail:
pengjuren@mail.xjtu.edu, nnzheng@mail.xjtu.edu.cn.

• Michel Kinsy, Shreeya Khadka and Mihailo Isakov are with the Department
of Electrical and Computer Engineering at the Boston University, MA
02215, U.S.A. E-mail:mkinsy@bu.edu.

• Aniruddh Ramrakhyani and Tushar Krishna are with the School of Elec-
trical and Computer Engineering at the Georgia Institute of Technology,
GA 30332, U.S.A. E-mail:tushar@ece.gatech.edu

dependent degradation and material wear-out, such as oxide
breakdown, negative-bias-temperatur-instability (NBTI),
channel-hot-carrier (CHC) and time-dependent-dielectric-
breakdown (TDDB) [13]. Positive-bias-temperature-instability
(PBTI) on NMOS has also become more pronounced because
the adoption of high-k gate dielectric [14].

The ability of chips to self-monitor and to self-reconfigure in
the presence of faults throughout their lifetime is an important
design paradigm going forward [15]. Dynamic hardware-
supported fault-detection algorithms are being implemented
[16]. Systems, where architecture states and systems param-
eters are periodically copied and stored to allow rollbacks
with built-in restoration mechanisms, have been proposed [17].
Beyond hardware solutions, software approaches that can be
used to complement hardware functions and further mitigate
fault-induced system performance impacts have also been
suggested [18] [19] [20] [8].

Unfortunately, the Network-on-Chip (NoC) layer of the
architecture is not immune to these effects. In fact, since the
NoC provides connectivity between the various components
of the system, fault-tolerance has become an essential feature
that must be brought to the forefront of the NoC design.
It is important to maximize the on-chip resource utilization
throughout the lifetime of multicore and manycore systems
when the reduction of component reliability is unavoidable.
Router microarchitectures and routing techniques that are more
resilient to component failures and guarantee a higher degree
of node connectivity have started being investigated [21]–[23].
Router/link faults in NoCs change the underlying topology.
This introduces three key challenge for fault-tolerance: (1)
Deadlocks: The disconnection of certain routers and links
can lead to cyclic dependencies between network resources,
leading to a network deadlock. To avoid deadlocks, cyclic

ar
X

iv
:1

70
2.

02
31

3v
1

 [
cs

.A
R

]
 8

 F
eb

 2
01

7

2

dependencies in the channel dependency graph of each new
topology need to be removed. (2) Performance: Faults lead to
a loss of path diversity in the NoC, and higher congestion for
certain paths. Adaptive routing [24] [25] can mitigate some of
these effects, but have to remove certain channel dependencies
or prohibit certain routing paths, which reduces routing path
diversity even further [26]. (3) Scalability: As we add more
cores in a system, the size of the NoC grows and warrants a
distributed solution since centralized solutions are not going
to scale.

The key contribution of this work is a holistic and scalable
NoC reliability solution called Fault-Aware Self-Healing In-
telligent On-chip Network (FASHION) that address all three
challenges listed above. We introduce a distributed intelli-
gence unit called Self-Awareness Module (SAM), that allows
the router to (1) automatically detect permanent component
failures and generate a network connectivity graph through a
distributed spanning tree search algorithm with computational
complexity of O(|L|), where L is the link number in the
network, (2) implement in-hardware self-adjusting techniques
to guarantee connected and deadlock-free routes inside the
maximal connected subgraph with computational complexity
of O(|R||L|), where R is the number of nodes in a network,
and (3) support the adoption of bidirectional links and unified
virtual channel structure to further strengthen the network
connectivity and sustain a relatively high degree of fault-
tolerance. This work merges these concepts together to provide
a robust and practical solution for mitigating fault-related
system performance degradation.

FASHION can also be extended to the NoC power gating
domain where links and routers are power-gated to reduce
NoC static power dissipation. Several previous works [27]–
[29] have come up with innovative power-gating techniques to
selectively power-gate low utilization NoC components while
providing minimal disruption to the NoC traffic. Power-gating
of links and routers, however, creates deadlock-prone irregular
topologies that change dynamically, thereby introducing the
same performance and deadlock challenges listed earlier. This
work proposes a new re-configuration algorithm that provides
deadlock-free paths in an arbitrary irregular topology and can
thus be leveraged by existing works in NoC power-gating
domain to further strengthen their schemes.

The rest of the paper is organized as follows. Section 2
highlights the related works. The effects of faults on net-
work connectivity in NoC-based architecture are introduced
in Section 3. Router micro-architecture details are presented
in Section 4. Section 5 describes the Fashion fault detection
and reconfiguration algorithm. Section 6 presents the extended
Fashion architecture. Evaluations and discussions are pre-
sented in Section 7. Finally, Section 8 concludes the paper.

2 RELATED WORK

Modern computer architectures already implement a variety of
mechanisms to improve system reliability. Existing approaches
for NoC resilience are either on-line or off-line. Off-line
reconfiguration algorithms [30] [31] [32] use knowledge of
the underlying network topology to compute routing decisions.

On-line solutions are implemented in hardware under a tight
area and power budget and can leverage the on-chip resources
to run both detection and recovery programs. On-line solu-
tions are more attractive than off-line solutions, because they
generally consume fewer resources and have better scalability
and computational efficiency. The Fashion architecture uses
an on-line fault-tolerance approach.

A large number of fault-tolerant routing algorithms have
also been proposed. Immunet [33] is able to tolerate any
combination of faults as long as the network is connected.
Fick et al. introduced a low overhead routing algorithm named
Vicis [34], Gomez et al. provided an intermediate node based
fault-tolerant routing by using escape virtual channels in each
phase [30], Ariadne [35] leveraged Up*/Down* routing [36],
which assigned each link either “up” or “down” direction and
disallowed transmission from “down” to “up” to break cyclic
dependencies. A distributed and lightweight fault-tolerant rout-
ing algorithm, named Hermes [37] was proposed by Iordanou
et al.. It applies XY- or O1TURN-routing for high throughput,
while choses the Up*/Down* routing rule to ensure acyclic
path formations to avoid deadlock and achieve fault-tolerance.

Sylvester et al. [19] claimed that an on-line self-
organization mechanism is crucially important to improve
the effective yield throughout the lifetime of SoCs. The
ForEVeR algorithm [38], applies formal methods and runtime
verification to ensure functional correctness in NoCs. Murali
et al. demonstrate that hybrid error detection and correction
mechanisms provide better performance [39]. A recovery
mechanism named DRAIN was introduced in [20] to provide
system-level recovery for any number of disconnected nodes
caused by permanent failures by sending the architectural state
and dirty cached data from disconnected nodes to healthy
caches nearby to reduce the effects of failures.

Other architecture level improvements for NoC reliability
have been studied. Kim et al. proposed a row-column decou-
pled router [40], which employed decoupled parallel arbiters
and small crossbars. Palesi et al. introduced a scheme to effi-
ciently use partially-faulty links [41]. NoCAlert [42] is an on-
line and real-time fault detection mechanism which operates
seamlessly and concurrently with normal NoC operation.

Recently, Parikh et al. proposed a fine-resolution detection
and reconfiguration strategy to cope with permanent faults,
named uDIREC in [23]. Similar to prior work by Shamshiri et
al. [43], uDIREC uses a “supervisor” node to make detection
decisions and stores the topology information in a software-
maintained scoreboard at that node. It then applies Up*/Down*
routing [36] to guarantee deadlock avoidance. In Up*/Down*
routing, all links are tagged as Up or Down relative to a root
node, and a message is not allowed to make Down to Up
turns. In order to maximize network connectivity, uDIREC
needs to implement the breath-first search in software and
discover the optimal solution via an exhaustive search of the
“root” node. We find that the Up*/Down* routing scheme
disables a large percentage of turns to break cycles which
lower routing options and sacrifice network performance,
because there are only two type of turns (“up-to-down” and
”down-to-up”). In contrast, compared with uDIREC, Fashion
only need to be executed once to detect the connectivity of

3

the underlying network. Also, our experimental results show
that the Fashion architecture is more efficient in terms of
computation complexity, scalability and the degree of fault
tolerance. According to our experiments (see Section 7), the
average percentage of forbidden turns of Fashion is 14.1%
less than Up*/Down* routing.

In the NoC power-gating domain, NorD [27] a recent work,
uses a high-latency ring snaking through the network as the
escape path. Packets are routed adaptively till their mis-routed
hop-count increases beyond a certain threshold upon which
they are forced to enter the escape path. Router-parking [28]
replaces the high latency ring of NorD with an escape-path
constructed using up-down routing. Deadlocks in this scheme
are detected using counters and one Virtual Channel per
Virtual Network per Input port is always kept reserved for
the escape path. Panthre [29] does away with the escape-path
and instead uses Up*/Down* routing for all the VCs. However,
as pointed out earlier, Up*/Down* routing provides deadlock-
freedom at the cost of significant reduction in path diversity.
In addition, certain traffic flows are forced to use non-minimal
paths leading to increased latency and energy consumption. In
contrast, FASHION provides 4.80%, 6.06% and 14.67% lower
latency to traffic on average compared to up-down routing
at 5, 10 and 15 power-gated links respectively. Moreover,
it provides low re-configuration time which is very useful
to schemes in NoC power-gating domain as power-gating
decisions are taken every epoch (usually 10K cycles), thus
requiring the network to be re-configured every epoch if there
is a change in the active topology.

3 EFFECTS OF FAULTS ON NETWORK CONNECTIV-
ITY IN NOC-BASED ARCHITECTURES

For the communication infrastructure to dynamically iden-
tify components with permanent or transient faults and to
autonomously self-reconfigure, the network router needs to
exhibit some inner intelligence. To describe the Fashion archi-
tecture and its functionality, we begin by giving the standard
definitions for network channel graphs and cut-elements.

Definition 1: Given a network-on-chip characterization
graph G = G(R,L), where the routers and links in the network
are given by the sets R and L, ri ∈ R represents the router
associated with processor element i, while each arc li, j ∈ L
represents a link from ri to r j. For a given G, two vertices
i and j are called connected elements if G contains a path
from i to j; graph G is said to be connected if every pair of
vertices in G is connected; A cut vertex of G is a vertex whose
removal results in a disconnected G; A cut edge of G is an arc,
whose removal disconnects G. Together cut vertices and cut
edges form cut elements and are critical to the connectivity
of G.

Definition 2: A rooted acyclic graph is a graph in which
one of the vertices is distinguished from the others. This
particular vertex is called the root of the graph. In a rooted
graph G with root rroot , any node j on the unique path from
rroot to a node i is called an ancestor of i, and i is called a
descendant of j. If the last edge on the path from the root
rroot of the graph G to a node i is (j, i), the j is the parent of

0 5 10 15 20 25 30 35 40 45
Number of faults

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
of

fu
lly

co
nn

ec
te

d
ne

tw
or

k
(%

)

0

5

10

15

20

25

N
um

be
ro

fc
ut

-e
le

m
en

ts

8x8 2D Mesh
8x8 2D Torus
16x16 2D Mesh
16x16 3D Torus

Fig. 1. Relationship of number of permanent faults and net-
work connectivity and number of cut elements. 2D-Meshes with
uniform-random faults distribution and the ratio of fault links and
fault nodes is 24:1 [23], the dotted curves represent the number
of cut-elements.

i, and i is called a child of j, denoted i = jchild and j = iparent .
If two nodes have the same parent, they are siblings; a node
with no children is a leaf.

As stated in the Definition 1, a cut-element is an element
whose removal breaks network connectivity and an element
may be a vertex or an edge. The connectivity of a network
graph G dictates path diversity and routing choices in the NoC.
Node pairs can only communicate if they belong to the same
connected subgraph. The vertex set V cg = {G1,G2, ...,Gk}
contains all the connected subgraph Gi of G, the maximal
connected subgraph Gmax is the one with the maximal
number of vertices. The V cg is completely determined by the
topology of the G.

uDIREC [23] performed a study where stuck-at faults were
injected in a 5-ports wormhole router, in a spatial distribution
proportional to the silicon area of gates and wires. Their
analysis revealed that 96% of faults affect only a small fraction
of the router logic. Furthermore, the effects of these faults
can be entirely masked by disabling and re-routing around a
single router link (e.g. error in the input buffer). The other
4% of faults can cause the entire router to fail. These faults
often involve the router’s control logic or critical components
like the arbiter or crossbar. Therefore, in the simulation
results presented in this paper, we assume a uniform-random
distribution of faults with the ratio of faulty links to faulty
nodes as 24:1.

Fig 1 shows the connectivity impacts of different percent-
ages of faulty components/routers for different sized networks.
Unpredictable faults may occur at any place in the network,
thus we assume a uniform-random distribution of faults over
silicon area. The results presented are the average outcome
from 100,000 simulations for each case using the HORNET [44]
simulator. For a medium sized 64-node 2D-Mesh network,
there are roughly 6 cut elements out of 30 faults. This
corresponds approximately to 14.73% of network connectivity
loss. Fig 1 highlights the relationship between average number
of cut elements and the percentage of fully connected network.
Notice that the maximal connected subgraph (Gmax) normally
forms an irregular graph, which cannot guarantee all the node-
pairs in the Gmax are able to communicate with each other,

4

Route
Computation

VC
Allocation

Switch
Allocation

BIST
Unit

Monitoring
Unit

Reconfiguring
Unit

VC

VC

Crossbar

Input port Ouput port

Self-Awareness Module

Fig. 2. Fashion: Fault-Aware Self-Healing Intelligent On-chip
Network router.

because the practical connectivity is determined both by the
topology of Gmax as well as the routing algorithms [45]. We
will show that Fashion ensures connectivity inside the Gmax

in Section 5.3.
Network connectivity decreases at a faster rate with an

increasing number of faults. The need to maximize on-chip
resource utilization becomes accentuated with decreasing net-
work component reliability. Hence, (1) determining whether
defective components are cut elements of the network and
identifying connected subgraphs of a disconnected NoC and
(2) mitigating their negative impact on network performance
by reconfiguring the NoC and maintaining network connectiv-
ity are at the core of Fashion’s fault-tolerance scheme. ‘

4 FASHION ROUTER ARCHITECTURE

4.1 Micro-Architecture of Self-Awareness Module

In conventional wormhole virtual-channel routers [46], the
routing operation generally takes four steps; namely, routing
(RC), virtual-channel allocation (VA), switch allocation (SA),
and switch traversal (ST), where each phase corresponds to
a pipeline stage in the router. In Fashion, the architecture
is augmented to support runtime self-monitoring and self-
reconfiguration. Figure 2 depicts the Fashion architecture.
The key architectural modification is the introduction of the
Self-Awareness Module (SAM). The module contains a Built-
In Self-Test (BIST) unit, a Self-Monitoring unit and a Self-
Reconfiguration unit. Network SAMs also generate network
probing traffic. SAM is out of the critical path of the NoC
router, each unit is active only during its specific working
period and disabled with power-gating in other cases to reduce
power and wear-out faults.

4.2 Self-Monitoring unit

The Self-Monitoring module monitors and captures on-chip
network events. It has an embedded neighbor list table used to
record the states of its immediate neighbors and its relationship
with them. Each entry in the table corresponds to a port, for a
2D-Mesh/Torus network, there are four entries in the table. The
bridge entry is set to “1” if the link connecting the port to a
neighbor is detected as a cut edge, cf., LEMMA 2 in section 5.2.
The valid entry indicates whether or not a neighbor exists
or is temporally out-of-service (e.g. due to power-gating) or

MinMin

0
1'R'

0
1

0
1'R'

0
1'R'

min(k1depth, k2depth...)
 k1,k2... ineighbot\iparent

Min

0
1

'R'

0
1

'R'

0
1

'R'

0
1

'R'

min(l1low, l2low...)
 l1,l2 ... ichildren

root

 Counter

 depth
 low
 cut

M Comp
>=2

Max

Comp
<=

1

0

number of ichildren

Comp
<

 Valid(1'b) Parent(1'b) Child(1'b) Bridge(1'b)

0
1

'1'

0
1

'1'

0
1

'1'

0
1

'1'

0
1

0
1

0
1

0
1

'0'
'0'

'0'
'0'

'1'
'1'

Counter during forward searching

max(l1low, l2low...)
 l1,l2 ... ichildren

idepth

Low values from neighbors
during backward searching

depth values from neighbors
during forward searching

lows from Children

depths from
neighbors\parent

'R'

Comp
<

Comp
<

Comp
<

Direction of
forward message

Direction of
valid message

'1
'

'1
'

Direction of forward message
 (selecting child)

'1
'

W

S

E

N

W

S

E

N

W

S
E

N

2

 Counter
Comp

>

 root

‘1’ means all the children of root are VISITED,
depth-first searching is finished;

'0' means still exist UNVISITED children at root

Remining numbre of nodes >2,
So reset and launch
another around of

depth-first searching
for Self-reconfiguation

VISITED node(except root)
should have a parent.

'0' means current
node is UNIVISTED;

'1' means current node
is VISITED

BIST
Unit

Monitoring
Unit

Reconfiguring
Unit

Fig. 3. Micro-architecture for the Self-Monitoring Unit.

5

`0`(or`1`) represents this turn

is forbidden(or permitted).

valid 1 bit

∑
=

=

1

2

1

2

E

W

S

N

1

1

SN/NS

WS/SW

WN/NW

ES/SE

EN/NE

EW/WE
W

E

S

N

From
To

X

1

0

0

W

1

X

0

0

E

0

0

X

1

S

0

0

1

X

N

Set
turn

model

 parent(1'b) child(1'b) bridge(1'b) valid(1'b)

W
S
N

E

Node-based routing Table

Current node is leaf node if there is only one 'valid’neighbor in the table.
 Assuming current node is x , and valid neighbors are i and j, then forbidding turns in format of
(i,x,j) and (j,x,i).

1

2

BIST

Unit

Monitoring

Unit

Reconfiguring

Unit

Fig. 4. Self-Reconfiguring Unit overview.

permanently removed from the network. Figure 3 shows the
Self-Monitoring micro-architecture.

The Self-Monitoring module initiates periodic runs of the
BIST module by built-in timer. It can also be launched by
OS to obtain connectivity information before assigning new
applications (or threads) to available processing elements.
When the BIST unit detects a fault, the Self-Monitoring unit
is responsible for determining the criticality of the affected
component in the network. It does this by building a network
connectivity map and labeling all of the cut-elements through a
fully distributed depth-first search algorithm. The details of the
algorithm are presented in Section 5.2. It has a one-bit status
register named cut used to label a given router component as a
cut-vertex or not, a built-in combinational circuit to determine
cut values, cf., LEMMA 2 in section 5.2, and a one-bit status
register, assigned at the beginning of the depth-first search,
to indicate whether or not the component is root. The Self-
Monitoring’s responsibility is to monitor network activities
and to record fault induced topology changes and network
connectivity. It is also responsible for sending and forwarding
potential lost packet messages to neighboring routers for
retransmission after self-healing reconfiguration.

4.3 Self-Reconfiguring unit

The Self-Reconfiguring block shares the Self-Awareness Mod-
ule’s neighbor list table with Self-Monitoring unit and updates
it with prohibited routing turns based on the new network
connectivity graph constructed by the Self-Monitoring unit.
Figure 4 depicts the functional view of Self-Reconfiguring unit.

The number of valid neighbors in the table represents the
degree of the current node, a node can be detected with
no propagating effects if the number of valid neighbors is
1. Routing algorithms, both source routing and node-table
routing, forbid turns to prevent deadlock [47] [48]. In the
Fashion architecture node-table routing is adopted because
it is more amenable to the distributed decision structure in the
architecture. The lower half of Figure 4 represents an extension
of routing table information; it stores the outgoing ports a
packet should take to reach the next downstream node. If
West-to-South turn is faulty, or disabled for deadlock-freedom
purposes at the current node, then the table entry is set to “0”
to indicate that it is not allowed with ‘W’ and ‘S’ as horizontal
and vertical indexes. The table entry is set to “1” when the

Reconfiguring
Unit

Monitoring
Unit

BIST
Unit

Test Control
Generator

Router Response
Analysis Module

BIST
Control
Sub-unit

Fig. 5. Built-In Self-Test Unit overview.

turn is permitted. The comparator circuits are used to test the
number of valid neighbors to a given node in the network.

In general, node-table based routing may lack scalability.
However, the node-table inside the Self-Monitoring unit is
designed to store information about permitted (or forbidden)
turns at the router. This approach is different from the con-
ventional node-table based routing, where the router generally
contains routing information for all the flows that pass through
it. Therefore, our node-table size remains constant for the same
topology, even with different network sizes.

When a new permanent fault is detected by the Self-
Monitoring unit and it must be reflected in a modified topol-
ogy. The Self-Reconfiguring unit will be triggered when the
newly discovered fault is identified as a cut-element. The
details of the algorithm are introduced in Section 5.3.

4.4 Built-In Self-Test unit

The embedded Built-In Self-Test (BIST) unit is very standard.
It sends test signatures to its neighbors and compares received
signatures from different directions. If for a given period
of time, the BIST unit receives no signature response from
a neighbor or notices that the received acknowledges are
different, then it labels the node as disconnected and sets the
“valid” bit of the corresponding neighbor list table entry to
“0”. Having a BIST block located in each router not only
decouples the processor element testing from the router [49]
[43], but it also allows the unit to be used by Self-Monitoring
unit to probe links and router internals status. Figure 5 shows
the BIST unit in the Fashion architecture.

The BIST unit can also be used in the NoC power-gating
domain. A neighbor that is power-gated will be unresponsive
and act like a transient fault. The remaining steps of the
Fashion design remain the same. When the neighbor is turned
on again, it will be added back to the connected sub-graph and
the reconfiguration algorithm run again. Thus, without loss
of generality, we present our analysis assuming unresponsive
elements are due to faults.

6

5 FASHION FAULT DETECTION AND RECONFIGURA-
TION ALGORITHM

In this section, we present the fault diagnosis and recovery
algorithm executed by the Built-In Self-Test, Self-Monitoring,
and Self-Reconfiguration units. The root of the graph cor-
responds to the System Manager and is always active. The
algorithm starts and terminates at the root node. The root
node is selected in a manner that maximizes its degree. The
average degree of a graph G is d(G) = 1

|V | ∑v∈V d(v) and
δ(G)≤ d(G)(v)≤ ∆(G), where δ(G) and ∆(G) are the mini-
mum degree and maximum degree of the Graph. This selection
method improves the root node’s aliveness and connectivity
probabilities.

5.1 Fault Detection and Classification Algorithm

The Self-Monitoring unit periodically executes the BIST
unit. When a new failed component is detected. The Self-
Monitoring needs to verify whether the underlying network
is still connected. Tarjan [50] introduced a central cut vertex
detection scheme using depth-first search. However, Tarjan’s
approach is not able to detect cut edges and is not suitable
to directly implement in a distributed system such as a NoC.
The Fashion detection algorithm works in a distributed mode
and simultaneously detects both cut vertices and cut-edges for
dynamically changing network topologies. The algorithm is
executed at network SAMs layer.

5.2 Self-Monitoring Algorithm

The Self-Monitoring procedure has two phases:
1) Construct the depth first tree: During the depth-

first traversal the positions and relationships of network
nodes and links are recorded;

2) Identify the cut elements and connected subgraphs:
Nodes and edges are identified and labeled whether they
are cut vertices and cut edges according to their location
established during the search.

For a node i, idepth is the distance from the node to root;
ilow is the minimal depth value among the node, its non-parent
neighbors and the minimal low value of its children:

ilow = min(idepth,min(k1depth ,k2depth ...),

min(l1low , l2low ...)) (1)

Where, k1,k2, ... ∈ ineighbors \ iparent , and l1, l2, ... ∈ ichildren.
Construction of the depth first tree: This procedure is

initiated and terminated at both the root node. The counter
records number of connected components after the execution.
Each node is either UNVISITED or VISITED during the process.
Already explored nodes are marked as a child of previous
visited node, in other words, there is one and only one parent
entry in the neighbor list table set to 1 at a VISITED node.
Thus the parent entry state implicitly indicates whether the
current node is VISITED or not.

At the beginning, all the vertices of the network are UNVIS-
ITED and all the variables are initialized (noted as xcut = True,

xroot = False, xdepth = xlow = N, counter = 0, xparent = Null,
xchild = Null and xneighbors contains the node ids of all its one-
hop neighbors, the latter three pieces of information are stored
in neighbor list table, N is the number of total nodes). From
the hypervisor or the system manager, the operating system
launches the construction of depth first tree.

The source vertex i is marked as the root (iroot = True), then
idepth is also updated (idepth = 0) and the counter is set to 1.
Vertex i executes forward search to explore UNVISITED nodes
as “deep” as possible, i sends a forward message to one of its
UNVISITED neighbor j in the neighbor list table and marks j
as i’s child (ichild = j) and passes idepth and counter to j. At
node j, i is marked as j’s parent (jparent = i) and the update
jdepth = idepth + 1 is performed. The counter variable is also
incremented by one (counter = counter+1).

The exploration of unvisited neighbors at j is then launched.
When j does not have any UNVISITED neighbors, it executes
the backward search to discover UNVISITED neighbors of
jparent (i). It updates low values of all the nodes along the
backward paths. Figure 3 shows the “neighbor-to-neighbor”
communication infrastructure and how recording and updating
of all the necessary informations are done during the depth first
tree searching.

During the backward search, j sends a backward message
to i(jparent). If vertex i is the root and all of its children are
already explored, then the depth-first search algorithm has
walked through all the vertices belonging to the depth first
tree. If i is a non-root vertex and there are no UNVISITED
nodes inside ineighbors, the algorithm moves up to i’s parent
and ilow is updated according to formula (1). The ilow value
is passed to iparent and depth-first search at iparent continues
until all the vertices are visited. The connected subgraph ini-
tialized from the hypervisor represents the maximal connected
subgraph, also called the connectivity map of network. The
other UNVISITED nodes are disconnected from the system
manager and are labeled as out-of-service, since they cannot
be reached or used. The gray components in Figure 3 show the
backward search logic, including the comparison operation in
formula (1) and the setting of the cut-bit. In Section 6, we
further demonstrate how the connectivity of the network can
be improved by leveraging the bidirectional links and unified
virtual channels.

Criterions to identify cut elements Assuming Gπ =(R,Lπ)
is the depth-first forest of G, then the following two rules are
used to classify the system nodes as cut or non-cut elements
[51]. A back edge is an edge that directly connects a node
to its ancestor, and there also exists another path from its
ancestor to the node itself through tree edges.

• LEMMA 1. Cut vertex detection: For a vertex i, icut =
True if (iroot = True) & (number of ichildren ≥ 2), or
(iroot = False) & (∃ j ∈ ichildren, idepth ≤ jlow);

• LEMMA 2. Cut edge detection: For an edge (i, j), where
jparent = i, (i, j)bridge=True if and only if ((i, j) is a tree
edge) & (idepth < jlow).

Proof of LEMMA 1 (cut-vertex detection): The first part of
LEMMA 1 is obvious, if i is root and it has multiple children,
it is the cut-vertex and vice versa.

7

I J K L

DCBA

HFE G

DFS direction W—S—E—N

G is a fault node
(J,K) and (L,H) are fault links

(a)

2

A

B

1

C

D

H

F

E

I

J

d=1 l=0

d=4 l=4

d=3 l=3

d=2 l=2

d=5 l=2

d=4 l=2

d=3 l=0

d=2 l=0

d=0 l=0

(p)

2

A

B

1

C

D

H

F

E

I

J

d=4 l=4

d=3 l=3

d=2 l=2

d=5 l=2

d=4 l=2

d=3 l=0

d=2 l=0

d=1

d=0 l=0

(o)

2

A

B

1

C

D

H

F

E

I

J

d=4 l=4

d=3 l=3

d=2 l=2

d=0 l=0

d=1

d=2

d=5 l=2

d=4 l=2

d=3 l=0

(h)

(n)

2

A

B

1

C

D

H

F

d=4 l=4

d=3 l=3

d=2 l=2

d=2

d=1

d=0 l=0

(h)

2

A

B

1

C

D

H

F

E

d=4 l=4

d=3 l=3

d=2 l=2
d=2

d=3

d=0 l=0

d=1

(i)

2

A

B

1

C

D

H

F

E

Id=4 l=4

d=3 l=3

d=2 l=2
d=2

d=3

d=4

d=0 l=0

d=1

(j)

2

A

B

1

C

D

H

F

E

I

J

d=4 l=4

d=3 l=3

d=2 l=2
d=2

d=3

d=4

d=5

d=0 l=0

d=1

(k)

2

A

B

1

C

D

H

F

E

I

J

d=4 l=4

d=3 l=3

d=2 l=2
d=2

d=3

d=4

d=5 l=2

d=0 l=0

d=1

(l)

2

A

B

1

C

D

H

F

E

I

J

d=0 l=0

d=1

d=4 l=2
d=3

d=2 4

d=5 l=2

d=4 l=4

d=3 l=3

d=2 l=2

(m)

2

A

B

1

C

D

Hd=4 l=4

d=3 l=3

d=2 l=2

d=1

d=0 l=0

(g)

d=2

2

A

B

1

C

D

Hd=4 l=4

d=3 l=3

d=1

d=0 l=0

3

(f)

2

A

B

1

C

D

H
d=4 l=4

d=1

d=2

d=3

d=0 l=0

(e)

d=1

d=2

d=3

A

B

1

C

D

H d=4

d=0 l=0

(d)

A

B

1

C

d=1

d=2

d=0 l=0

(c)

A
ROOT
d=0 l=0

For root:set d(depth)=0,l(low)=0
For nonroot:

2 in picture represent that if current node has no unvisited neighbor nodes ,do backward process of DFS and set low(l) of current node.
 in picture represent that if current node has a unvisited neighbor node ,do forward process of DFS and set depth(d) of current node.1

 in picture are the way to set low(l),through comparing the depth(d) of current node and the low(l) or depth(d) ofneighbors except parent,the min number is the low of
current node.when we make sure the low of current node,we will compare the depth(d) of current node and the low(l) of his child,if there is current.d<=current_child.l,the current
node is a cut vertex. If there is current.d<current_child.l,the link (current,current_child) is a bridge.

3 4and

A

B

1
d=0 l=0

d=1

(b)

2

A

B

1

C

D

H

F

E

I

J

d=1 l=0

d=4 l=4

d=3 l=3

d=2 l=2

d=5 l=2

d=4 l=2

d=3 l=0

d=2 l=0

d=0 l=0

(q)

Fig. 6. Illustrative example of the classification procedure. Node A is the hypervisor that holds the operating system, node B, C,
D are cut vertices, and edge (B,C), (C,D), (D,H) and (L,K) are cut edges. The cut components are heavily shaded. The depth first
tree contains nine vertices. The search started and terminated at root A. The other two vertices K and L are disconnected to node
A and are labeled as out-of-service.

Let us consider the case where i is a non-root cut vertex.
There ∃ j ∈ ichildren and there is no back edge from j or any
descendant of j to a proper ancestor of i. Thus, idepth¡ jdepth
and idepth is less than the depth value of any neighbor of j.
If jchildren 6= Ø and ∀m ∈ jchildren, then there is no back edge
from m to any ancestor of i since m is also a child of i. It
follows that idepth ≤ mlow. Otherwise, if jchildren = Ø, j will
be a leaf node and idepth ≤ jlow.

The proof of the converse, idepth ≤ jlow goes as follows:
according to the definition of low, (a) idepth ≤ jdepth, (b)
idepth ≤ ndepth, ∀n ∈ jneighbors \ i, and (c) idepth ≤ mlow, ∀m ∈
jchildren. Statements (b) and (c) guarantee that no back edge
from j (j = ichild) or any descendant of j to a proper ancestor
of i. �

Proof of LEMMA 2 (cut edge detection): If edge (i, j)
is a cut edge, then idepth = jparentdepth ¡ jdepth. According to the
property of cut edge, (i, j) does not lie on any cycle, thus there
is no edge from jneighbors and jchildren to iancestor. Therefore,
jlow = jdepth¿ilow.

To prove the converse, let us assume that (i, j) is the tree
edge and idepth ¡ jlow, then according to formula (1), we have:
(a) jdepth¿idepth, because jparent = i; (b) min(mdepth)¿
idepth, ∀m ∈ jneighbors \ jparent , there is no back edge from
jneighbors to ancestor of i; (c) min(nlow)¿idepth, ∀n ∈ ichildren,
there is also no path connecting jchildren to iancestor without
passing through node i. As a result, (i, j) did not form a cycle
and the converse part of the LEMMA 2 is true. �

5.3 Self-Reconfiguring Algorithm

This part of the algorithm is designed to remove deadlock and
preserve the connectivity inside the Gmax. Here, we construct
an acyclic channel dependency graph (ACDG) that breaks
all cycles to avoid in-flight packets becoming trapped in a
cyclic pattern, while preserving connectivity by prohibiting
turns only at non-cut elements. The procedure consists of:

1) Identifying the leaf nodes set Slea f in the Gmax. Every
connected node can independently determine whether or

not it is a leaf node by checking whether the child entry
in its neighbor list table, see Figure 4;

2) Identifying the non-cut vertices set Sncut in the Gmax with
minimal degree (for example, the minimal degree is 2
for 2D-mesh/torus network). This can also be achieved
individually by counting the number of connected neigh-
bors in the neighbor list table. Then, we can forbid turns
in the form of (i,x, j) and (j,x, i) at node x, x ∈ Sncut
(xcut = 0) and i, j ∈ xneighbor. Prohibited turns appear in
pairs and are recorded in the node-based routing table,
see Figure 4;

3) Removing Slea f and Sncut from Gmax by updating the
valid-bit to 0 for all their connected neighbors. Since all
the removed nodes are non-cut vertices, deleting them
does not affect the connectivity of the rest of nodes in
Gmax;

4) Constructing a new Gmax by running another round of
spanning tree search. After that, repeat these procedures
until the remaining vertices number of Gmax is equal to
2 (counter = 2). Notice that, removing non-cut elements
does not affect the connectivity of rest nodes in the Gmax.
The modification of the topology of Gmax will however
change the cut vertex set and degrees of nodes. There-
fore, another around of spanning tree search executed
by Self-Monitoring Unit is needed;

Strictly forbidding turns only at non-cut elements position
will not destroy the connectivity of the network. The proof
for the deadlock-freedom property of the proposed Self-
Reconfiguring algorithm is done by reductio ad absurdum:

It is well known that a routing algorithm is deadlock-
free if the nodes can be numbered and messages can only
traverse nodes in a strictly decreasing (or increasing) order. So,
assuming that the removed nodes in the same iteration have
a unique label, and this label is increased at the beginning of
next iteration. Every node will have a label when the algorithm
is finished. If there is a cycle C in the network, and node K
is with the minimum label(K) in C. Then, there exists a turn

8

(U,K,V) in cycle C, both label(U) and label(U) are greater
than label(k).

However, according to the second procedure 2) in the Self-
Reconfiguring Algorithm, turn (i,K, j) is prohibited, i, j ∈
Kneighbors, which brings a contradiction. Therefore, cycle C
is non-existent. In this way, we guarantee that the self-
reconfiguration procedure supplies a deadlock-free and con-
nectivity guaranteed routing solution inside the maximal con-
nected graph. This property has also been proved by our
experiments.

5.4 Illustrative case of the classification procedure

In this illustrative case, we consider a network consisting of 12
nodes. There are ids associated with each node, see Figure 6.
Fault links (J,K),(K,G),(G,F),(G,C),(G,H) and (H, l) are
marked with dashed lines. Cut elements and cut edges are
shaded. The classification routine takes 22 steps to complete.
At the beginning, A is selected as the root followed by a visit to
node B and the update Bdepth = Blow = 1, shown Figure 6(b).
The search continues until it reaches H, where there is no
UNVISITED neighbor. A backward search is then initiated with
the appropriate updates Hlow = Hdepth and Dlow = 3 (D is
Hparent) - Figure 6(e). In Figure 6(g), the backward search
reaches node B and discovers node F not yet visited.

A new forward search starts and the update Fdepth =Bdepth+1
is made. The forward search reaches node J, where a back
edge connects J and F , and Jlow is set equal to Fdepth = 2
- Figure 6(k). The next step is a backward move to update
Ilow = Jlow = 2 - Figure 6(l). At node E, the algorithm discov-
ers that edge (A,E) connects E to the root, and the result is
Elow = min(Edepth,Adepth, Ilow) = min(3,0,2) = 0 according to
formula (1), shown in Figure 6(m). The depth first tree rooted
at A has 9 vertices - Figure 6(p), which forms the maximal
connected subgraph. There are still UNVISITED (disconnected)
nodes K and L in the network, which are labeled as out-of-
service.

5.5 Algorithm complexity analysis

In the algorithm, each edge in the network is traversed at
most twice in the building of the depth first tree. The upper
bound of the algorithm is therefore 2L steps, where L is the
number of edges in the network. The part of the algorithm
that executes on the Self-Monitoring unit needs O(|L|) time to
finish. In the Self-Reconfiguring unit, every node is checked
to determine leaf nodes. Prohibiting turns may prompt re-runs
of this part of the algorithm. Therefore, the Fashion algorithm
has worst-case computational cost of O(|R||L|). For a N×N
2D-mesh network, |L|= 4N(N−1) = 4N2−2, |R|= N2, and
the computational complexity is O(4|R2|). In the conducted
experiments, it took an average of 706.49 and 1384.45 clock
cycles to finish the scheme on networks of 64 and 256 nodes.

5.6 System deployment senario

Researchers have realized that addressing the challenges of
permanent errors in NoC requires combining both hardware
and software efforts. While hardware is required to recover

from permanent defects and self-adjust to continually guar-
antee correct operation, the software is responsible for elim-
inating the fault-induced performance impacts [18] [19] [20]
[8].

At runtime some information may be exchanged between
the operating system (OS) and the Self-Awareness Module
(SAM). However, the proposed algorithm is executed entirely
by the SAM unit. The OS can trigger and interrupt the
execution of the algorithm. For example, the OS can peri-
odically activate the BIST or Self-monitoring units to obtain
connectivity information before assigning new applications
(or threads) to available processing elements. The monitoring,
reconfiguration and built-in testing sub-units are programmed
before the start of the application execution alongside the
routing tables and virtual channel allocation algorithms.

During the application execution, the SAM unit is activated
periodically, meanwhile, architecture states and other param-
eters are periodically in memory. When a fault is detected,
packets and flits are stalled at their destinations. Using func-
tional links, potential lost or corrupted packet messages are
sent back to neighbors and propagated from there depending
on the criticality of the fault. The SAM unit then goes through
its local self-healing/reconfiguration process. When it is done,
credits are updated and normal application traffic can resume
going through the router. The restoring mechanism rolls back
to a previous error-free execution point, and the system moves
forward to the next state.

In general, the software stack is oblivious to the online
detection and reconfiguration. The system software may be
involved if substantial part of the chip becomes faulty, neces-
sitating a full system pause and global reconfiguration e.g.,
a time-out mechanism for dropping on-the-flight packets and
issuing retransmission [39].

6 EXTENDED-FASHION ROUTER

To give the network flexibility and adaptation range, two key
ingredients are added to the Fashion router design, namely,
coarse-grained reconfigurable bidirectional physical links and
unified virtual channel structure, as shown in Figure 7.

Cho et al. [52] introduced a bandwidth-adaptive network
where the link bisection bandwidth can adapt to changing
network conditions using local state information. Similar work
using bidirectional links is proposed in [53]. In these schemes,
unidirectional links between network node pairs are merged
into a set of bidirectional links. Each new bidirectional link
can be configured to deliver packets in either direction. The
links can be driven from two different sources, with local
arbitration logic and tristate buffers ensuring that both do not
simultaneously drive the same wire. Tsai et al. [54] success-
fully used this approach to handle static and dynamic channel
failures on the data-link layer. The Ex-Fashion architecture
extends the concept by using the bidirectional nature of links
to sustain higher connectivity and rebalance link bandwidths
around faults in a coarse-grained fashion. The robustness of
this approach is drawn from the fact that component failures
affecting one datapath-segment account for 96% of faults and
can be entirely masked by rerouting around a single link [23].

9

Route
Computation

VC
Allocation

Switch
Allocation

VC

VC

Crossbar

Input port Ouput port

BIST
Unit

Monitoring
Unit

Reconfiguring
Unit

Self-Awareness Module

Fig. 7. Extended-Fashion (Ex-Fashion) router.

Virtual channels are another point of vulnerability that is
highly susceptible to faults [22]. Instead of having a set of
virtual channels strictly associated to a given port as seen
in the conventional router, Ex-Fashion has a pool of virtual
channels that can be shared among the ports. It follows the
unified virtual channel structure approach of the ViChaR [55]
router architecture. In this framework, virtual channels are
not statically partitioned and fixed to input ports, they are
rather communal resources dynamically managed by the SAM
unit. This approach allows for faulty buffer to not impact
any particular port or render a port unusable. In ViChaR,
the authors showed that the area and power overheads are
negligible and network latency can be decreased by 25% on
average using a unified buffer structure scheme.

In Ex-Fashion, the overheads are even lower, because
the virtual channel depth is kept constant removing some
of the complexity associated with the ViChaR architecture.
Although the use of bidirectional link and unified virtual
channel structure are not new, their combination and the
design of distributed intelligence, i.e., Self-Awareness Module
(SAM) to dynamically manage them, represents one of major
contributions of this work. The implementation of bidirectional
link could improve the connectivity of the network, therefore
achieving a better network connectivity map during the self-
monitoring phase.

For example in the network shown in Figure 6, if the link
from node H to L is broken but the link from L to H is still
functional, using the time-division-multiplexed property of the
bidirectional link in the Ex-Fashion router architecture, we
perform direct packet routing between nodes H and L. And
the maximal connected graph would contain two more nodes
than Fashion architecture.

Furthermore, a single broken input buffer at a port would
not affect the correct functionality of the input port using the
unified virtual channel structure, which will further improve
the fault-tolerance of the architecture. The possibility of dis-
connected node is significantly reduced in the new extended
router architecture. The Self-Reconfiguring module in the
Ex-Fashion reconfigures the physical links and recomposes
the unified virtual channel structure to match the new link
directions.

7 EVALUATION

In this section, we provide extensive performance evaluations
of the Fashion and Ex-Fashion architectures.

7.1 Hardware Complexity Evaluation

To accurately evaluate the hardware complexity of the Fashion
architecture, we use the Synopsys Design Complier with
TSMC 65nm standard cell library to estimate the architec-
ture area overhead. The amounts of hardware required to
implement the self-monitoring unit and the self-configuring
unit are 2209.32µm2 and 3076.2µm2, respectively. The area is
228620.88µm2 for a 64-bit router of an 8x8 2D-mesh, with
four virtual channels at each port, and each virtual channel is
eight flits depth. Thus, the area overhead of self-monitoring
and self-configuring units are 0.966% and 1.345%, respec-
tively. As for a 16x16 256 2D-mesh, the area percentages
are 1.139% and 1.521%, respectively. Total area overheads
become 2.311% and 2.659% for Ex-Fashion router on 8x8 and
16x16 2D-meshes when the unified virtual channel structure
and tristate controller added to the physical links are factored
in to the logic cost.

7.2 Simulation Details

We used HORNET, a cycle-level many-core simulator [44]
for our simulations. We implemented 8x8 2D-meshes with
different numbers of faults. Unpredictable faults may occur
at any place in the network, thus we assumed a uniform-
random distribution of faults over silicon area. As previously
mentioned, 96% of the faults can be masked as broken
links [23] and others are diagnosed as fully broken. For
the experiments, the ratio of fault links and fault routers is
around 24:1, as described in Section 3. 100,000 simulations
are performed with various fault numbers and distribution
for synthetic benchmarks to explore as many different fault
combinations as possible. Applications are reconfigured to run
on the maximal connected subgraph if the network becomes
disjointed due to faults. All experiments have 200,000 warm
up cycles and a total of 1,200,000 analyzed cycles.

7.3 Connectivity Analysis

Table 1 yields important insight into the large scale system
and proposed Fashion. There is a high probability that
the network will be split into disjointed subgraphs when the
number of faults increase, and the system size makes acquiring
a global defect map impractical as the number of nodes
increases. An on-line and distributed light-weighted fault-
recovery mechanism like Fashion and Ex-Fashion that can
potentially maximize network connectivity is a vital necessity,
especially for future massively parallel many-core systems.

7.4 Performance Analysis

In this section, we measure the performance of the Fashion
architecture under different fault-rates using both synthetic
benchmarks and real application traces.

Figure 8a and 8d show the throughput and average latency
results of different fault-rates under UNIFORM-RANDOM traffic

10

Fault 8x8 2D mesh 16x16 2D mesh
Fashion Ex-Fashion Fashion Ex-Fashion

num Avg.cut-e Fully Connected Avg.cut-e Fully Connected Avg.cut-e Fully Connected Avg.cut-e Fully Connected
10 1.064 99.03% 0.057 99.99% 0.015 100% 0.014 100%
20 3.014 95.13% 0.142 99.99% 0.191 99.83% 0.035 100%
30 5.996 85.67% 0.247 99.94% 0.693 99.11% 0.041 100%
40 10.075 68.39% 0.386 99.82% 1.714 96.83% 0.060 100%
50 15.517 47.46% 0.554 99.70% 3.303 91.69% 0.079 100%
60 22.608 26.34% 0.781 99.40% 5.553 82.05% 0.096 99.96%

TABLE 1
Average number of cut elements (cut-e) and the percentage of fully connected nodes in 8x8 and 16x16 2D-Mesh networks.

0 100 200 300 400 500 600

offered traffic (flits/cycle)
0

2

4

6

8

10

12

re
ce

iv
ed

tra
ffi

c
(fl

its
/c

yc
le

)

flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(a) Throughput results for UNIFORM-RANDOM.

0 50 100 150 200 250 300

offered traffic (flits/cycle)
0

5

10

15

20

25

re
ce

iv
ed

tr
af

fic
(fl

its
/c

yc
le

)
flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(b) Throughput results for TRANSPOSE.

0 50 100 150 200 250 300

offered traffic (flits/cycle)
1

2

3

4

5

6

7

8

re
ce

iv
ed

tr
af

fic
(fl

its
/c

yc
le

)

flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(c) Throughput results for BIT COMPLEMENT.

1 2 3 4 5 6 7 8 9 10

Offered traffic (flits/cycle)
20

40

60

80

100

120

140

Av
g.

de
la

y(
cy

cl
es

)

flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(d) Latency results for UNIFORM-RANDOM.

0 5 10 15 20 25

Offered traffic (flits/cycle)
0

20

40

60

80

100

A
vg

.
de

la
y(

cy
cl

es
)

flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(e) Latency results for TRANSPOSE.

0 1 2 3 4 5 6 7

Offered traffic (flits/cycle)

50

100

150

200

250

A
vg

.
de

la
y(

cy
cl

es
)

flawless
5% fault-rate
10% fault-rate
15% fault-rate
20% fault-rate
30% fault-rate
40% fault-rate

(f) Throughput results for UNIFORM-RANDOM.

Fig. 8. Synthetic benchmark results for 8x8 2D-Meshes, there are 4VCs for each port and each VC contains 8 flits, packet size is
8 flits.

pattern, respectively. Saturation throughput quickly collapses
when the fraction of faults increase over 10% and latency
grows rapidly beyond 20% fault-rate. This is due to the re-
duced availability of communication resources and congestion
caused by faults.

Figure 8b and 8e display the throughput and average latency
results of different fault-rates under TRANSPOSE traffic pat-
tern, respectively. The system throughput drops significantly
even at 5% fault rate. The number of received flits per cycle
went from 25 to around 15. The fact that further system com-
ponent failures−from 5% to 10%−seems to have a less drastic
effect on the throughput or latency, highlights the importance
of having even limited hardware self-healing capabilities.

Figure 8c and 8f show the throughput and average latency
results of different fault-rates under BIT COMPLEMENT traffic
pattern, respectively. The results are in line with the other two
benchmark data. Here the most interesting aspect is the small
degradation effect seen on the throughput and latency results
when increasing faults from 20% to 40%.

Beyond synthetic traffic, we use traces from the SPLASH-2
benchmarks to evaluate the performance of the Fashion router
architecture on 8×8 2D-meshes. The traces are generated

from the distributed x86 multicore simulator Graphite [56]
with 64 application threads. Results for light traffic loads,
like BLACKSHOLES, are shown in Figure 9a-9c. The aver-
age latency remains fairly constant across these benchmarks.
For heavy traffic loads like OCEAN NON CONTIGUOUS and
WATER-SPATIAL, increasing the number of faults increases the
average latency.

7.5 Comparative Study

7.5.1 Baselines

For the comparative study, we consider F(date09) by Fick
et al. [57] and uDIREC [23] as our baselines. F(date09)
applies flag transmission and routing entry update mechanism,
while uDIREC uses a “supervisor” to maintain the topology
information and according to which, it makes fault tolerance
routing decisions. uDIREC architecture is shown to be more
resource and performance efficient than previous works VICIS
[34], IMMUNET [33] and ARIADNE [35]. Therefore, we omit
them in the following figures for brevity.

11

barnes
blackscholes fft fmm lu-non ocean radix

swaptions
water-spatial0

20

40

60

80

100

A
vg

.d
el

ay
(c

yc
le

)

Fashion
fdate09
uDIREC

(a) Number of faults is 5

barnes
blackscholes fft fmm lu-non ocean radix

swaptions
water-spatial0

20

40

60

80

100

A
vg

.d
el

ay
(c

yc
le

)

Fashion
fdate09
uDIREC

(b) Number of faults is 10

barnes
blackscholes fft fmm lu-non ocean radix

swaptions
water-spatial0

20

40

60

80

100

A
vg

.d
el

ay
(c

yc
le

)

Fashion
fdate09
uDIREC

(c) Number of faults is 20

Fig. 9. Average flit latency of selected SPLASH-2 benchmarks, the results for the remaining traffic exhibited the same feature and
we omit them here for brevity. and number of VCs per port is 4 with 8 flits per VC.

0 50 100 150 200 250 300
offered traffic (flits/cycle)

0

2

4

6

8

10

12

14

re
ce

iv
ed

tra
ffi

c
(fl

its
/c

yc
le

) Ex-Fashion
Fashion
uDIREC
fdate09

(a) Number of faults is 5

0 50 100 150 200 250 300
offered traffic (flits/cycle)

0

2

4

6

8

10

re
ce

iv
ed

tra
ffi

c
(fl

its
/c

yc
le

) Ex-Fashion
Fashion
uDIREC
fdate09

(b) Number of faults is 15

2 4 6 8 10 12 14 16
Offered traffic (flits/cycle)

20

25

30

35

40

45

50

55

60

65

A
vg

.
de

la
y(

cy
cl

es
)

Ex-Fashion
Fashion
uDIREC
fdate09

(c) Number of faults is 5

2 4 6 8 10 12 14 16
Offered traffic (flits/cycle)

20

25

30

35

40

45

50

55

60

65

A
vg

.
de

la
y(

cy
cl

es
)

Ex-Fashion
Fashion
uDIREC
fdate09

(d) Number of faults is 15

Fig. 10. Performance results of 5 and 15 faults for 8×8 2D-Meshes under UNIFORM-RANDOM traffic pattern.

7.5.2 Time efficiency
uDIREC was proposed to eliminate resource overhead using a
scoreboard that keeps the topology information at a supervisor
node. However, as reported in [23], network connectivity and
performance of uDIREC are sensitive to the way breadth-first
trees are grown. It may take hundreds of milliseconds to finish
each reconfiguration (∼170ms). It also needs to run multiple
iterations to find the optimized results to meet fault-tolerant
requirement, which, in turn, leads to tens of seconds for a
medium sized network (16×16 2D-mesh) and constrains it to
a centralized implementation [23].

As analyzed in Section 5, the computation complexity of
the Fashion router is O(|R||L|). The results show an average
of 1384.46 clock-cycles to complete a 16×16 256 2D-mesh
network, which takes negligible execution time compared with
uDIREC. This is 6 to 7 orders of magnitude increase in time
efficiency when running at 1Ghz.

7.5.3 Performance and resource utilization
The Fashion design is not only more time efficient than the
“off-line” uDIREC, but it also improves the system perfor-

mance. In most cases, Fashion offers lower latency compared
to F(date09) and uDRIEC. Its latency increases are more
gradual than other techniques, especially for heavy traffic loads
applications like OCEAN and WATER-SPATIAL, Figure 9a-9c.
The SPLASH benchmarks have relatively low-traffic loads,
and do not stress the network performance as much as
synthetic benchmarks. Fig 10a-10d show the throughput and
average flit latency results for 8×8 2D-Meshes using different
fault-tolerant mechanisms under UNIFORM-RANDOM traffic.
The Fashion architecture shows a 2.40% gain in throughput
and 4.80% decreases in average packet latency when compared
with uDIREC with 5 faults. The Ex-Fashion architecture
achieves 11.09% more throughput and 6.06% less packet
latency under the same experimental condition, Figure 10a
and Figure 10c. When the number of faults increase to 15,
the Ex-Fashion design has a throughput of 6.67 filts/cycle
compared to the 5.74 filts/cycle and 5.28 filts/cycle for the
Fashion and uDIREC designs, corresponding to 16.2% and
26.32% performance improvement, respectively, over these
designs, Figure 10b. In terms of latency, the Ex-Fashion and
Fashion architectures show average packet latency reductions

12

0 5 10 15 20 25 30 35 40 45
Number of faults

45

50

55

60

65

A
vg

.
nu

m
be

ro
fm

ax
im

al
co

nn
ec

te
d

ne
tw

or
k

(%
)

0

2

4

6

8

10

12

A
vg

.
no

.
of

dr
op

pe
d

no
de

s

Ex-Fashion
Fashion
uDIREC

Fig. 11. Relationship of number of permanent faults and
maximal connected network and dropped nodes for different
algorithms. Dotted curves are dropped nodes.

0 2 4 6 8 10 12 14
Number of permanent faults increasing with time

4

5

6

7

8

9

re
ce

iv
ed

tra
ffi

c
(fl

its
/c

yc
le

)

Ex-Fashion
Fashion
uDIREC
fdate09

Fig. 12. Throughput degradation with increasing of number of
permanent faults.

of 18.66% and 14.67% over the uDIREC design, Figure 10d.
The uDIREC design only works when the underlying topol-

ogy has two-way connectivity, a prerequisite that is not always
present. We compare the average maximal connected network
percentage and the average number of disabled faultless nodes
using uDIREC [23] with the same number of faults in the 8x8
2D mesh. As shown in Figure 11, uDIREC dropped an average
of 1.76 and 2.89 flawless nodes with standard deviation of 1.55
and 2.25, when there are 30 and 40 faults. In Fashion, there are
54.3% and 55.4% fewer dropped nodes with 30 and 40 faults,
resulting in a higher maximal connected network percentage
than uDIREC. In Ex-Fashion, there are 64.5% and 71.1%
fewer dropped nodes than uDIREC with 30 and 40 faults. Fur-
ther, we compared NoC performance degradation with time-
dependent components defects. For these experiments, we
still assumed uniform-random fault distribution, and increased
the number of new permanent faults over time. Figure 12
shows average throughput results of 100,000 simulations using
UNIFORM-RANDOM traffic pattern. Fashion achieves 13.07%
and 18.9% more throughput than uDIREC and F(date09) when
there are 10 faults, whereas Ex-Fashion achieves 19.6% and
25.77% more throughput in the same situations.

Since uDIREC applies Up*/Down* routing and has a rel-
atively larger number of forbidden turns, it sacrifices routing
flexibility which influences the connectivity and performance
of the network. The average percentage of forbidden turns in
uDIREC and Fashion are 20.563% and 17.665% for 8x8 2D-
meshes, results are shown in Table 2. The connectivity degree

of Ex-Fashion is 1.167x and 3.77x higher than Fashion with
30 and 60 faults respectively, see Table 1. This is because
the improved Ex-Fashion architecture can better mitigate the
negative effects of single link and virtual buffer faults. The
study demonstrates a significant advantage by applying bidi-
rectional link and unified virtual channel structure to Fashion.
The results of F(date09) are not shown in Figure 11, because a
large portion of nodes are dropped and the maximal connected
network are dramatically decreased when the number of faults
exceeds 30.

8x8 2D mesh 16x16 2D mesh
Fault num uDIREC Fashion uDIREC Fashion

10 20.510% 19.798% 20.148% 20.000%
20 20.702% 19.222% 20.293% 19.954%
30 20.780% 18.374% 20.403% 19.855%
40 20.677% 17.458% 20.500% 19.842%
50 20.499% 16.705% 20.597% 19.741%
60 20.209% 14.434% 20.698% 19.721%

TABLE 2
Probability of forbidden turns

8 CONCLUSIONS

Current and future technology scaling effects, in particular
the decreasing transistor dependability, command more ef-
fective resiliency-aware approaches to multicore and many-
core systems designs. In this work, we propse and design a
scalable, distributed and self-healing intelligent NoC router
with minimal hardware overhead, named Fashion. The new
router architecture is a self-monitoring and self-reconfiguring
design that allows the on-chip network to dynamically recover
from permanent component failures. The router has bidirec-
tional links, unified virtual channel structures and distributed
intelligence modules for detecting component failures and self-
adjusts to mitigate their negative system performance effects.
To determine the importance of a defective link or router on
the network connectivity, we adopt a distributed depth first
search algorithm capable of classifying faulty components as
cut elements. A node-table based reconfiguration procedure is
performed to provide deadlock-free and routing connectivity
guarantees to the maximal connected graph of the new network
topology. The Fashion router has a fully distributed operation
mode with relatively constant on-chip overhead, which makes
it more suitable for on-line large-scaled on-chip communica-
tion.

Fashion can also be applied in the NoC Power-gating
domain to provide deadlock-free paths to the NoC traffic in dy-
namically changing irregular topologies. With chips becoming
increasingly more power-constrained today, there is a need for
intelligent NoC power-gating schemes that can reduce static
power consumption and at the same time provide deadlock-
free low latency paths to NoC traffic.

In this work, we mainly focused on the microarchitecture
layer of the on-chip network. In future work, we will examine
in detail how the Fashion router can interact with the operating
system for runtime execution roll-backs, task placements,
memory management and on-chip communication policies

13

to provide a comprehensive fault-tolerant and fault-recovery
mechanism to the computing system.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. IEEE, 2010, pp. 108–109.

[2] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Mon-
tenegro, J. Stickney, and J. Zook, “TILE64 - processor: A 64-Core SoC
with mesh interconnect,” in Proceedings of the IEEE International Solid-
State Circuits Conference, 2008, pp. 88–598.

[3] S. et al., “An 80-tile 1.28tflops network-on-chip in 65nm cmos,” in
Proceedings of the Solid-State Circuits Conference, 2007, pp. 98–589.

[4] C. Ramey, “Tile-gx100 manycore processor: Acceleration interfaces and
architecture,” T ilera Corporation, 2011.

[5] G. Chen, M. A. Anders, H. Kaul, S. K. Satpathy, S. K. Mathew, S. K.
Hsu, A. Agarwal, R. K. Krishnamurthy, S. Borkar, and V. De, “16.1
a 340mv-to-0.9 v 20.2 tb/s source-synchronous hybrid packet/circuit-
switched 16× 16 network-on-chip in 22nm tri-gate cmos,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International. IEEE, 2014, pp. 276–277.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[7] N. E. Jerger and L.-S. Peh, “On-chip networks,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–141, 2009.

[8] R. Marculescu, U. Y.Ogras, L. shiuan Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding research problems in noc design: system, microarchitec-
ture, and circuit perspectives,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, pp. 3–21, 2009.

[9] A. Ivanov and G. D. Micheli, “The Network-on-Chip Paradigm in
Practice and Research,” Design & Test of Computers, vol. 22, no. 5,
pp. 399–403, 2005.

[10] W. Dally and B. Towles, Principles and practices of interconnection
networks. Morgan Kaufmann, 2004.

[11] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10–16, 2005.

[12] V. J. Reddi and D. Brooks, “Resilient architectures via collaborative de-
sign: Maximizing commodity processor performance in the presence of
variations,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 30, no. 10, pp. 1429–1445, 2011.

[13] L. Wilson, “International technology roadmap for semiconductors (itrs),”
2013.

[14] C. Yu, Modeling of Temporal Reliability Degradation. Springer US,
2011.

[15] J. H. Collet, P. Zajac, M. Psarakis, and D. Gizopoulos, “Chip self-
organization and fault tolerance in massively defective multicore arrays,”
Dependable and Secure Computing, IEEE Transactions on, vol. 8, no. 2,
pp. 207–217, 2011.

[16] S. K. Sastry Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V.
Adve, “mswat: Low-cost hardware fault detection and diagnosis for
multicore systems,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 122–132. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669129

[17] M. Prvulovic, Z. Zhang, and J. Torrellas, “Revive: cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors,” in Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on, 2002, pp. 111–122.

[18] S. Borkar, “Challenges in reliable system design in the presence of
transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp.
10–16, 2005.

[19] D. Sylvester, D. Blaauw, and E. Karl, “Elastic: An adaptive self-healing
architecture for unpredictable silicon,” Design & Test of Computers,
IEEE, vol. 23, no. 6, pp. 484–490, 2006.

[20] A. DeOrio, K. Aisopos, V. Bertacco, and L.-S. Peh, “Drain: Distributed
recovery architecture for inaccessible nodes in multi-core chips,” in
Proceedings of the 48th Design Automation Conference. ACM, 2011,
pp. 912–917.

[21] Y. B. Kim and Y. bin Ki, “Fault tolerant source routing for network-
on-chip,” in 22nd IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems, 2007, pp. 12–20.

[22] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das, “Explor-
ing fault-tolerant network-on-chip architectures,” in Dependable Systems
and Networks, 2006. DSN 2006. International Conference on, June 2006,
pp. 93–104.

[23] R. Parikh and V. Bertacco, “udirec: unified diagnosis and reconfiguration
for frugal bypass of noc faults,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2013, pp. 148–159.

[24] A. Shafiee, M. Zolghadr, M. Arjomand, and H. Sarbazi-Azad,
“Application-aware deadlock-free oblivious routing based on extended
turn-model,” in Proceedings of the International Conference on
Computer-Aided Design. IEEE Press, 2011, pp. 213–218.

[25] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An abacus turn model for
time/space-efficient reconfigurable routing,” in Computer Architecture
(ISCA), 2011 38th Annual International Symposium on. IEEE, 2011,
pp. 259–270.

[26] P. Ren, M. Kinsy, and N. Zheng, “Fault-aware load-balancing routing
for 2d-mesh and torus on-chip network topologies,” Computers, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[27] L. Chen and T. M. Pinkston, “Nord: Node-router decoupling for effective
power-gating of on-chip routers,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-45. Washington, DC, USA: IEEE Computer Society, 2012, pp.
270–281. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2012.33

[28] A. Samih, R. Wang, A. Krishna, C. Maciocco, T. C. Tai, and Y. Solihin,
“Energy-efficient interconnect via router parking,” in 19th IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2013, Shenzhen, China, February 23-27, 2013, 2013, pp. 508–
519. [Online]. Available: http://dx.doi.org/10.1109/HPCA.2013.6522345

[29] R. Parikh, R. Das, and V. Bertacco, “Power-aware nocs through
routing and topology reconfiguration,” in Proceedings of the 51st
Annual Design Automation Conference, ser. DAC ’14. New York,
NY, USA: ACM, 2014, pp. 162:1–162:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2593187

[30] M. Gomez, N. Nordbotten, J. Flich, P. Lopez, A. Robles, J. Duato,
T. Skeie, and O. Lysne, “A routing methodology for achieving fault
tolerance in direct networks,” IEEE transactions on Computers, pp. 400–
415, 2006.

[31] Y. Fukushima, M. Fukushi, and S. Horiguchi, “Fault-tolerant routing
algorithm for network on chip without virtual channels,” in Defect and
Fault Tolerance in VLSI Systems, 2009. DFT’09. 24th IEEE Interna-
tional Symposium on. IEEE, 2009, pp. 313–321.

[32] P. Ren, Q. Meng, X. Ren, and N. Zheng, “Fault-tolerant routing for
on-chip network without using virtual channels,” in Proceedings of the
The 51st Annual Design Automation Conference on Design Automation
Conference. ACM, 2014, pp. 1–6.

[33] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap
and robust fault-tolerant packet routing mechanism,” in ACM SIGARCH
Computer Architecture News, vol. 32. IEEE Computer Society, 2004,
p. 198.

[34] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: a reliable network for unreliable silicon,” in Proceedings of the
46th Annual Design Automation Conference. ACM, 2009, pp. 812–817.

[35] K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic
reconfiguration in a disconnected network environment,” in Parallel
Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 2011, pp. 298–309.

[36] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham,
T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker, “Autonet:
A high-speed, self-configuring local area network using point-to-point
links,” Selected Areas in Communications, IEEE Journal on, vol. 9,
no. 8, pp. 1318–1335, 1991.

[37] C. Iordanou, V. Soteriou, and K. Aisopos, “Hermes: Architecting a top-
performing fault-tolerant routing algorithm for networks-on-chips,” in
Computer Design (ICCD), 2014 32nd IEEE International Conference
on. IEEE, 2014, pp. 424–431.

[38] R. Parikh and V. Bertacco, “Formally enhanced runtime verification to
ensure noc functional correctness,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM,
2011, pp. 410–419.

[39] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. De Micheli, “Analysis of error recovery schemes for networks on
chips,” IEEE Design & Test of Computers, vol. 22, no. 5, pp. 434–442,
2005.

http://doi.acm.org/10.1145/1669112.1669129
http://dx.doi.org/10.1109/MICRO.2012.33
http://dx.doi.org/10.1109/HPCA.2013.6522345
http://doi.acm.org/10.1145/2593069.2593187

14

[40] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and C. R.
Das, “A gracefully degrading and energy-efficient modular router archi-
tecture for on-chip networks,” in ACM SIGARCH Computer Architecture
News, vol. 34. IEEE Computer Society, 2006, pp. 4–15.

[41] M. Palesi, S. Kumar, and V. Catania, “Leveraging partially faulty
links usage for enhancing yield and performance in networks-on-
chip,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 29, no. 3, pp. 426–440, 2010.

[42] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “Nocalert:
An on-line and real-time fault detection mechanism for network-on-
chip architectures,” in Microarchitecture (MICRO), 2012 45th Annual
IEEE/ACM International Symposium on. IEEE, 2012, pp. 60–71.

[43] S. Shamshiri, A.-A. Ghofrani, and K.-T. Cheng, “End-to-end error cor-
rection and online diagnosis for on-chip networks,” in Test Conference
(ITC), 2011 IEEE International. IEEE, 2011, pp. 1–10.

[44] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan,
N. Zheng, and S. Devadas, “Hornet: A cycle-level multicore simula-
tor,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 31, no. 6, pp. 890–903, 2012.

[45] P. Ren, X. Ren, S. Sane, M. Kinsy, and N. Zheng, “A deadlock-free
and connectivity-guaranteed methodology for achieving fault-tolerance
in on-chip networks,” Computers, IEEE Transactions on, vol. PP, no. 99,
pp. 1–1, 2015.

[46] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[47] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in
Proceedings of the International Symposium on Computer Architecture.
Queensland, Australia: ACM, 1992, pp. 278–287.

[48] J. Wu, “A fault-tolerant and deadlock-free routing protocol in 2d meshes
based on odd-even turn model,” IEEE Transactions on Computers, pp.
1154–1169, 2003.

[49] A. DeOrio, D. Fick, V. Bertacco, D. Sylvester, D. Blaauw, J. Hu,
and G. Chen, “A reliable routing architecture and algorithm for nocs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 31, no. 5, pp. 726–739, 2012.

[50] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[51] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, 2009, 2009.

[52] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. Devadas,
“Oblivious routing in on-chip bandwidth-adaptive networks,” in
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 181–190. [Online].
Available: http://dx.doi.org/10.1109/PACT.2009.41

[53] Y. C. Lan, H. A. Lin, S. H. Lo, Y. H. Hu, and S. J. Chen, “A
bidirectional noc (binoc) architecture with dynamic self-reconfigurable
channel,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 3, pp. 427–440, 2011.

[54] W.-C. Tsai, D.-Y. Zheng, S.-J. Chen, and Y.-H. Hu, “A fault-tolerant noc
scheme using bidirectional channel,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, June 2011, pp. 918–923.

[55] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and
C. R. Das, “Vichar: A dynamic virtual channel regulator for network-
on-chip routers,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 39.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 333–346.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.50

[56] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010,
pp. 1–12.

[57] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant nocs,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2009, pp. 21–26.

http://dx.doi.org/10.1109/PACT.2009.41
http://dx.doi.org/10.1109/MICRO.2006.50

	1 Introduction
	2 Related Work
	3 Effects of Faults on Network Connectivity in NoC-based Architectures
	4 Fashion Router Architecture
	4.1 Micro-Architecture of Self-Awareness Module
	4.2 Self-Monitoring unit
	4.3 Self-Reconfiguring unit
	4.4 Built-In Self-Test unit

	5 Fashion Fault Detection and Reconfiguration Algorithm
	5.1 Fault Detection and Classification Algorithm
	5.2 Self-Monitoring Algorithm
	5.3 Self-Reconfiguring Algorithm
	5.4 Illustrative case of the classification procedure
	5.5 Algorithm complexity analysis
	5.6 System deployment senario

	6 Extended-Fashion Router
	7 Evaluation
	7.1 Hardware Complexity Evaluation
	7.2 Simulation Details
	7.3 Connectivity Analysis
	7.4 Performance Analysis
	7.5 Comparative Study
	7.5.1 Baselines
	7.5.2 Time efficiency
	7.5.3 Performance and resource utilization

	8 Conclusions
	References

