
Preventing Neural Network Model Exfiltration
in Machine Learning Hardware Accelerators

Mihailo Isakov, Lake Bu, Hai Cheng, and Michel A. Kinsy
Adaptive and Secure Computing Systems Laboratory

Department of Electrical and Computer Engineering, Boston University
Email: {mihailo, bulake, chenghai, mkinsy}@bu.edu

Abstract—Machine learning (ML) models are often trained
using private datasets that are very expensive to collect, or
highly sensitive, using large amounts of computing power. The
models are commonly exposed either through online APIs, or
used in hardware devices deployed in the field or given to the
end users. This provides an incentive for adversaries to steal
these ML models as a proxy for gathering datasets. While API-
based model exfiltration has been studied before, the theft and
protection of machine learning models on hardware devices have
not been explored as of now. In this work, we examine this
important aspect of the design and deployment of ML models.
We illustrate how an attacker may acquire either the model or the
model architecture through memory probing, side-channels, or
crafted input attacks, and propose (1) power-efficient obfuscation
as an alternative to encryption, and (2) timing side-channel
countermeasures.

Index Terms—Neural network, model exfiltration, hardware
security, model theft, memory probing, side-channels, inference.

I. INTRODUCTION
The number of parameters in machine learning models is

rapidly increasing and larger datasets are being used to attain
higher accuracies [1]. As a result, these models require more
training time and compute resources. Altogether, some of the
factors contributing to the large upfront cost of deploying
machine learning models are:

Datasets: The datasets required for training DNNs (Deep
Neural Networks) are very large, and are both resource and
time consuming to gather. Datasets are often private, and can
be very expensive to buy, if at all available for purchase.
They are often the main business advantage of incumbent
companies with large data collection teams. An entrant in a
certain field must invest not only considerable resources to
acquire a similar dataset, but must also wait for some period
of time to collect the dataset. Therefore, any model trained on
a large, proprietary or hard to collect dataset, i.e., an expensive
dataset, should also be considered expensive.

Compute power: The computation required to train modern
ML algorithms is growing exponentially. OpenAI has high-
lighted that the number of petaflops reported in ML papers
is doubling every three months [1]. The energy consumption
alone makes these models expensive, not accounting for the
cost of the training hardware.

Metaparameter search: The final neural network topology
and metaparameters used in these systems are not obvious
during the development of these models. Researchers and
developers typically have to run many searches to narrow
down the neural network parameters, e.g., the number and

types of layers, the connectivity of these layers, learning rate,
regularization functions, etc. The time to arrive at an efficient
architecture may be far greater than the time to train it.

The high cost of developing and training these models
makes them highly attractive targets for attackers to steal.
In [2], the authors illustrate several attacker motivations: (i)
avoiding the query charges of models locked behind APIs (Ap-
plication Programming Interface). In other words, an attacker
may steal a model in order to avoid having to pay to use it in
the model’s native environment behind an API. Extracting the
model through the API may initially be expensive, but can pay
off during the lifetime of the model. (ii) Learning the training
dataset: attackers who have access to the model or the API can
craft queries that reveal the training data or some properties
of the training dataset [3]. This attack highly depends on the
machine learning algorithm, as some algorithms, e.g., SVMs
(Support Vector Machine), tend to retain more information
about the original training dataset, while others, e.g., decision
trees, remember very little. Nonetheless, having access to the
model can expose information about biases or the distribution
of the underlying training set. (iii) Evasion and adversarial
attacks: attackers who have access to the model can find
ways to trick the model into producing incorrect outputs,
possibly evading detection by the model as in the case of
spam filters and malware detection [4]. Adversarial attacks
find input samples that are correctly classified by humans
or domain experts, but will cause the model to produce a
random or specific output. Adversarial examples are easier to
find if the attacker has access to model weights. This gives
attackers the motivation to first exfiltrate the model, and then
find adversarial examples.

Beyond the deployment scenarios mentioned above when
the ML model is behind an API, the ‘non-API’ models are
also susceptible to various attacks. Broadly speaking, there are
three main classes of ‘non-API’ model deployment contexts.
(1) The model is ran on a private network for internal use by
the organization that created it, e.g., stock market prediction
models. (2) The results of the ML model are indirectly
accessed online, as in the case of most recommender systems.
Users do not directly interact with the API of the model,
rather there is an interactive translation layer between the
user’s actions and the results from the model. This deployment
modality is still vulnerable to API attacks, yet the interface
may appear obfuscated. (3) The ML model is loaded onto
a device or directly implemented in hardware, e.g., voice
assistants, self-driving cars, etc.978-1-5386-7471-0/18/$31.00 ©2018 IEEE

62

In context (1), the organization can use conventional secu-
rity approaches to protect the model against attacks, as they
would do for any other type of data. Without loss of generality,
one can classify the context (2) vulnerabilities under the API
attack surface listed in [2]. In this work, we focus on the third
context, where the user has physical control over the device
housing the ML model.

II. RELATED WORK

Stealing machine learning models through an API has been
proposed in [2]. For a simple neural network, the authors
devise an equation-solving algorithm that can reconstruct the
original model. Deep neural networks do not have analytical
solutions, but authors show that these models can be recon-
structed with high accuracy using an approach similar to model
distillation [5]. Reverse-engineering networks has been further
explored in [6], where the authors show an approach that
can extract the network and metaparameters, and help find
better adversarial examples. A method for defending against
model exfiltration has been proposed in [7], where the authors
introduce an algorithm that actively analyzes network inputs,
and detects all of the known model extraction attacks. Machine
learning model fingerprinting has been suggested as a way
to counter IP (Intellectual Property) theft. In [8], the authors
propose to ‘backdoor’ the network, where the network owner
adds specific input-output pairs to the training set, and later
uses the inputs as a challenge to the network, proving their
ownership of it. This approach can be circumvented by fine-
tuning or pruning the network. Cloud inference on private data
has been explored in CryptoNets [9]. The authors use homo-
morphic encryption to run calculations on encrypted user data
without ever having to decrypt it, but this approach slows down
inference by several orders of magnitude. In DeepSecure [10],
the authors propose a significantly faster approach based on
Yao’s Garbled Circuits. In Chameleon [11], the authors allow
multiple parties to compute functions without having to reveal
their private data.

III. MOTIVATION
There are many reasons why a user may want to run an ML

model on a hardware device under their control as opposed to
accessing it online:

Privacy: Either for privacy or legal reasons, a user is not
able to send their data to the cloud for processing. Hospitals
might be legally prohibited from sending patient data off their
premises. Baby camera users may care about privacy and
want the data processed on the camera itself, with only alerts
leaving the device. Processing data in-situ removes the risk
of a malicious cloud service or a man-in-the-middle attacker
stealing the data.

Power: In many cases, sending data over a GSM (Global
System for Mobile) network is more expensive than processing
the data in-place. In [12], authors show that the optimal power
usage in convolutional neural networks is achieved by running
several of the lower convolutional layers on the device before
sending the activations over the network.

Latency and network access: Sending data off the device
may be too slow in many latency-sensitive applications. With

the round-trip time in hundreds of milliseconds for cellular
networks, transmitting data to a server will break the time
budget of many applications. Also, if the device must guaran-
tee high availability, it may not be able to rely on the network
at all times.

Throughput: In data-intensive applications, even when the
device has network access, it may not have enough bandwidth
to send the data out. The device must then either store the
data or immediately process it.

A. Exfiltration of Models in Hardware Devices

The majority of existing work assumes that the neural
network models are running in the cloud. In this work we con-
sider hardware devices running proprietary machine learning
models. This encompasses all devices that are under the user’s
control - e.g., personal computers, smartphones, wearables,
voice assistants, vehicles, smart home appliances, etc. We do
not consider hardware devices that are not under users’ control.
If the user can access the model through the device’s API, but
not the device itself, then the processing platform poses lesser
risk. Neural network hardware devices introduce a whole
new set of attacks, while still being vulnerable to API-based
attacks. These attacks include (1) memory probing, where
an attacker reads the ML model from non-volatile memory
(NVM), (2) side-channel attacks, where the attacker learns
about the model by observing device power, memory access
patterns, or timing information, and (3) evading hardware API
protections like limiting the frequency of inference operations.

B. Trusted Inference Engine (TIE)

In this work, we propose defenses that guard against
physical attacks, side-channel attacks, and API attacks. These
defenses prevent physical exfiltration of machine learning
models from RAM and non-volatile memory, stop the leakage
of topological and metaparameter information through side-
channels, and make API attacks infeasible. We develop a
hardware module called the Trusted Inference Engine (TIE).
The engine can be built into existing hardware accelerators,
and serves to (1) protect non-volatile memory against probing
attacks, and (2) prevent API-based extraction by ensuring
rate-limiting operations. Furthermore, we present a TIE-based
model distribution protocol that allows ML model suppliers to
securely distribute their models without the risk of exfiltration.

IV. PREVENTING PHYSICAL MEMORY ATTACKS

The theft of ML/NN models can be carried out in different
ways. The model, consisting of weights, metaparameters and
a topology, the model transmission process and associated
cryptographic keys, and modes of operation such as the
number of inference operations carried out by the model, are
all vulnerable to attack. Therefore, their protection requires
a systematic, composable and comprehensive approach. In
this work, we present such an approach rooted in a hardware
module, called the Trusted Inference Engine or TIE. Before
introducing the TIE module, we first give an overview of the
envisioned deployment environment and ecosystem.

63

A. The TIE Ecosystem

The TIE ecosystem is a three-party framework consisting
of a network provider (NP), a user (U), and a hardware
device manufacturer (DM) as shown in Figure 1. The security
foundation of this ecosystem is based on the trustworthiness
of the DM and NP. This means that the DM will manufacture
the inference devices providing the assurance that (a) no
hardware back-doors or Trojans have been injected and (2)
no confidential information about the devices can be leaked to
the user. Meanwhile, the user can act maliciously. They can
apply different attack vectors on the model provided by the
NP or on the hardware device itself. We assume that although
the user is capable to apply different attacks, e.g., memory
probing or side-channel analysis, they cannot probe the chip
internals.

User Network Provider

Device Manufacturer

Network provider
requests the mask

for the device

Network Provider applies
the mask to the model

and sends it to the user

User runs inference
on their own data

User gets a
device

3

1

2 User requests a model and
provides a device identifier

5

Manufacturer creates a
device with a secret mask,

key, and identifier
0

4

Fig. 1. The three-party ecosystem uses a six-step protocol to implement
exfiltration-resistant ML models. The security of the protocol is rooted in
hardware anchored by the TIE device to enable private transfers of ML
models.

We introduce the following functions to describe the key
concepts used in the presentation of the ecosystem’s protocol.
◦ KeyGen(Id): For a given TIE device - with iden-

tity tag Id - the DM uses the KeyGen() function to
generate and record a number of challenge-key pairs
{(challenge, key)} based on the hardware uniqueness of
the TIE chip;
◦ DevAuth(Id): A secure device authentication function

(i.e., a public key based authentication protocol) is used
to verify the identity Id of the device. The returned value
of the function is true or false;

◦ KeyRetrv(Id, challenge): This function is used by the
network provider (NP) when deploying a model M on
the device with identity Id to retrieve the unique secret
key associated with (Id, challenge);

◦ Enc(model, key): The returned object of this function is
the obfuscated model EM based on the retrieved key;

◦ Dec(EM , key): In the deployment environment, i.e., the
user side, this function is executed to de-obfuscate EM

and return the plain model M . For this operation, the
corresponding key held in the TIE module is used.

The key cannot be probed from outside the engine and
remains oblivious to the user of the model.

Protocol II-A: The secure ML model deployment using the
TIE ecosystem is as follows:

0 The DM manufactures the TIE chips, and uses the
KeyGen(Id) function to record their challenge-key pairs
{(challenge, key)};

1 A user U planning to use a certain ML network obtains
a TIE chip tagged by Idi from the DM;

2 U then requests the model modelx from the NP, this
request includes the user device identifier Idi;

3 The NP and DM together use the DevAuth(Idi) to
authenticate the user device Idi. If the function returns
true, the NP acquires a {(challengei, keyi)} associated
with the device from the DM;

4 The NP fetches the model Mx, fuses in it the condi-
tions and terms of use, obfuscates the model - Ex-i =
Enc(Mx, keyi), and sends it with challengei to the user.
The Ex-i allows U to use the model for some limited k
instances - specified in the terms of use;

5 The user loads Ex-i and challengei into the TIE chip.
The chip internally uses the KeyRetrv(Idi, challengei)
function to retrieve keyi, which is used in the Dec()
function to decode the obfuscated model. It is worth em-
phasizing that in this phase of the deployment protocol,
the user does not know keyi and cannot acquire the output
of the Dec(Ex-i) operation. �

Although PROTOCOL IV-A provides a relatively detailed
insight to the deployment ecosystem and its security, there are
still some design challenges to be addressed. For example,
how can the network provider prevent a user from sharing
a model with other users? How can the protocol restrict or
enforce certain usage scenarios, e.g., not allow the user to
repeatedly apply Ex-i and challengei to the TIE chip in order
to reconstruct the model? In general, how can the terms of
use be enforced as part of the security and trustworthiness of
the deployment protocol? We extend the TIE module and the
overall architecture to provide support for this functionality.

B. The TIE Architecture
The design objective of the Trusted Inference Engine (TIE)

is twofold: (1) it provides a programmable template for net-
work provider defined terms of use - e.g., restrict the number of
invocations for a model to a predetermined value k, and (2) it
prohibits a user from accessing the native ML model or gaining
any side-channel knowledge about the original model or its
training conditions. The TIE security is rooted in the hardware.
In this work, we introduce two illustrative TIE designs (i) a
budget-bounded design and (ii) a performance-oriented design.

Figure 2 shows a depiction of the TIE hardware and its
three main components:

• An ML/NN Inference Accelerator;
• A decoder (DEC) to carry out the Dec(E, key) function;
• A Programmable Usage Controller (PUC) that carries out

the KeyRetrv(Id, challenge) function and enforces the
model’s use conditions.

64

KeyRetrv
KeyRetrv

 TIE

PUC

User Network Provider1 User requests a specific network

Accelerator
DEC

User has a tamper-resistant device
that can securely perform inference 0

ENCObfuscated
Model

2 Network provider encrypts the
model and sends it to the user

User
Data

3 Key securely transferred
to on-chip memory

User free to run inference, without
access to unencrypted model 4

Fig. 2. The Trusted Inference Engine (TIE) hardware and its operations.

1) The Programmable Usage Controller (PUC) Module:
The PUC module is one of the key components of the
inference engine and the root of its security. It stores and ad-
ministers the secret keys needed for the model de-obfuscation
operation. It also performs the in-deployment model usage
policy checking. For example, it can be used to control the
total number of times that a user can perform inference with
a model or the rate at which new inputs are fed to the model.

Key retrieval: To decrease the risk of (i) device counter-
feiting and (ii) model exfiltration and reuse on other hardware,
we propose bounding the model de-obfuscation process to the
TIE device. To achieve this tight coupling, we leverage the
hardware uniqueness of the TIE hardware using a PUF (Phys-
ical Unclonable Function) based key generation approach [13].
Different PUFs, with different security guarantees, can be used
to anchor the security of the system based on the deployment
environment, i.e., susceptibility to attacks. When a Network
Provider (NP) receives a model request from a user with a TIE
device, the NP replies with a model obfuscated using that TIE
device’s identifier Id. The obfuscation operation is performed
using one of the TIE PUF responses registered with the Device
Manufacturer (DM). It should be highlighted that if a man-in-
the-middle attacker attempts a model request without a valid
registered Id, the provider will discover it during the process
of obtaining a PUF response. In step 3 shown in Figure 2,
the corresponding challenge is sent to the user. Here, there
is no need to use an expensive eavesdrop-resistant channel.
The user also has no knowledge of the response (decoding
key), since the KeyRetrv(Id, challenge) function operates
inside the TIE hardware that cannot be probed. Therefore,
modeling attacks on PUFs do not apply to this scenario. In
addition, without owning the device linked to the model, a user
cannot successfully decode the obfuscated model. Therefore,
the model cannot be operated separately from the intended
user’s device.

Programmable usage control to protect against passive
attacks: As mentioned in section I, with a large enough
number of input-output pairs, the underlying ML model can
be learned [2]. It has been shown that attackers can reconstruct
the entire model with only access to the input and output
interfaces of the model. To protect the ML model against these
passive attacks, we introduce the concept of a programmable
usage control (PUC) hardware sub-module and validate its
usefulness through two usage condition policies, i.e., rate-
limiting and inference-limiting policies. We propose two usage
control designs as illustrative cases - shown in Figure 3. Both

KeyRetrv

KeyRetrv

 PUC

0 1 2 3

Challenge

(a) (b)

Counter

PUF

KeyRetrv

KeyRetrv

 PUC

0 1 2 3
Counter

PUF eFuse Box

Controller

Challenge

Controller

Delay Clock

Fig. 3. Design (a) is a budget-bounded approach that uses a delay clock at
every boot-up and design (b) is a performance-aware approach that uses eFuse
to control the number of inference runs.

designs have a counter that allows the user to run a certain
number of ML operations per second. When TIE reaches
that upper limit in a specified timespan, it will stop working
until the timespan ends. For a budget-bounded design, to
prevent a user from simply restarting the device to reset the
counter, a clock enforces some predetermined delay at each
boot-up before the PUF sub-model can generate a decoding
key. This design supports a rate-limiting usage policy, but
not an operation-limiting one. In some critical applications,
the network designer may want to record the number of
inference operations that a TIE device is performing, e.g., by
having the device report its inference count to a server. In
the performance-oriented design, the one-time read hardware
primitive eFuse is used [14]. At each boot-up, after the
decoding key is read, an eFuse in the fuse box burns out. The
TIE hardware runs this way until the counter reaches a preset
limit. When all the eFuses burn out, the TIE hardware is no
longer usable. While extreme, the fuses prevent a malicious
user from getting around rate and operation counters through a
hard device reset. Denoting the safe threshold of the number
of runs that a given model can run in a year (≈ 3.2 × 107

seconds) as ns, the length of time required to run the ML
model one time as tm seconds, the upper limit of the counter
as cmax, and the clock wait time as T for Figure 3 (a) is:

T ≥ 3.2× 107

ns
− tm · cmax. (1)

If the number of eFuses in the fuse box is f , then for
Figure 3 (b) we have:

f ≥ ns
cmax

. (2)

One can use these two bounds during the design of the TIE
hardware. The use of eFuses provides a stronger rate-limiting
policy than the delay clock based approach, since the TIE
device stops functioning when the user runs out of eFuses.

2) The ENC (Obfuscation) and DEC (De-obfuscation): The
ENC and DEC modules in Figure 2 are used to ensure that the
ML model is unreadable to the user and any man-in-the-middle
attackers. They carry out the Enc() and Dec() functions
respectively. There are various approaches for obfuscating
and de-obfuscating these models. The main selection criterion
is based on security-to-cost trade-off. For example, while
the encryption-based obfuscation provides higher security, the
power consumption is much larger than one using a pseudo-
random number generator (PRNG)-based approach, shown in
Figure 4. Here, the PRNG obfuscates the model by generating
a one-time-pad the size of the model, and XOR-ing the pad

65

AES HB2 PRNG
0

200

400

E
ne

rg
y/

Im
ag

e
[µ

J]
Low-power ResNet18

YodaNN
Obfuscation

AES HB2 PRNG
0

200
400
600
800

High-throughput ResNet18

AES HB2 PRNG
0

2,000

4,000

6,000

Low-power VGG19

AES HB2 PRNG
0

0.5

1
·104

High-throughput VGG19

Fig. 4. YodaNN accelerator [15] and encryption power usage breakdown in low-power and high-throughput regimes on ResNet18 and VGG19 models. For
both ResNet18 and VGG-19 running on YodaNN, the PRNG’s power consumption is almost negligible. In case of AES and Hummingbird2 (HB2), decrypting
models can be more energy-intensive than processing them.

with the model. Since the model does not change, repeated
transfers do not reveal any information. Three obfuscation
approaches compared in this work are: AES, Hummingbird 2
(HD2), and PRNG. Cryptographic encryption schemes could
be used in performance-oriented designs, and the crypto-
graphic secure pseudo-random generator (CSPRNG) based
techniques in budget-bounded designs. In the former case, the
PUF can be used to generate and retrieve the encryption keys,
and the latter case to seed the CSPRNG.

V. PREVENTING API-BASED ATTACKS IN HARDWARE

Two key works targeting exfiltration of machine learning
models through APIs are [2], [6]. In [2] the authors show that
exfiltrating simple models is trivial. However, for deep neural
networks, attackers need to gather orders of magnitude more
input-output pairs than the model has parameters. We propose
several defenses against API-based attacks:

Reducing model output size: In [2], the authors show that
if the classification APIs do not report confidence values, but
only the most likely category of an input, then the model are
more resilient to exfiltration. There are two limitations with
this approach: (1) it can only be applied on classification prob-
lems, and not on other techniques like regression methods, and
(2) applications like image segmentation have a model output
as large as the model input. For example, in pix2pix [16], the
output of the neural network is a per-pixel labeled version of
the input. Even if only the highest class or ‘color’ is reported,
the model still produces a very large output and reveals a lot
of information. Therefore, limiting the output information of
a model can mitigate some of the model exfiltrating risks.

General-purpose processing in TIE: In a similar vein, not
directly exposing the input and output interfaces of the model
will reduce its attack surface. For this purpose, we propose
expanding the TIE hardware to enclose as many modules as
feasible that are directly consuming the output of the model.
For example, in a self-driving car, instead of executing just
the computer vision algorithms on the TIE-enabled processor,
mapping and planning algorithms could also be run on the
TIE, and the only observable or accessible outputs are steering
decisions. To obfuscate memory accesses related to read and
write operations associated with the other modules, one could
use an oblivious RAM [17] (ORAM) structure to interact with
the TIE.

Programmable runtime usage control - rate-limiting
case: To illustrate how one may implement the runtime

usage policies, we extend the TIE architecture to include
rate-limiters. These circuits prevent a certain operation, e.g.,
inference, from being run more than a specific number of
times per second. While simple devices may use their own
throughput as a rate-limiter, e.g., a voice assistant may not
be able to physically process inference operations faster than
it already does, devices with hard latency requirements may
come equipped with far more computing power than is nec-
essary. The network provider can then specify the inference
rate based on (1) the application latency requirements, and
(2) the trade-off between the risk of model exfiltration and the
quality of service to be provided to the end user. The hardware
rate-limiters monitor and enforce the specified usage terms.

Inference-limiting: The network provider may want to not
only limit the inference rate, but rather the total number of
inference operations run with a certain model. As mentioned
in section IV, a TIE device may have a hardware kill-switch
preventing overuse of certain operations, e.g., inference.

VI. PREVENTING ARCHITECTURE AND METAPARAMETER
LEAKAGE THROUGH PROBING AND SIDE-CHANNELS

Exfiltrating models through APIs is significantly harder if
the attacker does not know the architecture of said models [2].
An attacker with physical control of the device can use
different side-channels with varying invasiveness to discover
the topology and metaparameters of the network running on
the device. They may monitor the power, memory addresses
loaded from DRAM, timings of these accesses, etc.

To steal the model architecture, the attacker might probe
the memory bus. In section IV we discussed how the network
weights can be obfuscated to prevent model theft. Likewise,
the network configuration can be stored with the model and
obfuscated alongside it. A similar invasive approach may
measure which addresses are accessed from DRAM. To hide
addresses we may use ORAM, however, counterintuitively,
ML models do not necessarily need to hide addresses. Given
enough on-chip memory, models are typically stored and
accessed in a strictly ascending order. This reveals no infor-
mation about the network topology or metaparameters except
the size of the model.

Memory timing attacks are a simple way of obtaining a
model architecture, and are simpler than probing addresses
and data. We illustrate the need for obfuscating timing side-
channels on a simple example. In Figure 5, we show the timing
of DRAM accesses for a VGG19 network running inference

66

0

50000

100000

150000

200000

250000

0 500000000 1E+09 1.5E+09 2E+09 2.5E+09

N
u

m
b

er
 o

f
D

R
A

M
 A

cc
es

se
s

Instruction Number

Fig. 5. Memory access timings of six VGG19 network inference operations.

on images from the ImageNet dataset, collected using Intel Pin
and a cache simulator. By observing the area of the peaks, an
attacker can guess the sizes of the layers. By observing the
time between the peaks, the attacker may guess the required
compute power for each layer and deduce information about
the layer, i.e., the size of convolution kernels, and feature size,
etc.

Probing attacks on non-volatile memory can be ignored,
as they can only reveal the size of the model, same as with
probing DRAM addresses. Other side-channels like power at-
tacks are architecture- and model-dependent, i.e., architectures
that have data-dependent power profiles [18] or make use of
sparsity are more at risk, and the network designers need
to take this into account when creating a secure ML model.
Similarly, models with data-dependent inference latencies can
reveal information about their internals. Here we provide three
approaches for obfuscating memory access timings. Other
side-channels will require similar consideration.

On-chip model storage: DNNs are typically orders of mag-
nitude larger than the cache size of most chips. Quantization
or sparsity can reduce the model size enough for networks to
fit into on-chip memory [19]. On-chip networks still need to
be loaded when powering on the device, but this operation
does not reveal any information except the network size.

Prefetching: while the device may not have enough on-
chip memory to store the whole model, a smaller amount
of memory may allow it to prefetch the data required in
the future. This allows the device to ‘smooth out’ memory
accesses over time and maintain a constant DRAM throughput.
For a model of m bytes which is processed in time t, the device
needs to maintain a memory bandwidth of m/t. The buffer
then needs to be large enough to store the data accumulated
during the periods when the model has a bandwidth of less
than m/t.

Artificial memory accesses: a simple way of defending
against timing attacks is by creating artificial DRAM ac-
cesses [20]. By recording the maximum required memory
throughput during a single inference operation, we create
fake accesses that maintain that fixed throughput when the
application is not accessing enough data. Since the addresses
are accessed in an ascending order, the fake addresses need to
be present in DRAM. This puts gaps in the stored model, and
requires a larger amount of DRAM.

VII. CONCLUSION
In this paper, we introduced a previously unexplored type of

attack - exfiltration of neural network models running on hard-
ware devices. Specifically, we show two new attack vectors:

(1) extracting models by probing memory, and (2) learning
model architectures using side-channels. We proposed a set
of defenses against varying threat levels: memory obfuscation
protecting raw memory, and hardware modifications prevent-
ing timing side-channels. We discussed how these defenses
affect device power and usability.

REFERENCES

[1] D. Amodei and D. Hernandez, “AI and Compute,”
https://blog.openai.com/ai-and-compute/, 2018, [Online; accessed
13-July-2018].

[2] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction apis,” CoRR, vol.
abs/1609.02943, 2016.

[3] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song, “The secret
sharer: Measuring unintended neural network memorization & extracting
secrets,” CoRR, vol. abs/1802.08232, 2018.

[4] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eck-
ert, and F. Roli, “Adversarial malware binaries: Evading deep learning
for malware detection in executables,” CoRR, vol. abs/1803.04173, 2018.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a
Neural Network,” 2015.

[6] S. J. Oh, M. Augustin, M. Fritz, and B. Schiele, “Towards reverse-
engineering black-box neural networks,” in International Conference on
Learning Representations, 2018.

[7] M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and N. Asokan,
“PRADA: protecting against DNN model stealing attacks,” CoRR, vol.
abs/1805.02628, 2018.

[8] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, 2018, pp. 1615–1631.

[9] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. E. Lauter, and
M. Naehrig, “Crypto-nets: Neural networks over encrypted data,” CoRR,
vol. abs/1412.6181, 2014.

[10] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” CoRR, vol. abs/1705.08963, 2017.

[11] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” CoRR, vol. abs/1801.03239,
2018.

[12] B. Mcdanel, “Distributed Deep Neural Networks over the Cloud , the
Edge and End Devices.”

[13] L. Bu, C. Hai, and M. A. Kinsy, “Adaptive and dynamic device
authentication using lorenz chaotic systems,” 61st IEEE International
Midwest Symposium on Circuits and Systems, 2018.

[14] N. Robson, J. Safran, C. Kothandaraman, A. Cestero, X. Chen, R. Ra-
jeevakumar, A. Leslie, D. Moy, T. Kirihata, and S. Iyer, “Electrically
programmable fuse (efuse): From memory redundancy to autonomic
chips,” in Custom Integrated Circuits Conference, 2007. CICC’07. IEEE.
IEEE, 2007, pp. 799–804.

[15] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture
for ultralow power binary-weight cnn acceleration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 1, pp. 48–60, 2018.

[16] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CoRR, vol. abs/1611.07004,
2016.

[17] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA: ACM,
2013, pp. 299–310.

[18] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 1–13,
June 2016.

[19] M. Isakov, A. Ehret, and M. A. Kinsy, “Closnets: Batchless dnn training
with on-chip a priori sparse neural topologies,” 2018.

[20] M. A. Kinsy, D. Kava, A. Ehret, and M. Mark, “Sphinx: A secure archi-
tecture based on binary code diversification and execution obfuscation,”
CoRR, vol. abs/1802.04259, 2018.

67

