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Abstract—NAND flash is seeing increasing adoption in the
data center because of its orders of magnitude lower latency
and higher bandwidth compared to hard disks. However, flash
performance is often degraded by (i) inefficient storage I/O stack
that hides flash characteristics under Flash Translation Layer
(FTL), and (ii) long latency network protocols for distributed
storage.

In this paper, we propose a minimalistic clustered flash array
(minFlash). First, minFlash exposes a simple, stable, error-free,
shared-memory flash interface that enables the host to per-
form cross-layer flash management optimizations in file systems,
databases and other user applications. Second, minFlash uses a
controller-to-controller network to connect multiple flash drives
with very little overhead. We envision minFlash to be used within
a rack cluster of servers to provide fast scalable distributed
flash storage. We show through benchmarks that minFlash can
access both local and remote flash devices with negligible latency
overhead, and it can expose near theoretical max performance
of the NAND chips in a distributed setting.

I. INTRODUCTION

In addition to hard disks, NAND flash has risen to become
a ubiquitous storage medium in recent years in data centers
and enterprises. Flash offers significantly lower access latency,
higher bandwidth, and better power-performance than hard
disks [1]. However, traditional storage architectures and sys-
tem hardware software stacks are often inefficient for NAND
flash because it has very different characteristics than hard
disks.

Figure 1(a) shows the current storage I/O stack for a modern
SSD. The SSD presents a generic storage device interface
to the host system (e.g. SATA AHCI or NVMHCI) with
read/write operations to some device address. Within the SSD,
vendors use a Flash Translation Layer (FTL) to hide all flash
characteristics in order to maintain compatibility with existing
I/O stacks. The FTL performs flash management tasks includ-
ing wear-leveling, bad block management, address mapping
and garbage collection. FTL operates in isolation; Higher level
software such as file system, block device driver and user
application cannot access or control the policies set by FTL.
This causes inefficiencies in flash management. For example,
modern file systems (e.g. EXT4) can incur random writes
that would cause excessive garbage collection (GC) in the
FTL. However, by choosing a log-structured file system and
modifying its built-in GC algorithm for flash, we can reduce
I/O traffic and remove GC from the FTL completely [2].
Another example is database systems, which often organizes
data based on physical storage device characteristics and the
schema of the tables. However, the FTL has another layer of
data mapping policy that can result in unpredictable database

performance. NoFTL [3] integrated FTL into a database to
show significant speedup. Similarly, SDF [4] exposed parallel
flash channels of a single board as separate devices to the
OS. While SDF still runs FTL inside the flash device, it gives
software control of scheduling and data layout of the channels
to attain better performance. Other related work refactored
the FTL for file systems (F2FS [5], REDO [2]) and atomic
primitives [6]. These prior works suggest that higher level
software can often manage flash better than a in-device FTL.
We simply need a revised flash host interface to enable this.

Storage Area Networks (SAN) is a common approach used
to consolidate storage in data centers. SAN uses commodity
switched network fabrics (e.g. Ethernet, Fibre Channel) with
SCSI protocols (e.g. FCP, iSCSI) to connect together multiple
storage devices. The host is presented with a block device
view over the SAN network. Figure 1(a) highlights the stacks
for iSCSI over Ethernet in orange. Hosts run shared-disk file
systems (e.g. GFS2 [7]) for consistent access to SAN storage.
However, the SAN architecture can add 90µs to 300µs of
latency due to the network and software stacks [8]. Since raw
flash latency is around 100µs (100x lower than hard disks),
this represents a 90%-300% overhead to access remote flash.
An alternative to SAN is an all flash array [9] [10], which
packages a large number of flash cards into a single storage
server that runs a global flash management software. While
convenient and scalable in capacity, they greatly sacrifice
performance, operating at only 3-7GB/s with milliseconds
of latency – a fraction of the performance potential of the
raw flash chips. Today, large web companies (e.g. Google,
Amazon) use local distributed storage for flash, where each
compute server has direct-attached flash devices [11]. Software
(e.g. HDFS [12]) manages the storage pool. While local access
is fast, remote access over the network is slow. Prior work such
as QuickSAN [8] and NASD [13] have combined network
with storage to reduce overhead. As we will show, minFlash’s
architecture further improves on storage latency.

We have built a scalable flash storage platform called
minFlash that reduces both I/O stack and network overheads
to fully expose flash performance. minFlash connects multiple
custom flash devices using an inter-controller network and
exposes an error-free, distributed shared memory, native flash
host interface. Using this flash interface, we expose flash
characteristics to allow cross-layer optimization and reshuf-
fling of the I/O stack while gaining close to theoretical peak
performance of the flash chips. We keep basic functionalities
in the controller, namely ECC and bus/chip scheduling, to
provide low-overhead and error free access to flash. Higher
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Fig. 1: A comparison of traditional network and storage stacks with minFlash’s design.

level FTL management algorithms, such as bad block manage-
ment, address mapping and garbage collection are left to the
OS/application software. Using inter-controller links, minFlash
scales in capacity and bandwidth with negligible latency.
minFlash device controllers handles routing of commands and
data directly without interference from the host, therefore
entirely bypassing traditional network and I/O stacks. We show
that minFlash has the low-latency characteristics of a direct-
attached storage as well as the scalability of a distributed
storage architecture.

The key contributions of this paper are as follows:
1) A minFlash architecture and its hardware implementa-

tion including a new host interface to access the array.
2) A scalable storage system where multiple minFlash

boards are connected using a rack-level inter-controller
network which has negligible latency.

3) Demonstration of the performance gains from reshuf-
fling the I/O stack using a flash-aware file system on
minFlash.

In the rest of the paper, we introduce minFlash’s architecture
(Section II). Then, we present the inter-controller logic to
scale up minFlash (Section III). We show our prototype
hardware platform (Section IV) with measured performance
results (Section V). Finally, we conclude with future works
(Section VI).

II. MINFLASH ARCHITECTURE

Figure 1(b) shows minFlash’s storage I/O stacks and net-
work stacks. In minFlash, all of flash management function-
alities are built into host software stacks (highlighted blue).
The FTL is not just moved to the host, it is also simplified
and reduced by eliminating redundant operations and applying
optimizations using rich system level information. For exam-
ple, one property of flash is that reads/writes occur in 8KB-
16KB pages, but erases can only be done in blocks of many
pages. Moreover, a page cannot be overwritten – it must be
erased first. The FTL handles this using a mapping table of
logical to physical address within the SSD. In minFlash, we
move this mapping table to the file system, or even higher to a
flash-aware user application (e.g. database). Similarly, we can
combine a log-structured file system’s garbage collection (GC)
algorithm with a traditional FTL’s GC algorithm to eliminate
an extra layer. Wear-leveling and bad block management are

built into the lower level block device driver so they can be
shared by higher layers in the software.

To enable these flash management optimizations, minFlash’s
device interface provides a raw, error-free and shared-memory
view of the storage cluster. Internal layout of the flash array is
made accessible by addressing the flash device IDs, channels
(buses), ways (chips), blocks and pages. Only low level bit-
errors and chip/bus scheduling is hidden to be handled by the
minFlash hardware and driver. Upper layer software decides
how to map data and manage flash.

In addition, minFlash eliminates most of the network soft-
ware overheads by moving the storage network to the flash
device. While we can connect multiple flash devices using
commodity networking hardware such as Ethernet or Fibre
Channel, their latencies add at least 90% overhead to flash.
Instead, we chose to use high-bandwidth, low-latency inter-
controller chip-to-chip serial links. These links operate over
shorter distances but are sufficient for a rack server. Each
device uses a thin network router next to the flash controller to
direct flash request/responses. This provides very low-latency
access to remote storage. Each host accesses minFlash as a
distributed shared memory, where any host may access any
device by simply specifying the device ID as part of the
address.

A. Host Interface and Flash Controller

The minFlash device driver uses physical flash addresses
to expose organization of the entire distributed flash array.
Remote devices are accessed using an extra address dimension
(i.e. device ID). The inter-controller network will transparently
route the request and responses. Requests and responses are
tagged so that aggressive out-of-order execution of flash
commands is possible by the flash controller to reach full
bandwidth. The use of the interface is restricted by flash
properties (e.g. erase-before-write). This is shown below:

• ReadPage(tag, device, bus, chip, block, page): Reads
an 8KB flash page on any device.

• WritePage(tag, device, bus, chip, block, page): Writes
an 8KB flash page on any device. Pages must be erased
before written, and writes must be sequential within a
block.

• EraseBlock(tag, device, bus, chip, block): Erases a 256
page block on any device.



• Ack(tag, status): Acknowledges completion of a request
of a certain tag. Status indicates OK, bad blocks on erase
or uncorrectable error on reads.

To use the API, we create a multi-entry page buffer in host
DRAM, where each entry is a flash page buffer (typically
8KB) and is associated with a unique tag. This is a completion
buffer for page reads, and temporary transfer buffer for page
writes. The user then obtains a free tag and sends that to
the device along with the operation (read, write, erase) and
physical flash address. Data is then transferred via DMA
to/from the buffer. Upon completion, an interrupt is raised and
a callback handler recycles the tag/buffer. As we will show,
the overhead of this interface is very low.

On the hardware side, the minFlash device adopts a sim-
plified flash controller that implements a basic set of NAND
control tasks including bit error correction (ECC), bus/chip
scheduling, and NAND I/O protocol communication (Fig-
ure 2). Incoming flash requests are distributed by bus address,
and the bus controller uses a scoreboard to schedule parallel
operations onto the flash chips for maximum bandwidth. The
scheduler works in a priority round robin fashion, rotating to
select the first request that has the highest priority among all
the chips and and enqueues it for execution. We prioritize
short command/address bursts on the bus over long data
transfers, and older requests over newer ones. For ECC, we
use RS(255, 243) Reed-Solomon codes, which has variable
decoding latency in contrast to BCH or LPDC codes used in
modern SSDs [14]. However, it was chosen for its simplicity.
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Fig. 2: minFlash flash controller

III. MULTI-DEVICE LINKING

minFlash can be scaled up in both capacity and bandwidth
by connecting multiple devices together via inter-controller
links in a peer-to-peer fashion. This is transparent to software,
which simply sees an additional address dimension (i.e. device
ID). Since routing is localized to the minFlash flash device,
minFlash boards may be linked with or without attaching
to a host server. In the former case, minFlash appears as a
distributed shared-memory storage device to each host. In the
latter case, minFlash appears as a RAID array of flash devices
to a single host.

A. Shared Controller Management

To provide shared access to flash, we introduce a flash
interface router (Figure 1) that multiplexes remote and local
data/requests onto both the flash controller and the DMA

engine. To ensure fair resource sharing, we use rotating priority
arbiters for all datapaths.
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Fig. 3: Flash interface router with tag renaming for read datapath

Since each host issues requests to minFlash using their own
set of tags, there could be a collision of tags if multiple hosts
issue requests to the same controller with the same tag. Tags
must be unique for the responses to be matched with the
request. We resolve this by a layer of indirection, renaming
host tags (htag) into controller tags (ctag). Upon receiving a
request, the router obtains a free controller tag from the free
queue and stores the original host tag with the source server ID
of the request in a look-up table. Responses from the controller
that are labeled with controller tags will index into the table
to find the original host tag and request source, which are
repackaged with the response to be routed back to its source.
The read datapath of the router is shown in Figure 3.

Host request queue depths are equal to the number of host
tags, which is equivalent to the number of requests that must
be in flight to keep the PCIe bandwidth saturated. Similarly,
controller request queue depth is matched with the number of
requests to use full bandwidth of the flash device.

B. Controller-to-Controller Network

We envision minFlash to be used for rack level flash de-
ployment where the servers are separated over relatively short
distances. Therefore, a lossless network is assumed between
the flash devices. Currently, we use a linear array network
topology which runs vertically up and down the rack (average
2n/3 hops). This simplifies routing of packets and allows us to
connect the devices using short cables. The physical network
is provided by controller chip-to-chip multigigabit transceivers
(MGT). We use a deterministic packet switched router on
top of MGT with an arbiter that supports independent virtual
channels and token-based end-to-end flow control on each
virtual channel[15]. We instantiate a virtual channel for each
datapath of the flash interface (read data, write data, request,
ack etc.) to connect multiple controllers together.

C. Scalability

We remark that the hardware design of minFlash scales
with little increase in hardware resources. Only address widths
increases with the number of devices. Latency of MGT links
is extremely low at 0.5µs/hop, which is 100x better than
Ethernet. Even a hundred network hops is still less than flash



Fig. 4: minFlash prototype platform hardware

access time. Furthermore, by locally attaching each minFlash
devices to a distributed set of host servers, all of the flash
bandwidth is exposed. Linking more devices increases the
total internal bandwidth of the flash storage as well as the
storage capacity. Multiple compute servers can consume this
bandwidth in parallel, each up to the peak rate of their storage
interface (i.e. PCIe).

IV. MINFLASH PLATFORM HARDWARE

We implement minFlash using a Xilinx VC707 FPGA
development board [16], which has a Virtex-7 FPGA, x8 PCIe
Gen 2.0, and 4x10Gbps MGT serial links. We designed a
custom flash board to attach to the VC707 via the FPGA
Mezzanine Card interface (FMC) [17]. The flash board is a
512GB, 8-channel, 8-way design using 256Gbits Micron MLC
NAND chips. The maximum aggregated bus bandwidth of the
board is 1.6 GB/s. Typical latencies for the chip are 75µs for
reads and 1300µs for writes. We use a smaller Xilinx Artix-7
FPGA on the board to implement the low-level flash controller.
4x10Gbps MGT serial links are pinned out as SATA ports on
each device. Cross-over SATA cables are used as the inter-
controller links to connect multiple boards together on a rack.
Figure 4 is a photo of the hardware. This hardware is also
being used in BlueDBM [18].

We used Ubuntu 12.04 with Linux 3.13.0 kernel for our soft-
ware implementation and benchmarks. We used the Connec-
tal [19] software-hardware codesign library to provide RPC-
style request/responses and DMA over PCIe. Connectal allows
us to expose our raw flash interface in both the kernel and
userspace. We used a modified version of the Reed-Solomon
ECC decoder from Agarwal et al. [20] in our controller.

V. EVALUATION

We measure and evaluate (1) local device performance, (2)
multi-device, multi-host performance and (3) user application
performance. In summary, a local minFlash device can reach
peak bandwidth of 1.2 GB/s (75% of theoretical bus band-
width) with a mere 15µs of I/O latency overhead. Chaining
multiple devices together in a distributed fashion adds trivial
amount of latency, while effectively increasing the aggregated
bandwidth. We run a database benchmark with a flash-aware

file system on minFlash to demonstrate that reducing the
storage I/O stack can provide superior overall performance.

A. Local Device Performance

1) Page Access Latency: Page access latency (Table I) is
measured from the host as the time it takes for an 8KB
read/write request to complete, including data transfer.

Read Latency (µs) Write Latency (µs)
PHY Commands 1 1
NAND 69 418 (variable)
ECC 4 0.1
Data Transfer 43 43
PCIe/Software 11 14
Total 128 476 (variable)

TABLE I: Local Read and write access latencies
NAND intrinsic read latency was measured to be 69µs with

an additional 43µs of transfer latency on the bus. The Reed-
Solomon ECC decoder latency varies with the number of bit
errors, and currently accounts for only 4µs. This is expected to
increase as the flash chips age. PCIe flash request/responses,
DMA and host driver incur an additional 11µs of latency. In
total, the read access latency to local minFlash device is 128µs,
with a mere 15µs (12%) overhead from the minFlash controller
and driver. For writes the overhead is similarly low. However,
the total write latency must be taken with a grain of salt since
NAND programming latency is highly variable (up to 2.1ms
for our MLC chips). Overall, we observe that our raw flash
interface provides accesses at close to native flash latency.
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Fig. 5: Bandwidth vs. transfer size of the minFlash device

2) Bandwidth vs. Transfer Size: To measure bandwidth,
address space is partitioned such that data is striped across
channels and chips for maximum parallelism. Requests are
issued for transfer sizes from single 8KB pages to 16MB
chunks for both sequential and random accesses. Results are
shown in Figure 5. We note that random writes are not
measured because of the erase-before-write property of NAND
flash that prevents us from randomly writing data. Higher
level software needs to perform garbage collection and address
remapping to handle random writes.

For all curves, bandwidth grows quickly as more channels
are used at the beginning of the graph. The growth slows
when we move towards chip parallelism as the bus becomes
busier and eventually saturates. Random access performance
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Fig. 6: Multi-device bandwidth. (a) single host, multiple flash boards. (b) multiple hosts, single flash board. (c) multiple hosts, multiple flash boards.

is slightly worse due to address collisions that would reduce
parallelism. Peak sequential performance is a respectable
1.2GB/s, which is 75% of the maximum bus bandwidth of
the device. We note that 5% of the overhead inherently arises
from transferring ECC parity bits. Additional overhead comes
from commands, addresses and chip status polling on the bus,
as well as some imperfections in scheduling. We conclude that
our interface and controller are very efficient, and is able to
fully expose the raw bandwidth of the flash array to the host.

B. Multi-Device Performance

Multi-device performance is measured by chaining together
4 minFlash devices in a linear array attached to 4 separate
host servers.
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Fig. 7: Multi-hop page access latency

1) Access Latency: Figure 7 show the flash page read
access latency over multiple hops of minFlash devices. Be-
cause of direct chip-to-chip links, the inter-controller network
latency is virtually non-existent. In fact, latency variations
(shown by error bars) in software and NAND chips far exceed
measurable network latency. Our hardware counters indicate
that each hop is a trivial 0.5µs. Because accessing local
PCIe attached flash and remote flash devices are equally fast,
minFlash’s global shared-memory interface appears as fast
as a local storage, even though it is physically distributed
among multiple machines. In comparison, accessing storage
over traditional networks incur at least 90µs of additional
latency.

2) Bandwidth: We measure minFlash’s bandwidth under
the following scenarios: (1) single host accessing multiple
connected minFlash devices (Figure 6a), (2) multiple hosts

accessing the same device (Figure 6b), and (3) multiple
hosts accessing multiple devices (Figure 6c). All accesses are
random reads of 16MB chunks.

The first scenario is similar to a RAID-0 arrangement. We
observe some speed-up (from 1.2 GB/s to 1.32 GB/s) by
accessing multiple boards in parallel, but ultimately we are
bottlenecked by PCIe (currently x8 Gen 1.0). We are in the
process of upgrading our hardware IP to Gen 2.0, which would
double the interface bandwidth. In general, because the total
aggregated bandwidth from multiple minFlash flash boards
is extremely high, a single server’s storage interface cannot
consume all of the bandwidth. minFlash is more powerful
than RAID arrays in that it makes the aggregated bandwidth
available to multiple compute servers while maintaining the
low latencies of direct attached storage.

The second scenario examines the behavior of minFlash
when there is resource contention for the same flash device.
The graph shows that the minFlash controller and the network
routers can very fairly distribute the bandwidth to each host,
while maintaining peak overall bandwidth. This is important
when hosts are performing parallel computations on the same
data.

The last graph shows the aggregated bandwidth scalability
of the global shared-memory flash store, with multiple servers
randomly accessing the entire address space. The line in the
graph shows the total maximum internal bandwidth provided
by the flash devices (a simple multiple of the bandwidth
of a single device). The bars in the graph are the achieved
aggregated throughput from the hosts’ perspective. We reach
92% of the maximum potential scaling with 2 hosts and
79% with 4 hosts for a total of 3.8 GB/s. For even more
hosts, we do expect the serial network bandwidth to eventually
become a bottleneck. However, with help from the application
to optimize for some access locality, minFlash can expect to
reach close to peak internal flash bandwidth. Overall, minFlash
wins in latency against SAN and distributed file systems, in
bandwidth efficiency against flash arrays, and in scalability
against locally attached flash.

C. Application Performance

Finally, we run a flash-aware file system called REDO [2]
on top of minFlash to demonstrate its compatibility with host
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Fig. 8: YCSB benchmark results comparing (1) minFlash + REDO and (2)
minFlash + page FTL + EXT4

software and the benefits of exposing flash characteristics.
REDO is a log-structured file system that contains built-in
flash management functionalities. By removing redundancies
that arise from separately using FTL and traditional file
systems, REDO can achieve higher performance using less
hardware resources. We ran Yahoo Cloud Serving Benchmark
(YCSB) [21] with MySQL+InnoDB at default settings, per-
forming 200,000 updates to 750,000 records. We compare two
I/O stack configurations: (1) minFlash+REDO file system and
(2) minFlash + host page-level FTL + EXT4 file system. The
latter configuration emulates a traditional SSD I/O architec-
ture. Measurements are shown in Figure 8.

We see that minFlash+REDO doubles the performance of
minFlash+FTL+EXT4 in both throughput and latency. This
gain primarily stems from reduced number of I/O operations
that REDO performs for the same workload. By merging file
system and FTL functions, REDO can cut down on redundant
and unnecessary I/Os in garbage collection, while maximizing
the parallelism of the flash device. REDO is one of many
examples of OS-level and user-level software that can take
advantage of the raw flash interface provided by minFlash.

VI. CONCLUSION AND FUTURE WORK

We have presented minFlash, a clustered flash storage plat-
form that (i) exposes a shared-memory native flash interface
to enable the optimization of the flash I/O stack and (ii) uses
an inter-controller network within the storage device to bypass
network overheads when scaling up. Latency overhead added
by the platform is merely 15µs for accessing both local and
remote storage since network latency is negligible. Aggregated
bandwidth of the system also scales well even when there are
simultaneous random requests from multiple hosts.

For future work, we are examining new network topologies
that would increase cross-sectional bandwidth to allow the
system to scale out to greater number of devices and even

beyond a rack. On the software side, we are looking into
supporting distributed flash management at the file system
level, potentially using the serial network to pass metadata
information between nodes.
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