
This paper is included in the Proceedings of the
14th USENIX Conference on

File and Storage Technologies (FAST ’16).
February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the
14th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Application-Managed Flash
Sungjin Lee, Ming Liu, Sangwoo Jun, and Shuotao Xu, MIT CSAIL;

Jihong Kim, Seoul National University; Arvind, MIT CSAIL

https://www.usenix.org/conference/fast16/technical-sessions/presentation/lee

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 339

Application-Managed Flash

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim∗ and Arvind

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
∗Department of Computer Science and Engineering, Seoul National University

Abstract

In flash storage, an FTL is a complex piece of code that

resides completely inside the storage device and is pro-

vided by the manufacturer. Its principal virtue is provid-

ing interoperability with conventional HDDs. However,

this virtue is also its biggest impediment in reaching the

full performance of the underlying flash storage. We pro-

pose to refactor the flash storage architecture so that it

relies on a new block I/O interface which does not per-

mit overwriting of data without intervening erasures.We

demonstrate how high-level applications, in particular

file systems, can deal with this restriction efficiently by

employing append-only segments. This refactoring dra-

matically reduces flash management overhead and im-

proves performance of applications, such as file systems

and databases, by permitting them to directly manage

flash storage. Our experiments on a machine with the

new block I/O interface show that DRAM in the flash

controller is reduced by 128X and the performance of the

file system improves by 80% over conventional SSDs.

1 Introduction

NAND flash SSDs have become the preferred storage de-

vice in both consumer electronics and datacenters. Flash

has superior random access characteristics to speed up

many applications and consumes less power than HDDs.

Thanks to Moore’s law and advanced manufacturing

technologies like 3D NAND [27], the use of flash-based

devices is likely to keep rising over the next decade.

SSDs employ a flash translation layer (FTL) to pro-

vide an I/O abstraction of a generic block device so that

HDDs can be replaced by SSDs without the software be-

ing aware of flash characteristics. An FTL is a complex

piece of software because it must manage the overwriting

restrictions, wear- leveling and bad-block management.

Implementing these management tasks requires sig-

nificant hardware resources in the flash controller. In

particular, tasks like address remapping and garbage

collection require large amounts of DRAM and pow-

erful CPUs (e.g., a 1 GHz quad-core CPU with 1 GB

DRAM [19, 48, 45]). The FTL makes important deci-

sions affecting storage performance and lifetime, with-

out any awareness of the high-level application, and con-

sequently the resulting performance is often subopti-

mal [15, 28, 9, 17]. Moreover, the FTL works as a black

box – its inner-workings are hidden behind a block I/O

layer, which makes the behavior of flash storage unpre-

dictable for higher-level applications, for example, unex-

pected invocation of garbage collection [14] and swap-

in/out of mapping entries [44, 23].

Another serious drawback of the FTL approach is the

duplication of functionality between the FTL and the

host. Many host applications already manage underlying

storage to avoid in-place updates for several reasons such

as better performance, efficient versioning, data consis-

tency and so on. Log-structured or copy-on-write file

systems always append new data to the device, mostly

avoiding in-place updates [47, 20, 46, 31, 33, 50]. Simi-

lar log-structured systems are used in the database com-

munity [49, 1, 5]. The LSM-Tree is also a well known

data structure based on a log-structured approach [42, 12,

2, 6]. Since the FTL is not aware of this avoidance of

overwriting, it employs its own log-structured technique

to manage flash. Running log-structured applications on

top of a log-structured FTL wastes hardware resource

and incurs extra I/Os. This double logging problem is

also reported by empirical studies conducted by indus-

try [53].

In this paper, we present a different approach to man-

aging flash storage, which is called an Application-

Managed Flash (AMF). As its name implies, AMF

moves the intelligence of flash management from the de-

vice to applications, which can be file systems, databases

and user applications, leaving only essential manage-

ment parts on the device side. For various applications

to easily use AMF, we define a new block I/O inter-

arnold
Sticky Note
Marked set by arnold

340 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

face which does not support overwrites of data unless

they were explicitly deallocated (i.e., an attempt to over-

write data without a proper deallocation generates an er-

ror). This dramatically simplifies the management bur-

den inside the device because fine-grained remapping

and garbage collection do not have to be done in the

device. The application using the flash device is com-

pletely responsible for avoiding in-place updates and is-

suing trim commands to indicate that the data has been

deallocated and the device can erase and reuse the as-

sociated flash blocks. This direct flash management by

applications has several advantages. For example, it can

(i) efficiently schedule both regular and cleaning I/Os

(e.g., copying and compacting) based on the states of the

processes; (ii) accurately separate hot and cold data ac-

cording to its properties (e.g., metadata versus data); and

(iii) directly map objects (e.g., files) to physical locations

without maintaining a huge mapping table.

In AMF, the device responsibility is reduced to provid-

ing error-free storage accesses and efficient parallelism

support to exploit multiple storage chips on buses or

channels. The device also keeps track of bad blocks

and performs wear-leveling. It is preferable to do these

operations in the device because they depend upon the

specific circuit designs and manufacturing process of the

device. Understandably, device manufacturers are reluc-

tant to disclose such details. In our system, management

tasks in the device are performed at the block granular-

ity as opposed to the page granularity, therefore mapping

tables required are considerably smaller.

One may think that avoiding in-place updates places

too much burden on applications or users. However, this

is not the case because many applications that use HDDs

already employ append-only strategies as we pointed out

earlier, and these are our target applications. For such ap-

plications, the only additional burden in using our inter-

face is to avoid rare in-place updates. Moreover, forcing

host applications to write data sequentially is not an ex-

treme constraint either. For example, shingled magnetic

recording (SMR) HDDs have already adopted a similar

approach for the management of overlapped sectors [11].

To demonstrate the advantages of AMF, we used an

open FPGA-based flash platform, BlueDBM [25, 36],

as our testbed which provides error-free accesses to raw

flash chips. We implemented a new lightweight FTL

called an Application-managed FTL (AFTL) to support

our block I/O interface. For our case study with ap-

plications, we have selected a file system because it

is the most common application to access flash stor-

age. We have implemented a new Application-managed

Log-structured File-System (ALFS). The architecture of

ALFS is exactly the same as the conventional LFS, ex-

cept that it appends the metadata as opposed to updat-

ing it in-place. It should be noted that applying AMF

Figure 1: An AMF block I/O abstraction: It shows two logical

segments (logical segments 0 and 1) and two corresponding

physical ones on the device side (physical segments 0 and 1). A

logical segment is composed of 16 sectors which are statically

mapped to flash pages. A physical segment is organized with

four flash blocks belonging to four channels and one way.

is not limited to a file system only. Many real world

applications can benefit from AMF. For example, key-

value stores based on LSM-Trees (e.g., LevelDB [12]

and RocksDB [2]), logical volume managers combined

with CoW file systems (e.g., WAFL [20] and Btrfs [46])

and log-structured databases (e.g., RethinkDB [1]) are

candidate applications for AMF.

Our experiments show that AMF improves I/O per-

formance and storage lifetime by up to 80% and 38%,

respectively, over file systems implemented on conven-

tional FTLs. The DRAM requirement for the FTL was

reduced by a factor of 128 because of the new inter-

face while the additional host-side resources (DRAM

and CPU cycles) required by AMF were minor.

This paper is organized as follows: Section 2 ex-

plains our new block I/O interface. Sections 3 and 4

describe AMF. Section 5 evaluates AMF with various

benchmarks. Section 6 reviews related work. Section

7 concludes with a summary and future directions.

2 AMF Block I/O Interface

Figure 1 depicts the block I/O abstraction of AMF, show-

ing both logical and physical layouts. The block I/O in-

terface of AMF is based on conventional block I/O – it

exposes a linear array of fixed size blocks or sectors (e.g.,

4 KB), which are accessed by three I/O primitives, READ,

WRITE and TRIM. To distinguish a logical block from a

flash block, we call it a sector in the remainder of this

paper. Continuous sectors are grouped into a larger ex-

tent (e.g., several MB), called a segment.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 341

A segment is allocated when the first write is per-

formed and its size grows implicitly as more writes are

performed. A segment is deallocated by issuing a TRIM

command. Therefore, TRIM is always conducted in the

unit of a segment. A sector of a segment can be read once

it has been written. However, a sector can be written only

once; an overwrite generates an error. To avoid this over-

write problem, the host software should write the sectors

of a segment in an append-only manner, starting from the

lowest sector address. This sector can be reused after the

segment it belongs to has been deallocated by TRIM.

A segment exposed to upper layers is called a logical

segment, while its corresponding physical form is called

a physical segment. Segmentation is a well known con-

cept in many systems. In particular, with log-structured

systems, a logical segment is used as the unit of free

space allocation, where new data is sequentially ap-

pended and free space is reclaimed later. A physical seg-

ment on the storage device side is optimized for such a

sequential access by software. In Figure 1, a physical

segment is composed of a group of blocks spread among

different channels and ways, and sectors within a logi-

cal segment are statically mapped to flash pages within

a physical one. This mapping ensures the maximum

bandwidth of the device when data is read or written se-

quentially. It also provides predictable performance un-

affected by the firmware’s behavior.

Our block I/O interface expects the device controller

to take the responsibility for managing bad-blocks and

wear-leveling so that all the segments seen by upper lay-

ers are error-free. There are two main reasons for our

decision. First, it makes the development of systems

and applications easier since bad-block management and

wear-leveling are relatively simple to implement at the

device level and do not require significant resources.

Second, the lifetime of NAND devices can be managed

more effectively at lower levels where device-level in-

formation is available. Besides P/E cycles, the lifetime

of NAND devices are affected by factors such as recov-

ery effects [13] and bit error rates [43]; SSD vendors

take these factors into consideration in wear-leveling and

bad-block management. This information is proprietary

and confidential – for example, some vendors do not re-

veal even P/E cycles on datasheets. Hiding these vendor

and device-specific issues inside the flash controller also

makes the host software vendor independent.

Compatibility Issue: Our block I/O interface main-

tains good compatibility with existing block I/O subsys-

tems – the same set of I/O primitives with fixed size sec-

tors (i.e., READ, WRITE and TRIM). The only new restric-

tions introduced by the AMF block I/O interface are (i)

non-rewritable sectors before being trimmed, (ii) a lin-

ear array of sectors grouped to form a segment and (iii)

the unit of a TRIM operation. Note that a segment size

is easily shared by both applications and devices through

interfaces like S.M.A.R.T and procfs. In our Linux im-

plementation, for example, the existing block I/O layer

is not changed at all. This allows us to convert existing

software to run on AMF in an easy manner.

The architecture of AFTL is similar to block or

segment-level FTLs and requires minimal functions for

flash management, thus SSD vendors can easily build

AMF devices by removing useless functions from their

devices. For better compatibility with conventional sys-

tems, SSD vendors can enhance their SSD products to

support two different modes: device-managed flash and

application-managed flash. This allows us to choose the

proper mode according to requirements. The addition of

AFTL to existing SSDs may not require much efforts and

hardware resources because of its simplicity.

3 AMF Log-structured File System

In this section, we explain our experience with the design

and implementation of ALFS. We implement ALFS in

the Linux 3.13 kernel based on an F2FS file system [33].

Optimizing or enhancing the fundamental LFS design is

not a goal of this study. For that reason, most of the data

structures and modules of F2FS are left unchanged. In-

stead, we focus on two design aspects: (i) where in-place

updates occur in F2FS and (ii) how to modify F2FS for

the AMF block I/O interface. The detailed implementa-

tion of F2FS is different from other LFSs [38, 31], but

its fundamental design concept is the same as its ances-

tor, Sprite LFS [47]. For the sake of simplicity and gen-

erality, we explain the high-level design of ALFS using

general terms found in Sprite LFS.

3.1 File Layout and Operations

Figure 2 shows the logical segments of ALFS, along

with the corresponding physical segments in AFTL. All

user files, directories and inodes, including any modifica-

tions/updates, are appended to free space in logical seg-

ments, called data segments. ALFS maintains an inode

map to keep track of inodes scattered across the storage

space. The inode map is stored in reserved logical seg-

ments, called inode-map segments. ALFS also maintains

check-points that point to the inode map and keep the

consistent state of the file system. A check-point is writ-

ten periodically or when a flush command (e.g., fsync)

is issued. Logical segments reserved for check-points are

called check-point segments.

ALFS always performs out-of-place updates even for

the check-point and the inode-map because of the re-

quirements of the AMF block I/O interface. Hence, their

locations are not fixed. This makes it difficult to find the

342 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 2: The upper figure illustrates the logical layout of

ALFS. There is an initial check-point CP(v1). Four files are

appended to data segments along with their inodes in the fol-

lowing order: A, B, C and D. Then, an inode map IM#0 is

written which points to the locations of the inodes of the files.

Finally, the check-point CP(v2) is written to check-point seg-

ments. The bottom figure shows the physical segments corre-

sponding to the logical segments. The data layout of a logical

segment perfectly aligns with its physical segment.

latest check-point and the locations of inodes in inode-

map segments after mounting or power failure. Next,

we explain how ALFS manages check-point segments

for quick mount and recovery, and show how it handles

inode-map segments for fast searches of inodes.

3.2 Check-Point Segment

The management of check-point segments is straightfor-

ward. ALFS reserves two fixed logical segments #1 and

#2 for check-points. (Note: a logical segment #0 is re-

served for a superblock). Figure 3 shows an example

of check-point management. ALFS appends new check-

points with incremental version numbers using the avail-

able free space. If free space in segments is exhausted,

the segment containing only old check-point versions is

selected as a victim for erasure (see Figure 3(a)). The lat-

est check-point is still kept in the other segment. ALFS

sends TRIM commands to invalidate and free the vic-

tim (see Figure 3(b)). Then, it switches to the freed

segment and keeps writing new check-points (see Fig-

ure 3(c)). Even though ALFS uses the same logical seg-

ments repeatedly, it will not unevenly wear out flash be-

cause AFTL performs wear-leveling.

When ALFS is remounted, it reads all the check-point

segments from AFTL. It finds the latest check-point by

comparing version numbers. This brute force search

is efficient because ALFS maintains only two segments

for check-pointing, regardless of storage capacity. Since

segments are organized to maximize I/O throughput, this

search utilizes full bandwidth and mount time is short.

Figure 3: Check-point segment handling

3.3 Inode-Map Segment

The management of inode-map segments is more com-

plicated. The inode map size is decided by the maximum

number of inodes (i.e., files) and is proportional to stor-

age capacity. If the storage capacity is 1 TB and the min-

imum file size is 4 KB, 228 files can be created. If each

entry of the inode map is 8 B (4 B for an inode number

and 4 B for its location in a data segment), then the inode

map size is 2 GB (= 8 B×228). Because of its large size,

ALFS divides the inode map into 4 KB blocks, called

inode-map blocks. There are 524,288 4-KB inode-map

blocks for the inode map of 2 GB, each of which contains

the mapping of 512 inodes (see Table 1). For example,

IM#0 in Figure 2 is an inode-map block.

ALFS always appends inode-map blocks to free space,

so the latest inode-map blocks are scattered across inode-

map segments. To identify the latest valid inode-map

blocks and to quickly find the locations of inodes, we

need to develop another scheme.

Inode-Map Block Management: Figure 4 illustrates

how ALFS manages inode-map blocks. To quickly find

the locations of inodes, ALFS maintains a table for

inode-map blocks (TIMB) in main memory. TIMB con-

sists of 4 B entries that point to inode-map blocks in

inode-map segments. Given an inode number, ALFS

finds its inode-map block by looking up TIMB. It then

obtains the location of the inode from that inode-map

block. The TIMB size is 2 MB for 524,288 inode-

map blocks (= 4 B×524,288), so it is small enough

to be kept in the host DRAM. The in-memory TIMB

should be stored persistently; otherwise, ALFS has to

scan all inode-map segments to construct the TIMB dur-

Data structure Unit size Count Storage

Inode-map block 4 KB 524K Flash (inode-map segs)

In-memory TIMB 2 MB 1 DRAM

TIMB block 4 KB 512 Flash (inode-map segs)

TIMB-blocks list 2 KB 1 Flash (a check-point)

Table 1: An example of data structures sizes and locations

with a 1 TB SSD. Their actual sizes vary depending on ALFS

implementation (e.g., an inode-map size) and storage capacity.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 343

Figure 4: To find an inode, ALFS first looks up in-memory

TIMB to find the location of inode-map blocks that points to the

inode in flash. Each 4 KB TIMB block indicates 1,024 inode-

map blocks in inode-map segments (e.g., TIMB#0 points to

IM#0∼IM#1023 in flash). Since each inode-map block points

to 512 inodes, TIMB#0 block indicates inodes ranging from 0-

524,288 in flash. If ALFS searches for an inode whose number

is 1023, it looks up TIMB#0 in the in-memory TIMB (1©) and

finds the location of IM#1 that points to 512∼1023 inodes (2©).

Finally, the inode 1023 can be read from a data segment (3©).

Note that the latest check-point points to all of the physical lo-

cations of TIMB blocks in flash.

ing mount. ALFS divides the TIMB into 4 KB blocks

(TIMB blocks) and keeps track of dirty TIMB blocks that

hold newly updated entries. ALFS appends dirty TIMB

blocks to free space in inode-map segments just before a

check-point is written.

TIMB blocks themselves are also stored in non-fixed

locations. To build the in-memory TIMB and to safely

keep it against power failures, a list of all the physical

locations of TIMB blocks (TIMB-blocks list) is written

to check-point segments together with the latest check-

point. Since the size of the in-memory TIMB is 2 MB,

the number of TIMB blocks is 512 (= 2 MB/4 KB). If 4

B is large enough to point to locations of TIMB blocks,

the TIMB-blocks list is 2 KB (= 4 B×512). The actual

size of check-point data is hundred bytes (e.g., 193 bytes

in F2FS), so a check-point with a TIMB-block list can be

written together to a 4 KB sector without extra writes.

Remount Process: The in-memory TIMB should be

reloaded properly whenever ALFS is mounted again.

ALFS first reads the latest check-point as we described in

the previous subsection. Using a TIMB-blocks list in the

check-point, ALFS reads all of the TIMB blocks from

inode-map segments and builds the TIMB in the host

DRAM. The time taken to build the TIMB is negligible

because of its small size (e.g., 2 MB for 1 TB storage).

Up-to-date TIMB blocks and inode-map blocks are

written to inode-map segments before a new check-point

is written to NAND flash. If the check-point is success-

fully written, ALFS returns to the consistent state after

power failures by reading the latest check-point. All the

TIMB blocks and inode-map blocks belonging to an in-

complete check-point are regarded as obsolete data. The

recovery process of ALFS is the same as the remount

process since it is based on LFS [47].

Garbage Collection: When free space in inode-

map segments is almost used up, ALFS should perform

garbage collection. In the current implementation, the

least-recently-written inode-map segment is selected as

a victim. All valid inode-map blocks in the victim are

copied to a free inode-map segment that has already

been reserved for garbage collection. Since some of

inode-map blocks are moved to the new segment, the in-

memory TIMB should also be updated to point to their

new locations accordingly. Newly updated TIMB blocks

are appended to the new segment, and the check-point

listing TIMB blocks is written to the check-point seg-

ment. Finally, the victim segment is invalidated by a

TRIM command and becomes a free inode-map segment.

To reduce live data copies, ALFS increases the number

of inode-map segments such that their total size is larger

than the actual inode-map size. This wastes file-system

space but greatly improves garbage collection efficiency

because it facilitates inode-map blocks to have more in-

valid data prior to being selected as a victim. ALFS fur-

ther improves garbage collection efficiency by separating

inode-map blocks (i.e., hot data) in inode-map segments

from data segments (i.e., cold data). Currently, ALFS al-

locates inode-maps segments which are four times larger

than its original size (e.g., 8 GB if the inode map size is 2

GB). The space wasted by extra segments is small (e.g.,

0.68% = 7 GB / 1 TB).

All of the I/O operations required to manage inode-

map blocks are extra overheads that are not present in the

conventional LFS. Those extra I/Os account for a small

portion, which is less than 0.2% of the total I/Os.

3.4 Data Segment

ALFS manages data segments exactly the same way as in

the conventional LFS – it buffers file data, directories and

inodes in DRAM and writes them all at once when their

total size reaches a data segment size. This buffering is

advantageous for ALFS to make use of the full band-

width of AFTL. ALFS performs segment cleaning when

free data segments are nearly exhausted. The procedure

of segment cleaning is illustrated in Figure 5.

Besides issuing TRIM commands after segment clean-

ing, we have not changed anything in F2FS for manage-

ment of data segments because F2FS already manages

data segments in an append-only manner. This is a good

example of how easily AMF can be used by other log-

structured systems. It also allows us to automatically

borrow advanced cleaning features from F2FS [33] with-

out any significant effort.

arnold
Sticky Note
Marked set by arnold

344 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 5: Writes and garbage collection of ALFS with AFTL: (a) Four new files E, B, F and G are written to data segment 1.

The file B is a new version. ALFS appends IM#0 to the inode-map segment because it points to the locations of the files. A new

check-point CP(v3) is appended. (b) Free space in ALFS is nearly exhausted, so ALFS triggers garbage collection. ALFS copies

the files A, C and D to data segment 2. Since data segment 0 has only invalid data, ALFS sends TRIM commands to AFTL, making

it free. Finally, AFTL erases physical segment 2. There are 3 page copies and 2 block erasures for garbage collection.

Figure 6: Writes and garbage collection of LFS with FTL: FTL sequentially writes all the sectors to NAND flash using a mapping

table. (a) The files E, B, F, and G are appended to free pages. IM#0 and CP are overwritten in the same locations in LFS. FTL maps

them to free pages, invaliding old versions. (b) FTL decides to perform garbage collection. It copies flash pages for A, D and E to

free pages and gets 3 free blocks (Blocks 0, 2, 3). (c) LFS is unaware of FTL, so it also triggers garbage collection to create free

space. It moves the files A, C and D to free space and sends TRIM commands. For garbage collection, there are 6 page copies and

3 block erasures. The files A and D are moved uselessly by FTL because they are discarded by LFS later.

3.5 Comparison with Conventional LFS

In this section, we compare the behavior of ALFS with a

conventional LFS that runs on top of a traditional FTL.

For the same set of operations, Figure 5 illustrates the

behaviors of ALFS, while Figure 6 shows those of the

conventional LFS with the FTL. For the sake of simplic-

ity, we assume that ALFS and LFS have the same file-

system layout. The sizes of a sector and a flash page are

assumed to be the same. LFS keeps check-points and an

inode-map in a fixed location and updates them by over-

writing new data.1 On the storage device side, LFS runs

the page-level FTL that maps logical sectors to any phys-

ical pages in NAND flash. In AFTL, a physical segment

is composed of two flash blocks. AFTL just erases flash

blocks containing only obsolete pages.

Figures 5 and 6 demonstrate how efficiently ALFS

manages NAND flash compared to LFS with the FTL.

LFS incurs a larger number of page copies for garbage

collection than ALFS. This inefficiency is caused by (i)

in-place updates to check-point and inode-map regions

1This is somewhat different depending on the design of LFS. Sprite

LFS overwrites data in a check-point region only [47], while NILFS

writes segment summary blocks in an in-place-update fashion [31].

F2FS overwrites both a check-point and an inode map [33]. Since

ALFS is based on F2FS, we use the design of F2FS as an example.

by LFS. Whenever overwrites occur, the FTL has to map

up-to-date data to new free space, invalidating its old ver-

sion that must be reclaimed by the FTL later (see Blocks

0, 2, 3 in Figure 6(a)). Other versions of LFS that over-

write only check-points (e.g., Sprite LFS) also have the

same problem. (ii) The second is unaligned logging by

both LFS and the FTL which results in data from differ-

ent segments being mixed up in the same flash blocks. To

lessen FTL-level garbage collection costs, LFS discards

the entire logical segment (i.e., data segment 0) after

cleaning, but it unintentionally creates dirty blocks that

potentially cause page copies in the future (see Blocks 6

and 7 in Figure 6(c)).

In ALFS, in-place updates are never issued to the de-

vice and the data layout of a logical segment perfectly

aligns with a corresponding physical segment. Thus, the

problems with LFS do not occur in ALFS.

4 AMF Flash Translation Layer (AFTL)

In this section, we explain the design and implementa-

tion of AFTL. We implement AFTL in a device driver be-

cause our SSD prototype does not have a processor, but it

can be implemented in the device if a processor is avail-

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 345

Figure 7: An example of how AFTL handles writes: There

are four channels and one way in AFTL, and each block is com-

posed of two pages. A physical segment has 8 pages. When a

write request comes, AFTL gets a logical segment number (i.e.,

100 = 801/8) using the logical sector number. It then looks up

the segment-map table to find a flash block mapped to the logi-

cal segment. In this example, the logical block ‘801’ is mapped

to ‘Block 0’ in ‘Channel #1’. Finally, AFTL writes the data to

a corresponding page offset in the mapped block.

able. The architecture of AFTL is similar to a simpli-

fied version of the block-level FTL [4], except that AFTL

does not need to run address remapping to avoid in-place

updates, nor does it need to perform garbage collection.

For the sake of clarity, we focus on describing the mini-

mum requirements for AFTL implementation rather than

explaining how to improve existing FTLs to support the

new block I/O interface.

Wear-Leveling and Bad-Block Management: As

discussed in Section 2, sectors in a logical segment

are statically mapped to flash pages. For wear-leveling

and bad-block management, AFTL only needs a small

segment-map table that maps a logical segment to a phys-

ical segment. Each table entry contains the physical loca-

tions of flash blocks mapped to a logical segment along

with a status flag (STAT). Each entry in the table points to

blocks of a logical segment that is striped across channels

and ways. STAT indicates Free, Used or Invalid.

Figure 7 shows how AFTL handles write requests. If

any physical blocks are not mapped yet (i.e., STAT is

Free or Invalid), AFTL builds the physical segment by

allocating new flash blocks. A bad block is not selected.

AFTL picks up the least worn-out free blocks in the cor-

responding channel/way. To preserve flash lifetime and

reliability, AFTL can perform static wear-leveling that

exchanges the most worn-out segments with the least

worn-out ones [7]. If there are previously allocated flash

blocks (i.e., STAT is Invalid), they are erased. If a logical

segment is already mapped (i.e., STAT is Used), AFTL

writes the data to the fixed location in the physical seg-

ment. ALFS informs AFTL via TRIM commands that

the physical segments have only obsolete data. Then,

AFTL can figure out which blocks are out-of-date. Upon

Figure 8: An example of how AFTL handles write requests

when ALFS appends data to two segments A and B simultane-

ously: Numbers inside rectangles indicate a file-system sector

address. ALFS sequentially writes data to segments A and B,

but write requests arrive at AFTL in a random order (i.e., 0,

8, 1, ...). They are sorted in multiple I/O queues according to

their destined channels and are written to physical segments in

a way of fully utilizing four channels. If a single queue with

FIFO scheduling is used, the sector ‘1’ is delayed until ‘0’ and

‘8’ are sent to flash blocks ‘0’ and ‘4’ through the channel 0.

receiving the TRIM command, AFTL invalidates that

segment by changing its STAT to Invalid. Invalid seg-

ments are erased on demand or in background later.

I/O Queueing: AFTL employs per-channel/way I/O

queues combined with a FIFO I/O scheduler. This mul-

tiple I/O queueing is effective in handling multiple write

streams. ALFS allocates several segments and writes

multiple data streams to different segments at the same

time. For example, a check-point is often written to

check-point segments while user files are being written to

data segments. Even if individual write streams are sent

to segments sequentially, multiple write streams arriving

at AFTL could be mixed together and be random I/Os,

which degrades I/O parallelism. Figure 8 shows how

AFTL handles random writes using multiple queues.

This management of multiple write streams in AMF is

more efficient than conventional approaches like multi-

streamed SSDs [28]. In multi-streamed SSDs, the num-

ber of segments that can be opened for an individual

write stream is specified at the configuration time. There

is no such a limitation in AMF; ALFS opens as many

logical segments as needed to write multiple streams. All

the data are automatically separated to different physical

segments according to the segment-level mapping. This

enables applications to more efficiently separate data ac-

cording to their properties.

Write skews do not occur for any channel or way in

arnold
Sticky Note
Marked set by arnold

346 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Capacity
Block-level Hybrid Page-level AMF

FTL FTL FTL AFTL ALFS

512 GB 4 MB 96 MB 512 MB 4 MB 5.3 MB

1 TB 8 MB 186 MB 1 GB 8 MB 10.8 MB

Table 2: A summary of memory requirements

AFTL. This is because ALFS allocates and writes data

in the unit of a segment, distributing all the write re-

quests to channels and ways uniformly. Moreover, since

FTL garbage collection is never invoked in AFTL, I/O

scheduling between normal I/Os and GC I/Os is not re-

quired. Consequently, simple multiple I/O queueing is

efficient enough to offer good performance, and complex

firmware algorithms like load-balancing [8] and out-of-

ordering [39, 16] are not required in AFTL.

5 Experimental Results

We begin our analysis by looking at memory require-

ments for AFTL and ALFS, comparing against com-

monly used FTL schemes. We then evaluate the perfor-

mance of AMF using micro-benchmarks to understand

its behavior under various I/O access patterns. We bench-

mark AMF using realistic applications that have more

complex I/O access patterns. Finally, we measure life-

time, I/O latency and CPU utilization of the system.

5.1 Memory Requirements

We compare the mapping table sizes of AFTL with three

FTL schemes: block-level, hybrid and page-level FTLs.

Block-level FTL uses a flash block (512 KB) as the unit

of mapping. Because of its low performance, it is rarely

used in production SSDs. Page-level FTL performs map-

ping on flash pages (4-16KB). Hybrid FTL is a combi-

nation of block-level and page-level FTLs – while the

block-level mapping is used to manage the storage space

offered to end-users, the page-level mapping is used for

an over-provisioning area. For the hybrid FTL, 15% of

the total capacity is used as the over-provisioning area.

AFTL maintains the segment-map table pointing to flash

blocks for wear-leveling and bad-block management.

Table 2 lists the mapping table sizes of 512 GB and 1

TB SSDs. For the 512 GB SSD, the mapping table sizes

are 4 MB, 96 MB, 512 MB and 4 MB for block-level, hy-

brid, page-level FTLs and AFTL, respectively. The map-

ping table sizes increase in proportional to the storage

capacity – when the capacity is 1 TB, block-level, hy-

brid, page-level FTLs and AFTL require 8 MB, 62 MB,

1 GB and 8 MB memory, respectively. AFTL maintains a

smaller mapping table than the page-level FTL, enabling

us to keep all mapping entries in DRAM even for the 1

TB SSD. Table 2 shows the host DRAM requirement for

Category Workload Description

File System
FIO A synthetic I/O workload generator

Postmark A small and metadata intensive workload

Database

Non-Trans A non-transactional DB workload

OLTP An OLTP workload

TPC-C A TPC-C workload

Hadoop

DFSIO A HDFS I/O throughput test application

TeraSort A data sorting application

WordCount A word count application

Table 3: A summary of benchmarks

ALFS, including tables for inode-map blocks (TIMB) as

well as other data structures. As listed in the table, ALFS

requires a tiny amount of host DRAM.

5.2 Benchmark Setup

To understand the effectiveness of AMF, we compared

it with two file systems, EXT4 and F2FS [33], run-

ning on top of two different FTL schemes, page-level

FTL (PFTL) and DFTL [14]. They are denoted by

EXT4+PFTL, EXT4+DFTL, F2FS+PFTL, and F2FS+DFTL,

respectively.

PFTL was based on pure page-level mapping that

maintained all the mapping entries in DRAM. In prac-

tice, the mapping table was too large to be kept in

DRAM. To address this, DFTL stored all the mapping

entries in flash, keeping only popular ones in DRAM.

While DFTL reduced the DRAM requirement, it in-

curred extra I/Os to read/write mapping entries from/to

NAND flash. We set the DRAM size so that the map-

ping table size of DFTL was 20% of PFTL. Since DFTL

is based on the LRU-based replacement policy, 20% hot

entries of the mapping table were kept in DRAM. For

both PFTL and DFTL, greedy garbage collection was

used, and an over-provisioning area was set to 15% of

the storage capacity. The over-provisioning area was not

necessary for AFTL because it did not perform garbage

collection. For all the FTLs, the same dynamic wear-

leveling algorithm was used, which allocated youngest

blocks for writing incoming data.

For EXT4, a default journaling mode was used and

the discard option was enabled to use TRIM commands.

For F2FS, the segment size was always set to 2 MB

which was the default size. For ALFS, the segment size

was set to 16 MB which was equal to the physical seg-

ment size. ALFS allocated 4x larger inode-map seg-

ments than its original size. For both F2FS and ALFS,

5% of file-system space was used as an over-provisioning

area which was the default value.

5.3 Performance Analysis

We evaluated AMF using 8 different workloads (see Ta-

ble 3), spanning 3 categories: file-system, DBMS and

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 347

 0

 0.5

 1

 1.5

 2

SR SW RR

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL

F2FS+DFTL
AMF

 0

 5

 10

 15

 20

 25

 30

 35

RW

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Figure 9: Experimental results with FIO

Hadoop. To understand the behaviors of AMF under

various file-system operations, we conducted a series of

experiments using two well known file system bench-

marks, FIO [3] and Postmark [30]. We also evaluated

AMF using response time sensitive database workloads:

Non-Trans, OLTP and TPC-C. Finally, we assessed AMF

with Hadoop applications from HiBench [21], HFSIO,

TeraSort and WordCount, which required high I/O

throughput for batch processing.

For performance measurements, we focused on an-

alyzing the effect of extra I/Os by the FTL on per-

formance specifically caused by garbage collection and

swap-in/out of mapping entries. There were no ex-

tra I/Os from wear-leveling since dynamic wear-leveling

was used. EXT4, F2FS and AMF all performed differ-

ently from the perspective of garbage collection. Since

EXT4 is a journaling file system, only the FTL in the

storage device performed garbage collection. In F2FS,

both F2FS and the FTL did garbage collection. In AMF,

only ALFS performed garbage collection. There were

no extra swapping I/Os in PFTL and AFTL for fetch-

ing/evicting mapping entries from/to flash because their

tables were always kept in DRAM. Only DFTL incurred

extra I/Os to manage in-flash mapping entries. Note that

our implementation of PFTL and DFTL might be differ-

ent from that of commercial FTLs. Two technical issues

related to PFTL and DFTL (i.e., cleaning and swapping

costs), however, are well known and common problems.

For this reason, our results are reasonable enough to un-

derstand the benefits of AMF on resolving such prob-

lems.

Our experiments were conducted under the same host

and flash device setups. The host system was Intel’s

EXT4+ EXT4+ F2FS+ F2FS+
AMF

PFTL DFTL PFTL DFTL

FTL FTL FS FTL FS FTL FS

FIO(SW) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FIO(RW) 1.41 1.45 1.35 1.82 1.34 2.18 1.38

Postmark(L) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Postmark(H) 1.12 1.35 1.17 2.23 1.18 2.89 1.16

Non-Trans 1.97 2.00 1.58 2.90 1.59 2.97 1.59

OLTP 1.45 1.46 1.23 1.78 1.23 1.79 1.24

TPC-C 2.33 2.21 1.81 2.80 1.82 5.45 1.87

DFSIO 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TeraSort 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WordCount 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Write amplification factors (WAF). For F2FS, we dis-

play WAF values for both the file system (FS) and the FTL. In

FIO, the WAF values for the read-only workloads FIO (RR) and

FIO (SR) are not included.

Xeon server with 24 1.6 GHz cores and 24 GB DRAM.

The SSD prototype had 8 channels and 4 ways with

512 GB of NAND flash, composed of 128 4 KB pages

per block. The raw performance of our SSD was 240K

IOPS (930 MB/s) and 67K IOPS (260 MB/s) for reads

and writes, respectively. To quickly emulate aged SSDs

where garbage collection occurs, we set the storage ca-

pacity to 16 GB. This was a feasible setup because SSD

performance was mostly decided by I/O characteristics

(e.g., data locality and I/O patterns), not by storage ca-

pacity. The host DRAM was set to 1.5 GB to ensure that

requests were not entirely served from the page cache.

5.3.1 File System Benchmarks

FIO: We evaluate sequential and random read/write per-

formance using the FIO benchmark. FIO first writes a

10 GB file and performs sequential-reads (SR), random-

reads (RR), sequential-writes (SW) and random-writes

(RW) on it separately. We use a libaio I/O engine, 128

io-depth, and a 4 KB block, and 8 jobs run simultane-

ously. Except for them, default parameters are used.

Figure 9 shows our experimental results. For SR and

SW, EXT4+PFTL, F2FS+PFTL and AMF show excellent

performance. For sequential I/O patterns, extra live page

copies for garbage collection do not occur (see Table 4).

Moreover, since all the mapping entries are always kept

in DRAM, there are no overheads to manage in-flash

mapping entries. Note that these performance numbers

are higher than the maximum performance of our SSD

prototype due to the buffering effect of FIO.

EXT4+DFTL and F2FS+DFTL show slower perfor-

mance than the others for SR and SW. This is caused by

extra I/Os required to read/write mapping entries from/to

NAND flash. In our measurements, only about 10% of

them are missing in the in-memory mapping table, but

its effect on performance is not trivial. When a mapping

entry is missing, the FTL has to read it from flash and to

348 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0

 50

 100

 150

 200

 250

 300

 350

 400

Create Read Append Delete

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

S
e

c
o

n
d

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL

F2FS+DFTL
AMF

(a) Postmark(L)

 0

 50

 100

 150

 200

 250

 300

 350

 400

Create Read Append Delete

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

S
e

c
o

n
d

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL

F2FS+DFTL
AMF

(b) Postmark(H)

Figure 10: Experimental results with Postmark

evict an in-memory entry if it is dirty. While the FTL is

doing this task, an incoming request has to be suspended.

Moreover, it is difficult to fully utilize I/O parallelism

when reading in-flash mapping entries because their lo-

cations were previously decided when they were evicted.

The performance degradation due to missing entries

becomes worse with random-reads (RR) patterns be-

cause of their low hit ratio in the in-memory map-

ping table – about 67% of mapping entries are missing.

For this reason, EXT4+DFTL and F2FS+DFTL show slow

performance for RR. On the other hand, EXT4+PFTL,

F2FS+PFTL and AMF exhibit good performance.

RW incurs many extra copies for garbage collection

because of its random-writes patterns. AMF outperforms

all the other schemes, exhibiting the highest I/O through-

put and the lowest write amplification factor (WAF) (see

Table 4). EXT4+PFTL shows slightly lower performance

than AMF, but its performance is similar to that of AMF.

In particular, F2FS+PFTL shows lower performance than

AMF and EXT4+PFTL. This is because of duplicate stor-

age management by F2FS and the FTL. F2FS has a sim-

ilar WAF value as AMF, performing segment cleaning ef-

ficiently. However, extra writes for segment cleaning are

sent to the FTL and trigger additional garbage collection

at the FTL level, which results in extra page copies.2

2The segment size could affect performance of F2FS – F2FS shows

better performance when its segment size is equal to the physical seg-

ment (16 MB). However, F2FS still suffers from the duplicate manage-

ment problem, so it exhibits worse performance than AMF, regardless

of the segment size. For this reason, we exclude results with various

EXT4 and F2FS with DFTL show worse performance

than those with PFTL because of extra I/Os for in-flash

mapping-entries management.

Postmark: After the assessments of AMF with var-

ious I/O patterns, we evaluate AMF with Postmark,

which is a small I/O and metadata intensive work-

load. To understand how garbage collection affects

overall performance, we perform our evaluations with

two different scenarios, light and heavy, denoted by

Postmark(L) and Postmark(H). They each simulate

situations where a storage space utilization is low (40%)

and high (80%) – for Postmark(L), 15K files are cre-

ated; for Postmark(H), 30K files are created. For both

cases, file sizes are 5K-512KB and 60K transactions run.

Figure 10 shows experimental results. F2FS+PFTL

shows the best performance with the light workload,

where few live page copies occur for garbage collec-

tion (except for block erasures) because of the low uti-

lization of the storage space. EXT4+PFTL and AMF show

fairly good performance as well. For the heavy workload

where many live page copies are observed, AMF achieves

the best performance. On the other hand, the perfor-

mance of F2FS+PFTL deteriorates significantly because

of the duplicate management problem. F2FS and EXT4

with DFTL perform worse because of overheads caused

by in-flash mapping-entries management.

From the experimental results with Postmark, we

also confirm that extra I/Os required to manage inode-

map segments do not badly affect overall performance.

Postmark generates many metadata updates, which re-

quires lots of inode changes. Compared with other

benchmarks, Postmark issues more I/O traffic to inode-

map segments, but it accounts for only about 1% of the

total I/Os. Therefore, its effect on performance is negli-

gible. We will analyze it in detail Section 5.5.

5.3.2 Application Benchmarks

Database Application: We compare the performance

of AMF using DBMS benchmarks. MySQL 5.5 with

an Innodb storage engine is selected. Default parame-

ters are used for both MySQL and Innodb. Non-Trans

is used to evaluate performance with different types of

queries: Select, Update (Key), Update (NoKey), Insert

and Delete. The non-transactional mode of a SysBench

benchmark is used to generate individual queries [32].

OLTP is an I/O intensive online transaction processing

(OLTP) workload generated by the SysBench tool. For

both Non-Trans and OLTP, 40 million table entries are

created and 6 threads run simultaneously. TPC-C is a

well-known OLTP workload. We run TPC-C on 14 ware-

houses with 16 clients each for 1,200 seconds.

segment sizes and use the default segment size (2 MB).

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 349

 10

 100

 1000

 10000

Select

U
pdate(Key)

U
pdate(N

oKey)

Insert

D
elete

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
L

o
g

)

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL

F2FS+DFTL
AMF

(a) Non-Trans

 0

 100

 200

 300

 400

 500

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d

(b) OLTP

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

m
in

u
te

(c) TPC-C

Figure 11: Experimental results with database apps.

Figure 11 shows the number of transactions performed

under the different configurations. AMF outperforms all

other schemes. Compared with the micro-benchmarks,

database applications incur higher garbage collection

overheads because of complicated I/O patterns. As listed

in Table 4, AMF shows lower WAFs than EXT4+PFTL and

EXT4+DFTL thanks to more advanced cleaning features

borrowed from F2FS. F2FS+PFTL and F2FS+DFTL show

similar file-system-level WAFs as AMF, but because of

high garbage collection costs at the FTL level, they ex-

hibit lower performance than AMF. The state-of-the-art

FTLs used by SSD vendors maybe work better with more

advanced features, but it comes at the price of more hard-

ware resources and design complexity. In that sense, this

result shows how efficiently and cost-effectively flash

can be managed by the application.

Hadoop Application: We show measured execution

times of Hadoop applications in Figure 12. Hadoop

applications run on top of the Hadoop Distributed File

System (HDFS) which manages distributed files in large

clusters. HDFS does not directly manage physical stor-

age devices. Instead, it runs on top of regular local disk

file systems, such as EXT4, which deal with local files.

HDFS always creates/deletes large files (e.g., 128 MB)

on the disk file system to efficiently handle large data

sets and to leverage maximum I/O throughput from se-

quentially accessing these files.

This file management of HDFS is well-suited for

NAND flash. A large file is sequentially written across

multiple flash blocks, and these flash blocks are inval-

 0

 50

 100

 150

 200

 250

 300

DFSIO(R) DFSIO(W) TeraSort WordCount

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

)

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL
F2FS+DFTL

AMF

Figure 12: Experimental results with Hadoop apps.

idated together when the file is removed from HDFS.

Therefore, FTL garbage collection is done by simply

erasing flash blocks without any live page copies. More-

over, because of its sequential access patterns, the effect

of missing mapping entries on performance is not sig-

nificant. This is the reason why all five storage config-

urations show similar performance for Hadoop applica-

tions. The results also indicate that existing flash storage

is excessively over-designed. With the exception of error

management and coarse-grain mapping, almost all stor-

age management modules currently implemented in the

storage device are not strictly necessary for Hadoop.

5.4 Lifetime Analysis

We analyze the lifetime of the flash storage for 10 dif-

ferent write workloads. We estimate expected flash life-

time using the number of block erasures performed by

the workloads since NAND chips are rated for a limited

number of program/erase cycles. As shown in Figure 13,

AMF incurs 38% fewer erase operations overall compared

to F2FS+DFTL.

5.5 Detailed Analysis

We also analyze the inode-map management overheads,

CPU utilizations and I/O latencies.

Inode-map Management Overheads: I/O operations

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

F
IO

(S
W

)

F
IO

(R
W

)

P
o

s
tm

a
rk

(L
)

P
o

s
tm

a
rk

(H
)

N
o

n
-T

ra
n

s

O
L

T
P

T
P

C
-C

D
F

S
IO

(W
)

T
e

ra
S

o
rt

W
o

rd
C

o
u

n
t

N
o

rm
a

liz
e

d
 E

ra
s
u

re
 C

o
u

n
t 1.7 2.1 2.3 2.7 2.3 2.3 1.9 2.8

EXT4+PFTL
EXT4+DFTL
F2FS+PFTL
F2FS+DFTL

AMF

Figure 13: Erasure operations normalized to EXT4+PFTL

350 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 0
 0.2
 0.4
 0.6
 0.8

 1

F
IO

(S
W

)

F
IO

(R
W

)

P
o
s
tm

a
rk

(L
)

P
o
s
tm

a
rk

(H
)

N
o
n
-T

ra
n
s

O
L
T

P

T
P

C
-C

D
F

S
IO

(W
)

T
e
ra

S
o
rt

W
o
rd

C
o
u
n
t

P
e

rc
e

n
ta

g
e

 (
%

)

(a) TIMB writes

 0
 0.01
 0.02
 0.03
 0.04
 0.05

F
IO

(S
W

)

F
IO

(R
W

)

P
o
s
tm

a
rk

(L
)

P
o
s
tm

a
rk

(H
)

N
o
n
-T

ra
n
s

O
L
T

P

T
P

C
-C

D
F

S
IO

(W
)

T
e
ra

S
o
rt

W
o
rd

C
o
u
n
t

P
e
rc

e
n
ta

g
e
 (

%
)

(b) Inode-map garbage collection

Figure 14: Inode-map management overheads analysis

required to manage inode-map segments in ALFS are

extra overheads. Figure 14(a) shows the percentage of

TIMB writes to flash storage. We exclude read-only

workloads. TIMB writes account for a small proportion

of the total writes. Moreover, the number of dirty TIMB

blocks written together with a new check-point is small –

2.6 TIMB blocks are written, on average, when a check-

point is written. Figure 14(b) illustrates how many ex-

tra copies occur for garbage collection in inode-map seg-

ments. Even though there are minor differences among

the benchmarks, overall extra data copies for inode-map

segments are insignificant compared to the total number

of copies performed in the file system.

Host CPU/DRAM Utilization: We measure the CPU

utilization of AMF while running Postmark(H), and

compare it with those of EXT4+PFTL and F2FS+PFTL. As

depicted in Figure 15, the CPU utilization of AMF is simi-

lar to the others. AMF does not employ any additional lay-

ers or complicated algorithms to manage NAND flash.

Only existing file-system modules (F2FS) are slightly

modified to support our block I/O interface. As a result,

extra CPU cycles required for AMF are negligible.

 8

 9

 10

 11

 12

 13

 14

 15

 0 50 100 150 200 250

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Second

EXT4
F2FS
AMF

Figure 15: CPU utilization (%)

 0

 2000

 4000

 6000

 8000

 100000 100050 100100 100150 100200 100250 100300 100350 100400 100450

L
a

te
n

c
y
 (

u
s
e

c
) PFTL

 0

 2000

 4000

 6000

 8000

 100000 100050 100100 100150 100200 100250 100300 100350 100400 100450

L
a

te
n

c
y
 (

u
s
e

c
) DFTL

 0

 2000

 4000

 6000

 8000

 100000 100050 100100 100150 100200 100250 100300 100350 100400 100450

L
a

te
n

c
y
 (

u
s
e

c
)

Second

AMF

Figure 16: Write latency (µsec)

Host DRAM used by AMF is trivial. AMF with 16 GB

flash requires 180 KB more DRAM than F2FS. Almost

all of host DRAM is used to keep AMF-specific data

structures (e.g., in-memory TIMB). The host DRAM re-

quirement increases in proportion to the storage capacity,

but, as shown in Table 1, it is small enough even for a

large SSD (e.g., 10.8 MB for a 1 TB SSD).

I/O Latency: We measure I/O response times of three

different FTLs, AMF, PFTL and DFTL, while running

Postmark(H). We particularly measure write latencies

that are badly affected by both garbage collection and

missing mapping entries. As shown in Figure 16, AMF

has the shortest I/O response times with small fluctua-

tions since only block erasures are conducted inside the

FTL. On the other hand, PFTL and DFTL incur large

fluctuations on response times because of FTL garbage

collection and in-flash mapping-entries management.

6 Related Work

FTL Improvement with Enhanced Interfaces: Deliv-

ering system-level information to the FTL with extended

I/O interfaces has received attention because of its ad-

vantage in device-level optimization [15, 28, 9, 17]. For

example, file access patterns of applications [15] and

multi-streaming information [28] are useful in separating

data to reduce cleaning costs. Some techniques go one

step further by offloading part or all of the file-system

functions onto the device (e.g., file creations or the file-

system itself) [29, 35, 54]. The FTL can exploit rich file-

system information and/or effectively combine its inter-

nal operations with the file system for better flash man-

agement. The common problem with those approaches

is that they require more hardware resources and greater

design complexity. In AMF, host software directly man-

ages flash devices, so the exploitation of system-level in-

formation can be easily made without additional inter-

faces or offloading host functions to the device.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 351

Direct Flash Management without FTL: Flash file

systems (FFS) [52, 37] and NoFTL [18] are designed

to directly handle raw NAND chips through NAND-

specific interfaces [51, 22]. Since there is no extra layer,

it works efficiently with NAND flash with smaller mem-

ory and less CPUs power. Designing/optimizing systems

for various vendor-specific storage architectures, how-

ever, is in fact difficult. The internal storage architec-

tures and NAND properties are both complex to manage

and specific for each vendor and semiconductor-process

technology. Vendors are also reluctant to divulge the in-

ternal architecture of their devices. The decrease in relia-

bility of NAND flash is another problem – this unreliable

NAND can be more effectively managed inside the stor-

age device where detailed physical information is avail-

able [13, 43]. For this reason, FFS is rarely used these

days except in small embedded systems. AMF has the

same advantages as FFS and NoFTL, however, by hid-

ing internal storage architectures and unreliable NAND

behind the block I/O interface, AMF eliminates all the

concerns about architectural differences and reliability.

Host-Managed Flash: Host-based FTLs like

DFS [24, 26, 41] are different from this study in that

they just move the FTL to a device driver layer from

storage firmware. If log-structured systems like LFS run

on top of the device driver with the FTL, two different

software layers (i.e., LFS and the FTL in the device

driver) run their own garbage collection. As a result,

host-based FTLs still have the same problems that the

conventional FTL-based storage has.

A software defined flash (SDF) [40] exposes each flash

channel to upper layers as individual devices with NAND

I/O primitives (e.g., block erasure). Host applications are

connected to channels each through a custom interface.

In spite of the limited performance of a single channel, it

achieves high aggregate throughput by running multiple

applications in parallel. SDF is similar to our study in

that it minimizes the functionality of the device and al-

lows applications to directly manage the device. This ap-

proach, however, is suitable for special environments like

the datacenter where aggregate I/O throughput is impor-

tant and applications can easily access specialized hard-

ware through custom interfaces. AMF is more general –

because of compatibility with the existing I/O stacks, if

modules that cause overwrites are modified to avoid it,

any application can run on AMF.

REDO [34] shows that the efficient integration of a

file system and a flash device offers great performance

improvement. However, it does not consider important

technical issues, such as metadata management affecting

performance and data integrity, efficient exploitation of

multiple channels, and I/O queueing. REDO is based on

a simulation study, so it is difficult to know its feasibility

and impact in real world systems and applications.

7 Conclusion

In this paper, we proposed the Application-Managed

Flash (AMF) architecture. AMF was based on a new

block I/O interface exposing flash storage as append-

only segments, while hiding unreliable NAND devices

and vendor-specific details. Using our new block I/O in-

terface, we developed a file system (ALFS) and a storage

device with a new FTL (AFTL). Our evaluation showed

that AMF outperformed conventional file systems with

the page-level FTL, both in term of performance and life-

time, while using significantly less resources.

The idea of AMF can be extended to various sys-

tems, in particular, log-structured systems. Many DBMS

engines manage storage devices in an LFS-like man-

ner [49, 1, 6], so we expect that AMF can be eas-

ily adapted to them. A storage virtualization platform

could be a good target application where log-structured

or CoW file systems [20] coupled with a volume man-

ager [10] manage storage devices with its own indirec-

tion layer. A key-value store based on log-structured

merge-trees is also a good target application [42, 12, 2].

According to the concept of AMF, we are currently de-

veloping a new key-value store to build cost-effective and

high-performance distributed object storage.

Acknowledgments

We would like to thank Keith A. Smith, our shepherd,

and anonymous referees for valuable suggestions. Sam-

sung (Res. Agmt. Eff. 01/01/12), Quanta (Agmt. Dtd.

04/01/05), and SK hynix memory solutions supported

our research. We also thank Jamey Hicks, John Ankcorn

and Myron King from Quanta Research Cambridge for

their help in developing device drivers. Sungjin Lee was

supported by the National Research Foundation of Ko-

rea (NRF) grant (NRF-2013R1A6A3A03063762). The

work of Jihong Kim was supported by the NRF grant

funded by the Ministry of Science, ICT and Future Plan-

ning (MSIP) (NRF-2013R1A2A2A01068260) and the

Next-Generation Information Computing Development

Program through the NRF funded by the MSIP (NRF-

2015M3C4A7065645).

Source code

All of the source code including both software and hard-

ware are available to the public under the MIT license.

Please refer to the following git repositories: https:

//github.com/chamdoo/bdbm_drv.git and https:

//github.com/sangwoojun/bluedbm.git.

352 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

References

[1] RethinkDB. http://rethinkdb.com, 2015.

[2] RocksDB: A persistent key-value store for fast storage environ-

ments. http://rocksdb.org, 2015.

[3] AXBOE, J. FIO benchmark. http://freecode.com/

projects/fio, 2013.

[4] BAN, A. Flash file system, 1995. US Patent 5,404,485.

[5] BERNSTEIN, P. A., REID, C. W., AND DAS, S. Hyder – A

transactional record manager for shared flash. In Proceedings

of the biennial Conference on Innovative Data Systems Research

(2011).

[6] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-

LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A distributed storage system for struc-

tured data. ACM Transactions on Computer Systems 26, 2 (2008),

4.

[7] CHANG, L.-P. On efficient wear leveling for large-scale flash-

memory storage systems. In Proceedings of the Symposium on

Applied Computing (2007), pp. 1126–1130.

[8] CHANG, Y.-B., AND CHANG, L.-P. A self-balancing striping

scheme for NAND-flash storage systems. In Proceedings of the

Symposium on Applied Computing (2008), pp. 1715–1719.

[9] CHOI, H. J., LIM, S.-H., AND PARK, K. H. JFTL: A flash

translation layer based on a journal remapping for flash memory.

ACM Transactions on Storage 4, 4 (2009), 14:1–14:22.

[10] EDWARDS, J. K., ELLARD, D., EVERHART, C., FAIR, R.,

HAMILTON, E., KAHN, A., KANEVSKY, A., LENTINI, J.,

PRAKASH, A., SMITH, K. A., ET AL. FlexVol: flexible, effi-

cient file volume virtualization in WAFL. In Proceedings of the

USENIX Annual Technical Conference (2008), pp. 129–142.

[11] FELDMAN, T., AND GIBSON, G. Shingled magnetic recording

areal density increase requires new data management. USENIX

issue 38, 3 (2013).

[12] GHEMAWAT, S., AND DEAN, J. LevelDB. http://leveldb.

org, 2015.

[13] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The bleak

future of NAND flash memory. In Proceedings of the USENIX

Conference on File and Storage Technologies (2012).

[14] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A flash

translation layer employing demand-based selective caching of

page-level address mappings. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems (2009), pp. 229–240.

[15] HA, K., AND KIM, J. A program context-aware data separation

technique for reducing garbage collection overhead in NAND

flash memory. In Proceedings of the International Workshop on

Storage Network Architecture and Parallel I/O (2011).

[16] HAHN, S., LEE, S., AND KIM, J. SOS: Software-based out-of-

order scheduling for high-performance NAND flash-based SSDs.

In Proceedings of the International Symposium on Mass Storage

Systems and Technologies (2013), pp. 1–5.

[17] HAHN, S. S., JEONG, J., AND KIM, J. To collect or not to col-

lect: Just-in-time garbage collection for high-performance SSDs

with long lifetimes. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implemenation (Poster) (2014).

[18] HARDOCK, S., PETROV, I., GOTTSTEIN, R., AND BUCHMANN,

A. NoFTL: Database systems on FTL-less flash storage. In Pro-

ceedings of the VLDB Endowment (2013), pp. 1278–1281.

[19] HITACHI. Hitachi accelerated flash, 2015.

[20] HITZ, D., LAU, J., AND MALCOLM, M. A. File system design

for an NFS file server appliance. In Proceedings of the Winter

USENIX Conference (1994).

[21] HUANG, S., HUANG, J., DAI, J., XIE, T., AND HUANG, B. The

HiBench benchmark suite: Characterization of the mapreduce-

based data analysis. In Proceedings of the International Work-

shop on Data Engineering (2010), pp. 41–51.

[22] HUNTER, A. A brief introduction to the design of UBIFS, 2008.

[23] JIANG, S., ZHANG, L., YUAN, X., HU, H., AND CHEN, Y.

S-FTL: An efficient address translation for flash memory by ex-

ploiting spatial locality. In Proceedings of the IEEE Symposium

on Mass Storage Systems and Technologies (2011), pp. 1–12.

[24] JOSEPHSON, W. K., BONGO, L. A., LI, K., AND FLYNN, D.

DFS: A file system for virtualized flash storage. In Proceed-

ings of the USENIX Conference on File and Storage Technologies

(2010).

[25] JUN, S.-W., LIU, M., LEE, S., HICKS, J., ANKCORN, J.,

KING, M., XU, S., AND ARVIND. BlueDBM: An appliance

for big data analytics. In Proceedings of the Annual International

Symposium on Computer Architecture (2015), pp. 1–13.

[26] JUNG, M., WILSON, III, E. H., CHOI, W., SHALF, J., AK-

TULGA, H. M., YANG, C., SAULE, E., CATALYUREK, U. V.,

AND KANDEMIR, M. Exploring the future of out-of-core com-

puting with compute-local non-volatile memory. In Proceedings

of the International Conference on High Performance Comput-

ing, Networking, Storage and Analysis (2013), pp. 75:1–75:11.

[27] JUNG, S.-M., JANG, J., CHO, W., CHO, H., JEONG, J.,

CHANG, Y., KIM, J., RAH, Y., SON, Y., PARK, J., SONG, M.-

S., KIM, K.-H., LIM, J.-S., AND KIM, K. Three dimensionally

stacked NAND flash memory technology using stacking single

crystal Si layers on ILD and TANOS structure for beyond 30nm

node. In Proceedings of the International Electron Devices Meet-

ing (2006), pp. 1–4.

[28] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-

streamed solid-state drive. In Proceedings of the USENIX Work-

shop on Hot Topics in Storage and File Systems (2014).

[29] KANG, Y., YANG, J., AND MILLER, E. L. Efficient storage

management for object-based flash memory. In Proceedings of

the International Symposium on Modeling, Analysis and Simula-

tion of Computer and Telecommunication Systems (2010).

[30] KATCHER, J. PostMark: A new filesystem benchmark. NetApp

Technical Report TR3022 (1997).

[31] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA,

S., AND MORIAI, S. The Linux implementation of a log-

structured file system. ACM SIGOPS Operating Systems Review

40, 3 (2006), 102–107.

[32] KOPYTOV, A. SysBench: A system performance benchmark.

http://sysbench.sourceforge.net, 2004.

[33] LEE, C., SIM, D., HWANG, J.-Y., AND CHO, S. F2FS: A new

file system for flash storage. In Proceedings of the USENIX Con-

ference on File and Storage Technologies (2015).

[34] LEE, S., KIM, J., AND ARVIND. Refactored design of I/O ar-

chitecture for flash storage. Computer Architecture Letters 14, 1

(2015), 70–74.

[35] LEE, Y.-S., KIM, S.-H., KIM, J.-S., LEE, J., PARK, C., AND

MAENG, S. OSSD: A case for object-based solid state drives.

In Proceedings of the International Symposium on Mass Storage

Systems and Technologies (2013), pp. 1–13.

[36] LIU, M., JUN, S.-W., LEE, S., HICKS, J., AND ARVIND. min-

Flash: A minimalistic clustered flash array. In Proceedings of the

Design, Automation and Test in Europe Conference (2016).

[37] MANNING, C. YAFFS: Yet another flash file system, 2004.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 353

[38] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I. SFS:

random write considered harmful in solid state drives. In Pro-

ceedings of the USENIX Conference on File and Storage Tech-

nologies (2012).

[39] NAM, E. H., KIM, B., EOM, H., AND MIN, S. L. Ozone (O3):

An out-of-order flash memory controller architecture. IEEE

Transactions on Computers 60, 5 (2011), 653–666.

[40] OUYANG, J., LIN, S., JIANG, S., HOU, Z., WANG, Y., AND

WANG, Y. SDF: Software-defined flash for web-scale internet

storage systems. In Proceedings of the International Conference

on Architectural Support for Programming Languages and Oper-

ating Systems (2014), pp. 471–484.

[41] OUYANG, X., NELLANS, D., WIPFEL, R., FLYNN, D., AND

PANDA, D. Beyond block I/O: Rethinking traditional storage

primitives. In Proceedings of the International Symposium on

High Performance Computer Architecture (2011), pp. 301–311.

[42] ONEIL, P., CHENG, E., GAWLICK, D., AND ONEIL, E. The

log-structured merge-tree (LSM-tree). Acta Informatica 33, 4

(1996), 351–385.

[43] PAN, Y., DONG, G., AND ZHANG, T. Error rate-based wear-

leveling for NAND flash memory at highly scaled technology

nodes. IEEE Transactions on Very Large Scale Integration Sys-

tems 21, 7 (2013), 1350–1354.

[44] PARK, D., DEBNATH, B., AND DU, D. CFTL: A convert-

ible flash translation layer adaptive to data access patterns. In

Proceedings of the ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems (2010),

pp. 365–366.

[45] PHISON. PS3110 controller, 2014.

[46] RODEH, O., BACIK, J., AND MASON, C. BTRFS: The Linux

B-tree filesystem. ACM Transactions on Storage 9, 3 (2013), 9.

[47] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and

implementation of a log-structured file system. ACM Transac-

tions on Computer Systems 10 (1991), 1–15.

[48] SAMSUNG. Samsung SSD 840 EVO data sheet, rev. 1.1, 2013.

[49] VO, H. T., WANG, S., AGRAWAL, D., CHEN, G., AND OOI,

B. C. LogBase: a scalable log-structured database system in the

cloud. Proceedings of the VLDB Endowment (2012).

[50] VRABLE, M., SAVAGE, S., AND VOELKER, G. M. Bluesky: A

cloud-backed file system for the enterprise. In Proceedings of the

USENIX conference on File and Storage Technologies (2012).

[51] WOODHOUSE, D. Memory technology device (MTD) subsystem

for Linux, 2005.

[52] WOODHOUSE, D. JFFS2: The journalling flash file system, ver-

sion 2, 2008.

[53] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., AND

SUNDARARAMAN, S. Don’t stack your log on my log. In Pro-

ceedings of the Workshop on Interactions of NVM/Flash with Op-

erating Systems and Workloads (2014).

[54] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. De-indirection for flash-based SSDs

with nameless writes. In Proceedings of the USENIX Conference

on File and Storage Technologies (2012).

