
A Transport-Layer Network
for Distributed FPGA Platforms

Sang-Woo Jun, Ming Liu, Shuotao Xu, Arvind
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
{wjun,ml,shuotao,arvind}@csail.mit.edu

Abstract—We present a transport-layer network that aids
developers in building safe, high-performance distributed FPGA
applications. Two essential features of such a network are virtual
channels and end-to-end flow control. Our network implements
these features, taking advantage of the low error characteristic of
a rack level FPGA network to implement a low overhead credit
based end-to-end flow control. Our design has many parameters
in the source code which can be set at the time of FPGA synthesis,
to provide flexibility in setting buffer size and flow control
credits to make best use of scarce on-chip memory resources and
match the traffic pattern of a virtual channel. Our prototype
cluster, which is composed of 20 Xilinx VC707 boards, each with
4 20Gb/s serial links, achieves effective bandwidth of 85% of
the maximum physical bandwidth, and a latency of 0.5us per
hop. User feedback suggest that these features make distributed
application development significantly easier.

I. INTRODUCTION

In order to tackle large data intensive applications, many
modern FPGA-based deployments are exploring the use of
FPGA clusters, where a network of FPGAs are deployed
and a large body of work is distributed across the FPGAs.
A network protocol for an FPGA cluster largely has three
important criteria: (1) it must be easily usable by an application
developer, (2) It must have high performance with low latency,
and (3) it must consume only a small amount of scarce on-chip
FPGA memory.

Two essential features for a usable network implementation
are virtual channels and end-to-end flow control, corresponding
to the transport layer of the OSI network model. Without
these features, the developer would have to manually manage
channel multiplexing and deadlock management, making the
development of high performance distributed FPGA applica-
tions difficult.

Due to the high engineering and performance overhead
of existing network solutions, many inter-FPGA networks on
a distributed FPGA deployment are implemented using low-
overhead link-layer protocols such as Aurora using multi-
gigabit serial transceivers included in the FPGA. Many existing
network implementations using this network fabric often pro-
vide link and network level interfaces, but they rarely provide
higher-level functionality such as end-to-end flow control.

For deadlock-free operations, all virtual channels need sep-
arate packet buffers which are large enough to mask network
latency as well as bursts from multiple sources. Scarcity of on-
chip memory resources prevent safe over-allocation of packet
buffers, and using off-chip DRAM also consumes a lot of pre-
cious DRAM bandwidth. A solution may be clever allocation

of buffer space by allowing different amount of buffers for
different channels. Application developers can adjust the buffer
space per channel to meet the performance criteria without
increasing the total buffer requirement.

This paper presents the design and implementation results
of a transport level network for a cluster of FPGAs. Our
transport layer is parameterized such that flow control features
for each virtual channel can be configured at FPGA synthesis
time. Parameters include buffer size and flow control credits.
We demonstrate that a parameterized transport-layer imple-
mentation can achieve high performance in a distributed FPGA
environment while maintaining a small BRAM footprint, by
adjusting a few parameters to best fit the usage characteristics
of a virtual channel. In our router, we make use of the high
reliability of the serial link and deterministic routing to ensure
lossless in-order arriving of packets, greatly simplifying the
transport layer protocol.

We have implemented a prototype of our network on a
cluster of 20 Xilinx VC707 FPGA development boards, with
4 20Gb/s serial links each. Our prototype achieves an effective
bandwidth of 17Gb/s per link, which is 85% of maximum
physical link bandwidth, at a latency of 0.5us.

The rest of the paper is organized as follows: Section II
covers the previous and related work. Section III describes
our implementation of the network and transport layer, and
Section IV describes the details of a prototype implementation
of the network. Section V presents the performance evaluation
of our implementation, and conclude in Section VI.

II. RELATED WORK

FPGAs offer very desirable performance and power char-
acteristics, but modern data-intensive applications often re-
quire more resources that are available on a single FPGA
chip. As a result, exploration of distributed FPGA computing
systems is gaining popularity. The scale of distributed FPGA
deployments range from a cluster-in-a-box systems such as
BlueHive [1], to rack-level deployments such as Maxwell [2],
to datacenter scale deployments such as Catapult [3]. Some
have also attempted heterogeneous deployments including
GPUs and FPGAs [4], or to insert FPGA accelerators into
the storage datapath [5], [6]. Such systems offer a much
better power performance characteristics over their off-the-
shelf server counterparts.

The TCP/IP network protocol stack is by far the most
popular protocol for internetworking computer systems, but
it may not be a good fit for inter-FPGA communication as

it is a complex and resource-heavy protocol designed for an
unpredictable network such as the internet. Some FPGA cluster
projects have used Ethernet’s physical and data link layers
for its network, but full implementation of the TCP/IP stack
is rare unless it has to interact with a legacy interface [7].
Datacenter scale protocols such as Infiniband [8] implement a
more efficient transport layer protocol on top of a more reliable
network layer implementation. It also offloads major parts of
the protocol to the NIC to achieve higher performance. Some
have modified the TCP protocol [9] to significantly reduce the
packet buffer size using intelligent congestion control.

BlueLink [10] demonstrated that a new protocol using
high-speed serial links has a better area-performance charac-
teristics than implementing existing network protocols. Many
distributed FPGA computing systems have demonstrated high
performance with FPGA nodes networked over such high-
speed serial links [11], [2]. Some have developed meta lan-
guage compilers that generate application-specific network
logic with features such as flow control from separate network
specifications [12].

III. NETWORK ARCHITECTURE

The overall architecture of the network components can
be seen in Figure 1. The network architecture can be divided
largely into two parts, the network layer and the transport layer.
The network layer is implemented in the form of the router,
and the transport layer is implemented in the endpoints that are
chained to the router interface. Flow control is implemented
in both layers.

The distributed application components communicate with
remote nodes using the network endpoints. Endpoints expose
send and receive interfaces, and behaves like a FIFO, in that
it blocks when it cannot safely send any more packets. Many
endpoints can be instantiated, resources permitting, and each
endpoint can have a different type, meaning it can expose send
and receive interfaces of different bit widths.

R
o

u
te

r

Physical Port

Physical Port

Physical Port

Endpoints

Fig. 1: Network Architecture

A. Network Layer

The network layer implements lossless, in-order packet
routing, which assures that packets always arrive in the order
they were sent. This removes the need for try-resend or
reordering functionalities at the transport layer, allowing a
much simpler design.

The router implements in-order routing by being determin-
istic, in that a packet from a certain endpoint of a certain
source node being delivered to a certain destination node will
always travel through the same path Parallelism is achieved
by distributing packets from different endpoints to different
paths. The router is oblivious to the existence of multiple
network endpoints or virtual channels they represent. The

router only deals with routing individual packets, and higher
level functions such as virtual channels and end-to-end flow
control is implemented by the endpoints, which are organized
into a chain to reduce fan-in on the FPGA.

A packet consists of four fields: source node ID,
destination node ID, endpoint ID and payload
data. Destination node ID and payload data is supplied by
the user. Source node ID is supplied by the router, and the
endpoint ID is determined by the position of an endpoint in the
endpoint chain. Endpoint ID is filled out by the endpoint
chain when a packet is injected into it, and it is used to direct
a packet to the correct endpoint at the receiving side.

B. Transport Layer

Virtual channels multiplex a single physical network link
to provide the logical interface of multiple links. Figure 2
describes the flow of packets in such an environment. Our
network implements a per-channel end-to-end flow control, so
that a sender can only send data onto the network when it
is guaranteed that the receiving endpoint has enough buffer
space to accommodate it. The transport layer is implemented
in individual endpoints, and its design aims to provide a very
low latency and efficient memory space usage. Each design
can have multiple instantiations of endpoints, parameterized
differently.

Endpoint 1

Endpoint 2

Router

Endpoint 1

Endpoint 2

Router

Link

Fig. 2: Packet Flow in Virtual Channels

The structure of an endpoint is described in Figure 3.
Whenever a packet is received by an endpoint, it checks a
table of packets received per source node to determine if it is
time to send a flow control credit to the source node. If the
send budget of the source node is predicted to have become
small enough and there is enough space on the local receive
buffer, it enters a packet into the ack queue and marks the
amount of space as allocated.

In order to maintain maximum bandwidth, flow control
packets must be received before the send budget of the source
node runs out. However, it is often not possible to provide a
large enough buffer to conservatively accommodate the flow
control packet’s round trip latency for all nodes in the system.

Under such constraints, each endpoint can have a different
flow control configuration that attempts to best suit its usage.
For example, for some endpoints the expected traffic pattern
may be that most of the data transfer happens between a pair
of two nodes. In such a case, it might be effective to have
a very low granularity flow control, so that a large buffer
is allocated on request, but the total receive buffer may be
small. On the other hand, if many nodes are expected to send
data to one node, a fine granularity flow control and a large
buffer may be required for performance. If the endpoint is
used for low-bandwidth traffic such as commands, the buffer
size and granularity can be set to a small value. To enable such
control, endpoints are initialized with the parameters described
in Table I.

User
Interface

To Router

recvQ

sendQ

ackQ

Fig. 3: Endpoint Architecture

Initially, all nodes start with a small send budget
(initBudget) to all remote nodes, and therefore the actual
size of the receive packet buffer is initBudget×nodeCount
slots larger than the BufferSize parameter. When the first
packet arrives, space in the receive buffer is allocated to the
source node and a flow control packet is sent. The endpoint
can choose to periodically allocate only initBudget size
buffers, instead of FlowCredit in an attempt to more fairly
allocate buffer space across source nodes. Yielding buffers like
this achieves better buffer usage when many nodes are going
to send data to one node.

The network infrastructure also provides an unmanaged
endpoint which does not implement a transport layer protocol.
The unmanaged endpoint can sustain the highest bandwidth
and lowest latency as it does not check if the receiving endpoint
has available buffers before sending packets. It should be used
very carefully, since if the arriving data is not always imme-
diately consumed and dequeued from the receiving buffer, it
may cause the entire network to block.

IV. IMPLEMENTATION DETAILS

We have implemented a prototype of the network described
using a cluster of machines. Each node in the cluster consists
of one Intel Xeon-based server, Xilinx VC707 FPGA develop-
ment board, and a network expansion card which pinned out
eight GTX multi-gigabit serial transceivers. Two lanes were
grouped together to form a channel, resulting in a fan-out of
up to 4 channels per node. A node can implement any direct
network with a fan-out per node of 4 or less, such as a 2D
mesh or torus.

The link latency of an aurora link based on the GTX multi-
gigabit transceiver was measured to be around 0.48us, which
translates to about 75 cycles on the 6.4ns user clock.

A. FPGA Resource Utilization

We have measured the FPGA resource utilization of our
network using a simple setup with two endpoints: one high
speed endpoint with larger flow control credit and buffer
size (Credit size of 200 and buffer size of 1024 packets),
and one small endpoint with smaller buffers. The endpoint
row in the table below described the larger endpoint. The
router component includes the chaining logic used to link the
endpoints to it. The user logic was clocked at 125MHz.

Parameter Description
BufferSize Size of the total allocated buffer space
FlowOffset Offset of flow control packet transmission
FlowCredit Number of packets each flow control credit represents

TABLE I: Endpoint Parameters

Component LUTS RAMB36
Aurora Link 4843 36
Router 3743 0
Endpoint (×2) 753 3
Total 10092 42
Virtex 7 Percentage (3%) (4%)

TABLE II: FPGA Resource Utilization

V. PERFORMANCE EVALUATION

We demonstrate that the performance of the network does
not suffer from the addition of transport-layer network func-
tions. We measured the bandwidth and latency of the network
under various configurations, and show that our network can
usually achieve a bandwidth of 17Gb/s, which is 85% of
the maximum physical link bandwidth. This performance is
reasonable considering the packet header and flow control
overhead.

Single Endpoint Over Multiple Hops : We measured the
bandwidth of the network implementation by measuring the
time it takes for a single endpoint to send a large amount of
data to remote nodes variable hops away, under various flow
control settings. Larger credit settings mean a larger buffer size
is required. Flow control offset was set to be half of the credit
size. The results can be seen in Figure 4a.

When the flow control credit was small, performance of
the network was lower when going over a longer network
distance. This is because the round trip latency over multiple
hops is longer than the time it takes to deplete the send buffer,
resulting in idle cycles when no data can safely be sent over
the network. With the low network latency of the serial links,
maximum bandwidth over 3 network hops could be achieved
using a single endpoint when the flow control credit is over
512 packets large.

Multiple Endpoints Over Multiple Hops : Since most
interesting distributed FPGA applications will have more than
one network endpoint, maximum network performance can be
achieved even when a single endpoint’s flow control credit
setting is large enough. We measured the aggregate network
bandwidth of a varying number of endpoints sending data
to a node three network hops away. We also measured the
performance with varying flow control credit sizes. Flow
control offset was set to be half of the credit size. The results
can be seen in Figure 4b. It shows that a collection of smaller
sized endpoints can saturate the network by filling in each
others’ idle cycles.

Buffer Size and Flow Control Offset : Endpoints can
be characterized not only by its flow control credit size, but
also by the flow control offset and buffer size parameters.
The same amount of buffer space can also be allocated to
a different number of nodes under different flow control credit
settings. Setting a smaller offset has the risk of incurring idle
time by delivering a flow control packet too late, but a large
offset requires a larger buffer to accommodate earlier buffer
allocation.

We measured the effect of such parameters by having three
nodes send a stream of packets to the same remote node. We
tested three scenarios, described in Table III. Two had the same

 0

 5

 10

 15

 20

6
4

1
2
8

1
9
2

2
5
6

3
2
0

3
8
4

4
4
8

5
1
2

B
a
n
d
w
i
d
t
h

(
G
b
p
s
)

Flow Control Credits(Packets)

1 Hop

2 Hops

3 Hops

(a) Network Bandwidth With Vari-
able Network Distance

 0

 5

 10

 15

 20

6
4

1
2
8

1
9
2

2
5
6

B
a
n
d
w
i
d
t
h

(
G
b
p
s
)

Flow Control Credits(Packets)

4 Links

3 Links

2 Links

1 Link

(b) Network Bandwidth With Vari-
able Number of Channels

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32*2+16 64*1+16 64*1+8

T
h
r
o
u
g
h
p
u
t

(
G
b
p
s
)

Flow Control Credits

(c) Network Bandwidth With Dif-
ferent Flow Control Settings

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4

L
a
t
e
n
c
y

(
u
s
)

Hops

Latency(us)

(d) Network Latency Per Hop

total buffer size organized into different organizations, and one
had a smaller buffer. In the first scenario, the three source
nodes will be contending to be scheduled into the two possible
slots, where in the latter two scenarios they will be contending
for one 64 packet slot.

Setting Description
32*2+16 Buffer has space for two 32 packet blocks, with offset of 16
64*1+16 Buffer has space for one 64 packet block, with offset of 16
64*1+8 Buffer has space for one 64 packet block, with offset of 8

TABLE III: Flow Control Parameters

The results can be seen in Figure 4c. It shows that even with
the same buffer size, having a larger credit setting is beneficial
to a small buffer configuration. The difference is pronounced
enough that even reducing buffer usage further by making the
offset smaller results in a better performance compared to the
configuration with smaller credit sizes.

Multi-Hop Latency : Network latency was measured by
measuring the round-trip latency by sending a packet to nodes
of varying distances, where the user logic immediately sends
the packet back to the original sender. The results can be seen
in Figure 4d. We show a consistent latency of less than 0.5us
per hop.

VI. CONCLUSION

In this paper, we have presented our design of a parameter-
ized, low overhead transport-layer network that provides useful
features such as virtual channels and end-to-end flow control.
Our network takes advantage of the high reliability of the high-
speed serial links, which are integrated in the FPGA fabric, to
implement a lossless in-order network layer, which allowed us
to simplify the transport layer and use less FPGA resources.
The design of the transport layer is parameterized, so that
the developer can choose to use less resources while meeting
the performance requirements of the individual endpoint. Our
prototype implementation demonstrated a high performance in
an FPGA cluster setting. We predict that our network will
accelerate future research of distributed FPGA applications.

ACKNOWLEDGEMENT

This work was partially funded by Quanta (Agmt. Dtd.
04/01/05) and Lincoln Laboratory(PO7000261350). We also
thank Xilinx for their generous donation of VC707 FPGA
boards and FPGA design expertise.

REFERENCES

[1] S. Moore, P. Fox, S. Marsh, A. Markettos, and A. Mujumdar, “Bluehive
- a field-programable custom computing machine for extreme-scale
real-time neural network simulation,” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on, April 2012, pp. 133–140.

[2] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, “Maxwell - a 64 fpga supercomputer,”
in Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA
Conference on, Aug 2007, pp. 287–294.

[3] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth, G. Jan,
G. Michael, H. S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Yi, and X. D.
Burger, “A reconfigurable fabric for accelerating large-scale datacenter
services,” SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 13–24,
Jun. 2014.

[4] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’10. New
York, NY, USA: ACM, 2010, pp. 115–124.

[5] S.-W. Jun, M. Liu, K. E. Fleming, and Arvind, “Scalable multi-
access flash store for big data analytics,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate
Arrays, ser. FPGA ’14. New York, NY, USA: ACM, 2014, pp. 55–64.

[6] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics,” in Proceedings
of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 1–13.

[7] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving
10gbps line-rate key-value stores with fpgas,” in Presented as part of the
5th USENIX Workshop on Hot Topics in Cloud Computing. Berkeley,
CA: USENIX, 2013.

[8] I. T. Association, Infiniband, 2014 (Accessed November 18, 2014).
[Online]. Available: http://www.infinibandta.org

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[10] A. Theodore Markettos, P. Fox, S. Moore, and A. Moore, “Interconnect
for commodity fpga clusters: Standardized or customized?” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1–8.

[11] T. Bunker and S. Swanson, “Latency-optimized networks for clustering
fpgas,” in Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on, April 2013, pp.
129–136.

[12] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, Arvind, and
J. Emer, “Leveraging latency-insensitivity to ease multiple fpga design,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’12. New York, NY, USA:
ACM, 2012, pp. 175–184.

